Hyers-Ulam-Rassias Stability of Orthogonal Pexiderized Quadratic Functional Equation

IZ. EL-Fassi

Professor
Laboratory LAMA, Harmonic Analysis and functional Team, Department of Mathematics
- Faculty of Sciences University of Ibn Tofail, Kenitra,
Morocco

ABSTRACT

The Hyers-Ulam-Rassias stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)-2h(y) is established where \bot is a symmetric orthogonality in the sense of Rätz.

Keywords

Hyers-Ulam-Rassias stability, Orthogonal spaces, Pexiderized Quadratic functional equations.

1. INTRODUCTION

S.M. Ulam [24] is the pioneer of the stability problem in functional equations. In 1940, while he was delivering a talk before the Mathematics Club of the University of Wisconsin, he discussed a number of unsolved problems. Among them was the following question concerning the stability of homomorphisms:

Let G be a group and H be a metric group with metric d(.,.). Given $\varepsilon>0$, does there exist a $\theta>0$ such that if a function $g:G\to H$ satisfies $d(g(xy),g(x)g(y))<\theta$ for all $x,y\in G$, then there exists a homomorphism $a:G\to H$ with $d(g(x),a(x))<\varepsilon$ for all $x\in G$? In 1941, D. H. Hyers [11] was the first mathematician to present the result concerning the stability of functional equations on Banach spaces. This result of Hyers [11] is stated as follows:

Let $f: X \to Y$ satisfies $||f(x+y) - f(x) - f(y)|| \le \varepsilon$ for all $x, y \in X$ and $\varepsilon \ge 0$. Then there exists a unique additive mapping $T: X \to Y$ such that $||f(x) - T(x)|| \le \varepsilon$, for all $x \in X$. The generalized version of D. H. Hyers [11] result was given by famous Greece mathematician Th. M. Rassias [18] in 1978, where $f: X \to Y$ satisfies the inequality $||f(x+y) - f(x) - f(y)|| \le \delta(||x||^p + ||y||^p)$

for all $x,y\in X$ and $\delta\geq 0$ and $0\leq p<1$. The stability paper [19] given by Th. M. Rassias has significantly influenced in the development of stability of functional equations and hence named as Hyers-Ulam-Rassias stability of functional equations.

Let us denote the the sets of real, nonnegative real numbers and positive integers by R , R^+ and N, respectively.

S. Kabbaj

Professor and Research scholar
Laboratory LAMA, Harmonic Analysis and
functional Team, Department of Mathematics
- Faculty of Sciences University of Ibn Tofail, Kenitra,
Morocco

Suppose that X is a real vector space with dim $X \ge 2$ and \bot is a binary relation on with the following properties:

- (O1) totality of \bot for zero: $x \bot 0$, $0 \bot x$ for all $x \in X$;
- (O2) independence: if $x, y \in X \{0\}$, $x \perp y$ then x, y are linearly independent;
- (O3) homogeneity: if $x, y \in X$, $x \perp y$, then $\alpha x \perp \beta y$ for all $\alpha, \beta \in R$;
- (O4) the Thalesian property: Let P is a 2-dimensional subspace of X. If $x \in P$ and $\lambda \in R^+$, then there exists $y_0 \in P$ such that $x \perp y_0$ and $x + y_0 \perp \lambda x y_0$.

The pair (X, \perp) is called an orthogonality space. By an orthogonality normed space we mean an orthogonality space equipped with a norm.

Some examples of special interest are (i) The trivial orthogonality on a vector space X defined by (O1), and for non-zero elements $x, y \in X$, $x \perp y$ if and only if x, y are linearly independent.

- (ii) The ordinary orthogonality on an inner product space $(X,\langle.,.\rangle)$ given by $x\perp y$ if and only if $\langle x,y\rangle=0$.
- (iii) The Birkhoff-James orthogonality on a normed space $(X,||\ .\ ||) \quad \text{defined} \quad \text{by} \quad x\perp y \quad \text{if} \quad \text{and} \quad \text{only} \quad \text{if} \\ ||\ \lambda x+\ y\ ||\ge ||\ x\ || \quad \text{for all} \quad \lambda \in R^+ \, .$

The relation \bot is called symmetric if $x \bot y$ implies that $y \bot x$ for all $x,y \in X$. Clearly examples (i) and (ii) are symmetric but example (iii) is not. However, it is remarkable to note, that a real normed space of dimension greater than or equal to 3 is an inner product space if and only if the Birkhoff-James orthogonality is symmetric.

Let X be a vector space (an orthogonality space) and (Y,+) be an abelian group. A mapping $f: X \to Y$ is called (orthogonally) additive if it satisfies the so-called (orthogonal) additive functional equation f(x+y) = f(y) + f(x) for all $x,y \in X$ (with $x \perp y$). A mapping $f: X \to Y$ is said to

be (orthogonally) quadratic if it satisfies the so-called (orthogonally) Jordan-von-Neumann quadratic function equation f(x+y)+f(x-y)=2f(x)+2f(y) for all $x,y\in X$ (with $x\perp y$). For example, a function $f:X\to Y$ between real vector spaces is quadratic if and only if there exists a (unique) symmetric bi-additive mapping $B:X\times X\to Y$ such that f(x)=B(x,x) for all $x\in X$. In

fact,
$$B(x, x) = \frac{1}{4}(f(x+y) - f(x-y))$$
, cf. [2]. In the recent

decades, stability of functional equations have been investigated by many mathematicians. They have so many applications in Information Theory, Economic Theory and Social and Behaviour Sciences; cf. [1]. The first author treating the stability of the quadratic equation was F. Skof [22] by proving that if f is a maping from a normed space X into a Banach space Y satisfying $\mid\mid f(x+y)+f(x-y)-2f(x)-2f(y)\mid\mid \leq \varepsilon$ for some

$$\varepsilon>0$$
, then there is a unique quadratic function $g:X\to Y$ such that $||f(x)-g(x)||\leq \frac{\varepsilon}{2}$. P. W. Cholewa [3] extended

Skofs theorem by replacing X by an abelian group G. Skof's result was later generalized by S. Czerwik [4] in the spirit of Hyers–Ulam–Rassias. K.W. Jun and Y. H. Lee [13] proved the stability of quadratic equation of Pexider type. The stability problem of the quadratic equation has been extensively investigated by some mathematicians [17], [5], [6].

The orthogonal quadratic equation

$$f(x+ y) + f(x- y) = 2 f(x) + 2 f(y), x \perp y$$

was first investigated by F. Vajzović [25] when X is a Hilbert space, Y is the scalar field, f is continuous and \bot means the Hilbert space orthogonality. Later H. Drljević [7], M. Fochi [9] and G. Szabó [23] generalized this result.

One of the significant conditional equations is the so-called orthogonally quadratic functional equation of Pexider type

$$f(x+y) + f(x-y) = 2g(x) + 2h(y), x \perp y$$
 (1).

M. S. Moslehian [16] proved the Hyers-Ulam stability of the Pexiderized Quadratic Equations (1) in orthogonality spaces.

Throughout the paper, we denote (X, \bot) an orthogonality normed space and (Y, ||.||) is a real Banach space. In order to avoid some definitional problems, we also assume for the sake of this paper that $0^0 = 1$.

2. MAIN RESULTS

In this section we show the Hyers-Ulam-Rassias stability of the orthogonally Pexiderized Quadratic functional Equations (1) in orthogonality spaces.

Lemma 2.1 (see [16]) If $a: X \to Y$ satisfying

$$a(x+y) + a(x-y) = 2a(x)$$

for all $x, y \in X$ with $x \perp y$ and \perp is symmetric, then a(x) - a(0) is orthogonally additive.

Theorem 2.2 Let $f, g, h : X \rightarrow Y$ are mappings satisfying

$$|| f(x+y) + f(x-y) - 2g(x) - 2h(y) || \le \varepsilon (||x||^p + ||y||^p)$$
 (2)

for some $\varepsilon \geq 0$, $p \in R^+ \setminus \left[1,2\right]$ and for all $x,y \in X$ with $x \perp y$. Suppose that \perp is symmetric on X. If f is odd then there exists a unique additive mapping $T: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$|| f(x) - T(x) - Q(x) || \le \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} || x ||^{p}$$

$$|| g(x) - g(0) - T(x) - Q(x) || \le (\frac{\varepsilon}{2} + \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1}) \square x \square^{p}$$

for all $x \in X$, where

$$\alpha := 1 + 3^p + 2^{p+1}$$

Proof. Define F(x) = f(x) - f(0) = f(x), G(x) = g(x) - g(0),

and
$$H(x) = h(x) - h(0)$$
. Then $F(0) = G(0) = H(0) = 0$

Use (O1) and put x=y=0 in (2) with $p\in R^+\setminus \left[1,2\right]$ and subtract the argument of the norm of the resulting inequality. We get

$$||F(x+y) + F(x-y) - 2G(x) - 2H(y)|| \le \varepsilon(||x||^p + ||y||^p)$$
(3)

for all $x, y \in X$.

Put x = 0 in (3). We can do this because of (O1). Then

$$|| 2H(y) || \le \varepsilon || y ||^p$$
 (4)

for all $y \in X$. Similarly, by putting y = 0 in (3) we get

$$||2F(x)-2G(x)|| \le \varepsilon ||x||^p$$
 (5)

for all $x \in X$.

Whence

$$|| F(x+y) + F(x-y) - 2F(x) || \le || F(x+y) + F(x-y) - 2G(x) - 2H(y) || + || 2F(x) - 2G(x) || + || 2H(y) ||$$

$$\le 2\varepsilon(|| x ||^p + || y ||^p)$$
(6)

for all $x, y \in X$ with $x \perp y$.

Fix $x \in X$. By (O4), there exists $y_0 \in X$ such that $x \perp y_0$ and $x + y_0 \perp x - y_0$. Since \perp is symmetric, $x - y_0 \perp x + y_0$ too. Using inequality (6) and the oddness of we get

$$\begin{split} || F(x+ y_0) + F(x- y_0) - 2F(x) || &\leq 2\varepsilon (|| x ||^p + || y ||^p) \\ || F(2x) + F(2y_0) - 2F(x+ y_0) || &\leq 2\varepsilon (|| x+ y_0 ||^p + \\ & || x- y_0 ||^p) \\ || F(2x) - F(2y_0) - 2F(x- y_0) || &\leq 2\varepsilon (|| x+ y_0 ||^p + \\ & || x- y_0 ||^p) \end{split}$$

Then

$$\begin{split} &|| \, F(2 \, x) \, - 2 F(x) \, || \, \leq || \, F(x + \, y_{_{0}}) + \, F(x - \, y_{_{0}}) \, - 2 \, F(x) \, || \, + \\ & \frac{1}{2} \, || \, F(2 \, x) + \, F(2 \, y_{_{0}}) \, - 2 \, F(x + \, y_{_{0}}) \, || \, + \, \frac{1}{2} \, || \, F(2 \, x) \, - \, F(2 \, y_{_{0}}) \\ & - 2 \, F(x - \, y_{_{0}}) \, || \, \leq \, 2 \varepsilon \{ || \, x \, ||^{p} \, + \, || \, y_{_{0}} \, ||^{p} \, + \, || \, x + \, y_{_{0}} \, ||^{p} \\ & + \, || \, x - \, y_{_{0}} \, ||^{p} \} \end{split}$$

From the definition of the orthogonality, since $\mathbf{x}\perp\mathbf{y}_0$, we derive $||\mathbf{x}||\leq||\mathbf{x}+\mathbf{y}_0||$ and $||\mathbf{x}||\leq||\mathbf{x}-\mathbf{y}_0||$ (for $\lambda=1$ and $\lambda=-1$, respectively), and, analogously, from $\mathbf{x}+\mathbf{y}_0\perp\mathbf{x}-\mathbf{y}_0$ and $\mathbf{x}-\mathbf{y}_0\perp\mathbf{x}+\mathbf{y}_0$ we derive $||\mathbf{x}+\mathbf{y}_0||\leq||2\mathbf{x}||$ and $||\mathbf{x}-\mathbf{y}_0||\leq||2\mathbf{x}||$. From these relations and the triangle inequality we have

$$||y_0|| \le ||x-y_0|| + ||x|| \le 3||x||$$

As p is a nonnegative real number, we have the approximations

$$||y_0||^p \le 3^p ||x||^p$$

 $||x + y_0||^p \le 2^p ||x||^p, ||x - y_0||^p \le 2^p ||x||^p$

Then we obtain

$$|| F(2x) - 2F(x) || \le 2\varepsilon\alpha || x ||^p$$
 (7)

with

$$\alpha := 1 + 3^p + 2^{p+1}$$
.

Assume first that $0 \le p < 1$. Then from (7) we have

$$||\frac{F(2x)}{2} - F(x)|| \le \varepsilon \alpha ||x||^p$$
 (8)

for all $x \in X$.

Replacing x by 2^k x $(k \in \mathbb{N})$ in (8) we get

$$||\frac{F(2^{k+1}x)}{2} - F(2^kx)|| \le \varepsilon \alpha ||2^kx||^p$$
 (9)

Then

$$||\frac{F(2^{k+1}x)}{2^{k+1}} - \frac{F(2^kx)}{2^k}|| \le 2^{k(p-1)} \varepsilon \alpha ||x||^p \qquad (10)$$

Whence

$$||\sum_{k=0}^{n-1} \left\{ \frac{F(2^{k+1} x)}{2^{k+1}} - \frac{F(2^{k} x)}{2^{k}} \right\} || \leq \sum_{k=0}^{n-1} ||\frac{F(2^{k+1} x)}{2^{k+1}} - \frac{F(2^{k} x)}{2^{k}} || \leq \varepsilon \alpha ||x||^{p} \sum_{k=0}^{n-1} 2^{k(p-1)}$$

$$(11)$$

It follow from (11) that

$$||\frac{F(2^{n} x)}{2^{n}} - F(x)|| \le \varepsilon \alpha \left(\frac{1 - 2^{n(p-1)}}{1 - 2^{p-1}}\right) ||x||^{p}$$
 (12)

Replacing x by $2^m x \ (m \in N)$ in (12) we obtain

$$||\frac{F(2^{n+m}x)}{2^n} - F(2^mx)|| \le \varepsilon \alpha 2^{mp} (\frac{1 - 2^{n(p-1)}}{1 - 2^{p-1}}) ||x||^p$$
(13)

Then

$$||\frac{F(2^{n+m} x)}{2^{n+m}} - \frac{F(2^m x)}{2^m}|| \le 2^{m(p-1)} \varepsilon \alpha (\frac{1 - 2^{n(p-1)}}{1 - 2^{p-1}}) || x ||^p$$

$$As \lim_{m,n \to +\infty} \left\{ 2^{m(p-1)} \varepsilon \alpha (\frac{1 - 2^{n(p-1)}}{1 - 2^{p-1}}) || x ||^p \right\} = 0$$
(14)

Then
$$\left\{\frac{F(2^n \ x)}{2^n}\right\}$$
 is Cauchy sequence in Banach space

$$(Y, ||.||)$$
 . Hence $\lim_{n \to +\infty} \frac{F(2^n x)}{2^n}$ exists and we well defines

the odd mapping $a(x) = \lim_{n \to +\infty} \frac{F(2^n x)}{2^n}$ from X into Y satisfying

$$||a(x) - F(x)|| \le \frac{\varepsilon \alpha}{1 - 2^{p-1}} ||x||^p$$
 (15)

for all $x \in X$.

For all $x, y \in X$ with $x \perp y$, by applying inequality (6) and (O3) we obtain

$$|| 2^{-n} F(2^{n}(x+y)) + 2^{-n} F(2^{n}(x-y)) - 2^{-n+1} F(2^{n} x) ||$$

$$\leq 2^{-n+1} \varepsilon(|| 2^{n} x ||^{p} + || 2^{n} y ||^{p})$$

$$= 2\varepsilon 2^{n(p-1)} (|| x ||^{p} + || y ||^{p})$$
(16)

If $n \to +\infty$ then we deduce that

$$a(x+y) + a(x-y) - 2a(x) = 0$$

for all $x, y \in X$ with $x \perp y$ Moreover $a(0) = \lim_{n \to +\infty} 2^{-n} F(2^n.0) = 0$. Using Lemma 2.1 we conclude that a is an orthogonally additive mapping.

In the case p > 2 we start from the inequality

$$||F(x)-2F(\frac{x}{2})|| \le 2^{1-p} \varepsilon \alpha ||x||^p$$
 (17)

where $\alpha = 1 + 3^p + 2^{p+1}$.

Replacing x by 2^{-k} x $(k \in N)$ in (17) we get

$$||F(\frac{x}{2^{k}}) - 2F(\frac{x}{2^{k+1}})|| \le \frac{2\varepsilon\alpha}{2^{p}} 2^{-kp} ||x||^{p},$$
 (18)

then

$$||2^{k} F(\frac{x}{2^{k}}) - 2^{k+1} F(\frac{x}{2^{k+1}})|| \le \frac{2\varepsilon\alpha}{2^{p}} 2^{k(1-p)} ||x||^{p}.$$
 (19)

Whence

$$\begin{aligned} ||\sum_{k=0}^{n-1} \left\{ 2^{k} F(\frac{x}{2^{k}}) - 2^{k+1} F(\frac{x}{2^{k+1}}) \right\} || &\leq \sum_{k=0}^{n-1} ||2^{k} F(\frac{x}{2^{k}}) - 2^{k+1} F(\frac{x}{2^{k+1}}) || &\leq \frac{2\varepsilon\alpha}{2^{p}} ||x||^{p} \sum_{k=0}^{n-1} 2^{k(1-p)} \end{aligned} (20)$$

It follow from (20) that

$$||F(x)-2^{n}F(\frac{x}{2^{n}})|| \le \frac{\varepsilon\alpha}{2^{p-1}-1}(1-\frac{1}{2^{n(p-1)}})||x||^{p}$$
 (21)

Same as the first case ($0 \le p < 1$) we find, for each $x \in X$ the sequence $\left\{2^n \ F(2^{-n} \ x)\right\}$ is Cauchy sequence in Banach space (Y, ||.||). Hence $\lim_{n \to +\infty} 2^n \ F(2^{-n} \ x)$ exists and we well define the odd mapping $a(x) = \lim_{n \to +\infty} 2^n \ F(2^{-n} \ x)$ from X into Y satisfying

$$||a(x) - F(x)|| \le \frac{\varepsilon \alpha}{2^{p-1} - 1} ||x||^p$$
 (22)

for all $x \in X$, also we deduce that

$$a(x+y) + a(x-y) - 2a(x) = 0, a(0) = 0$$

for all $x, y \in X$ with $x \perp y$.

By the first case and the second case we obtain

$$||a(x) - F(x)|| \le \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} ||x||^p$$
 (23)

where

$$a(x+ y) + a(x- y) - 2a(x) = 0, a(0) = 0$$

for all $x, y \in X$ with $x \perp y$. and a is an orthogonally additive mapping. By corollary 7 of [20], a has the form T+Q with T additive and Q quadratic. If there are another Q' quadratic mapping and another additive mapping T' satisfying the required in our theorem and a' = T' + Q'.

Then

$$|| a(x) - a'(x) || \le || a(x) - F(x) || + || F(x) - a'(x) ||$$

$$\le \frac{2\varepsilon\alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} || x ||^{p}$$
(24)

for all $x \in X$ and $p \in R^+ \setminus \begin{bmatrix} 1,2 \end{bmatrix}$. Using the fact that additive mapping are odd and quadratic mapping are even we obtain

$$|| T(x) - T'(x) || = \frac{1}{2} || T(x) + Q(x) - T'(x) - Q'(x) + T(x) - Q(x) - T'(x) + Q'(x) ||$$

$$\leq \frac{1}{2} || T(x) + Q(x) - (T'(x) + Q'(x)) || + \frac{1}{2} || T(x) - Q(x) - (T'(x) - Q'(x)) ||$$

$$\leq \frac{1}{2} || a(x) - a'(x) || + \frac{1}{2} || a(-x) - a'(-x) ||$$

$$\leq \frac{2\varepsilon\alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} || x ||^{p}$$
(25)

for all $x \in X$ and $p \in R^+ \setminus [1,2]$.

Similarly

$$|| Q(x) - Q'(x) || = \frac{1}{2} || T(x) + Q(x) - T'(x) - Q'(x) - T(x) + Q(x) + T'(x) - Q'(x) ||$$

$$\leq \frac{1}{2} || a(x) - a'(x) || + \frac{1}{2} || a(-x) - a'(-x) ||$$

$$\leq \frac{2\varepsilon\alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} || x ||^{p}$$
(26)

 $\text{ for all } \ x \in X \ \text{ and } \ p \in R^+ \backslash \left\lceil 1,2 \right\rceil.$

If $0 \le p < 1$ we have

$$|| T(x) - T'(x) || = \frac{1}{n} || T(nx) - T'(nx) ||$$

$$\leq \frac{2\varepsilon\alpha}{1 - 2^{p-1}} n^{p-1} || x ||^{p}$$
(27)

and

$$|| Q(x) - Q'(x) || = \frac{1}{n^{2}} || Q(nx) - Q'(nx) ||$$

$$\leq \frac{2\varepsilon\alpha}{1 - 2^{p-1}} n^{p-2} || x ||^{p}$$
(28)

for all $x \in X$.

Tending $n \to +\infty$ we infer that T = T' and Q = Q'.

Then a = a'.

Otherwise if p > 2 we have

$$|| T(x) - T'(x) || = n || T(\frac{1}{n}x) - T'(\frac{1}{n}x) ||$$

$$\leq \frac{2\varepsilon\alpha}{2^{p-1} - 1} n^{-p+1} || x ||^{p}$$
 (29)

and

$$|| Q(x) - Q'(x) || = n^{2} || Q(\frac{1}{n}x) - Q'(\frac{1}{n}x) ||$$

$$\leq \frac{2\varepsilon\alpha}{2^{p-1} - 1} n^{-p+2} || x ||^{p}$$
(30)

for all $\ x \in X$. Taking the limit, we conclude that T = T' and Q = Q' .

Then a = a'.

Using (5) and (23) we infer that for all $x \in X$

$$|| G(x) - a(x) || = || G(x) - F(x) || + || F(x) - a(x) ||$$

$$\leq (\frac{\varepsilon}{2} + \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1}) || x ||^{p}$$
 (31)

Finally we get

$$|| f(x) - T(x) - Q(x) || \le \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} || x ||^p$$

and

$$\begin{aligned} || \ g(x) - g(0)) - T(x) - Q(x) \ || & \leq \left(\frac{\varepsilon}{2} + \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1}\right) || \ x \ ||^p \end{aligned}$$

for all $x \in X$. This completes the proof of theorem.

Remark 2.3 (i) If $G = k \cdot F$ for some number $k \neq 1$, then

Inequality (5) implies that $|1 - k| ||F(x)|| \le \frac{\varepsilon}{2} ||x||^p$

for all
$$\ x \in X \ \text{ and } \ p \in R^+ \backslash \left[1,2\right]$$
 . Hence

$$\mid 1 \text{ -} k \mid \mid \mid 2^{\text{-}n} \; F(2^n \; x) \mid \mid \leq \frac{\varepsilon}{2} 2^{n(p-1)} \mid \mid x \mid \mid^p ; 0 \leq p < 1$$

and
$$|1 - k| ||2^n F(2^{-n} x)|| \le \frac{\varepsilon}{2} 2^{n(1-p)} ||x||^p; p > 2$$

so
$$a(x) = \begin{cases} \lim_{n \to +\infty} 2^{-n} \ f(2^n \ x) = \ 0 \ \text{if} \ 0 \le p < 1 \\ \lim_{n \to +\infty} 2^n \ f(2^{-n} \ x) = \ 0 \ \text{if} \ p > 2 \end{cases}$$

for all $x \in X$.

(ii) Similarly, if $H = k \cdot F$ for some number $k \neq 1$, then it follows from (4) that a(x) = 0.

Corollary 2.4 Let $f, g, h: X \to Y$ are mappings satisfying

$$||f(x+y)+f(x-y)-2g(x)-2h(y)|| \le \varepsilon$$

for some $\varepsilon \ge 0$ and for all $x,y \in X$ with $x \perp y$. Suppose that \bot is symmetric on X. If f is odd then there exists a

unique additive mapping $T: X \rightarrow Y$ and a unique quadratic mapping $O: X \rightarrow Y$ such that

$$\begin{aligned} &|| \ f(x) - T(x) - Q(x) \ || \le 4\varepsilon \\ &|| \ g(x) - g(0) - T(x) - Q(x) \ || \le \frac{17\varepsilon}{4} \end{aligned}$$

for all $x \in X$.

Corollary 2.5 Let $f, h: X \to Y$ are mappings satisfying

$$\begin{split} &||\ f(x+\ y)+\ f(x-\ y)-2\ f(x)-2\ h(y)\ || \leq \varepsilon (||\ x\ ||^p+||\ y\ ||^p)\\ &\text{for some }\ \varepsilon \geq 0\ ,\ p\in R^+\setminus \left[1,2\right] \text{and for all }\ x,y\in X\\ &\text{with }\ x\perp y\ . \text{Suppose that } \bot \ \text{is symmetric on }X\ .\ \text{If }\ f\ \text{ is odd then there exists a unique additive mapping}\\ &T:X\to Y\ \text{and}\quad \text{a unique quadratic mapping}\ Q:X\to Y\\ &\text{such that} \end{split}$$

$$|| f(x) - T(x) - Q(x) || \le \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1} || x ||^p$$

for all $x \in X$, where

$$\alpha := 1 + 3^p + 2^{p+1}$$
.

Theorem 2.6 Let $f, g, h: X \to Y$ are mappings satisfying

$$|| f(x+y) + f(x-y) - 2g(x) - 2h(y) || \le \varepsilon (||x||^p + ||y||^p)$$
(32)

for some $\varepsilon \geq 0$, $p \in R^+ \setminus \left\{2\right\}$ and for all $x,y \in X$ with $x \perp y$. If f is even mapping then there exists a unique quadratic mapping $q: X \to Y$ such that

$$|| f(x) - f(0) - q(x) || \le \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2} || x ||^p$$

$$||g(x) - g(0) - q(x)|| \le (\frac{\varepsilon}{2} + \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2}) ||x||^p$$

and

$$||h(x) - h(0) - q(x)|| \le (\frac{\varepsilon}{2} + \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2}) ||x||^p$$

for all $x \in X$.

Proof. Define
$$F(x) = f(x) - f(0)$$
, $G(x) = g(x) - g(0)$,

and
$$H(x) = h(x) - h(0)$$
. Then $F(0) = G(0) = H(0) = 0$ and F is even mapping.

Use (O1) and put x = y = 0 in (32) with $p \in R^+ \setminus \{2\}$ and subtract the argument of the norm of the resulting inequality from that of inequality (32) to get

$$||F(x+y)+F(x-y)-2G(x)-2H(y)|| \le \varepsilon(||x||^p + ||y||^p)$$
(33)

for all $x, y \in X$ with $x \perp y$.

Put x = 0 in (33), we can do this because of (O1). Then

$$||2F(y)-2H(y)|| \le \varepsilon ||y||^p$$
(34)

for all $\,y\in X$. Similarly, by putting $\,y=\,0\,$ in (33) we get

$$||2F(x)-2G(x)|| \le \varepsilon ||x||^p$$
(35)

for all $x \in X$.

Hence

$$|| F(x+y) + F(x-y) - 2F(x) - 2F(y) || \le || F(x+y) + F(x-y) - 2G(x) - 2H(y) || + || 2F(x) - 2G(x) || + || 2F(y) - 2H(y) || \le 2\varepsilon (||x||^p + ||y||^p)$$
(36)

for all $x, y \in X$ with $x \perp y$.

Then by Theorem 5.1 of [21] there exist a unique quadratic mapping $q: X \to Y$ such that

$$||F(x) - q(x)|| \le \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2} ||x||^p$$

Moreover by (34) and (35) we obtain

$$||G(x)-q(x)|| \le \left(\frac{\varepsilon}{2} + \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2}-2}\right) ||x||^p$$

$$|| H(x) - q(x) || \le \left(\frac{\varepsilon}{2} + \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2}\right) || x ||^p$$

for all $\,x \in X$. This completes the proof of theorem.

Corollary 2.7 Let $f, g, h : X \to Y$ are mappings satisfying

$$||f(x+y)+f(x-y)-2g(x)-2h(y)|| \le \varepsilon$$

for some $\varepsilon \geq 0$ and for all $x,y \in X$ with $x \perp y$. If f is even mapping then there exists a unique quadratic mapping $q:X \to Y$ such that

$$|| f(x) - f(0) - g(x) || \le 3\varepsilon$$

$$||g(x) - g(0) - q(x)|| \le \frac{13\varepsilon}{4}$$

and

$$||h(x)-h(0)-q(x)|| \leq \frac{13\varepsilon}{4}$$

for all $x \in X$.

Theorem 2.8 Let $f, g, h: X \to Y$ are mappings satisfying

$$\begin{split} || \ f(x+\ y) + \ f(x-\ y) - 2 \ g(x) - 2 \ h(y) || & \leq \varepsilon (||\ x\ ||^p + ||\ y\ ||^p) \\ \text{for some } \varepsilon \geq 0 \ , \ p \in R^+ \backslash \left[1,2\right] \text{ and for all } \ x,y \in X \ \text{ with } \\ x \perp y \ . \text{ Suppose that } \bot \ \text{ is symmetric on } X \ . \text{ Then there} \\ \text{exists a unique additive mapping } \ T:X \to Y \ \text{and} \quad \text{a unique} \\ \text{quadratic mapping } \ Q:X \to Y \ \text{ such that} \end{split}$$

$$||f(x) - f(0) - T(x) - Q(x)|| \le \varepsilon \left(\frac{6 \operatorname{sgn}(p-2)}{2^{p/2} - 2} + \frac{\alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1}\right) ||x||^p$$

$$||g(x) - g(0) - T(x) - Q(x)|| \le \varepsilon (1 + \frac{6 \operatorname{sgn}(p-2)}{2^{p/2} - 2} + \frac{\alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1})||x||^{p}$$

and

$$||h(x)-h(0)-\frac{1}{2}Q(x)|| \le \varepsilon (1+\frac{6\operatorname{sgn}(p-2)}{2^{p/2}-2})||x||^p$$

for all $x \in X$, where

$$\alpha := 1 + 3^p + 2^{p+1}$$
.

Proof. Let f^e, g^e and h^e are the even mappings such that

$$f^{e}(x) = \frac{f(x) + f(-x)}{2}, g^{e}(x) = \frac{g(x) + g(-x)}{2}$$

and
$$h^{e}(x) = \frac{h(x) + h(-x)}{2}$$
.

We have

$$||f^{e}(x+y)+f^{e}(x-y)-2g^{e}(x)-2h^{e}(y)|| \le \varepsilon(||x|||^{p} + ||y||^{p})$$

By theorem 2.6 there exists a unique quadratic mapping $q': X \to Y$ such that

$$||f^{e}(x) - f(0) - q'(x)|| \le \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2} ||x||^{p}$$

$$||g^{e}(x) - g(0) - q'(x)|| \le (\frac{\varepsilon}{2} + \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2})||x||^{p}$$

and

$$||h^{e}(x) - h(0) - q'(x)|| \le (\frac{\varepsilon}{2} + \frac{6\varepsilon \operatorname{sgn}(p-2)}{2^{p/2} - 2})||x||^{p}$$

Also let fo, go and ho are the odd mappings such that

$$f^{o}(x) = \frac{f(x) - f(-x)}{2}, g^{o}(x) = \frac{g(x) - g(-x)}{2}$$

and
$$h^o(x) = \frac{h(x) - h(-x)}{2}$$
. We have

$$||f^{o}(x+y)+f^{o}(x-y)-2g^{o}(x)-2h^{o}(y)|| \le \varepsilon(||x||)^{p} + ||y||^{p})$$

By Theorem 2.2 then there exists a unique additive mapping $T:X\to Y$ and a unique quadratic mapping $Q':X\to Y$ such that

$$\begin{split} ||f^{o}(x) - T(x) - Q'(x)|| &\leq \frac{\varepsilon \alpha \, sgn(p-1)}{2^{p-1} - 1} ||x|||^{p} \\ ||g^{o}(x) - T(x) - Q'(x)|| &\leq (\frac{\varepsilon}{2} + \frac{\varepsilon \alpha \, sgn(p-1)}{2^{p-1} - 1}) ||x|||^{p} \end{split}$$

for all $x \in X$, with

$$\alpha := 1 + 3^p + 2^{p+1}$$

Whence

$$\begin{split} &||f(x)-f(0)-T(x)-Q'(x)-q'(x)||=\\ &||f^e(x)-f(0)-q'(x)+f^o(x)-T(x)-Q(x)||\\ &\leq &||f^e(x)-f(0)-q'(x)||+||f^o(x)-T(x)-Q(x)||\\ &\leq &\varepsilon(\frac{6\,sgn(p-2)}{2^{p/2}-2}+\frac{\alpha\,sgn(p-1)}{2^{p-1}-1})||x||^p\\ &\mathrm{Similarly\ we\ find} \end{split}$$

$$\begin{aligned} ||g(x) - g(0) - T(x) - Q'(x) - q'(x)|| \\ &\leq \varepsilon (1 + \frac{6 \operatorname{sgn}(p-2)}{2^{p/2} - 2} + \frac{\alpha \operatorname{sgn}(p-1)}{2^{p-1} - 1})||x||^p \end{aligned}$$

$$||h(x) - h(0) - q'(x)|| \le \varepsilon (1 + \frac{6 \operatorname{sgn}(p-2)}{2^{p/2} - 2})||x||^{p}$$

taking Q(x) = 2Q'(x) = 2q'(x) for all $x \in X$, we find the complete proof of the theorem.

Corollary 2.9 Let $f, g, h : X \to Y$ are mappings satisfying

$$||f(x+y)+f(x-y)-2g(x)-2h(y)|| \le \varepsilon$$

for some $\varepsilon \geq 0$ and for all $x,y \in X$ with $x \perp y$. Suppose that \bot is symmetric on X. Then there exists a unique additive mapping $T: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$|| f(x) - f(0) - T(x) - Q(x) || \le 7\varepsilon$$

$$||g(x) - g(0) - T(x) - Q(x)|| \le \frac{15\varepsilon}{2}$$

and
$$||h(x) - h(0) - \frac{1}{2}Q(x)|| \le \frac{7\varepsilon}{2}$$

for all $x \in X$.

3. REFERENCES

- J. Aczél, A short course on functional equations, D. Reidel Publ. Co., Dordrecht, 1987.
- [2] J. Aczél and J. Dhombres, Functional Equations in Several Vaiables, Cambridge Univ. Press, 1989.

- [3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
- [4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
- [5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- [6] S. Czerwik (ed.), Stability of Functional Equations of Ulam – Hyers–Rassias Type, Hadronic Press, 2003.
- [7] F. Drljevic, On a functional which is quadratic on Aorthogonal vectors. Publ. Inst. Math. (Beograd)(N.S.) 54(1986), 63-71.
- [8] IZ. EL-Fassi, N. Bounader, A. Chahbi and S. Kabbaj, "On the stability of sigma quadratic functional equation" Jyoti Academic Press, Vol.2, Issue 2, 2013, Page 61-76, ISSN 2319-6939
- [9] M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38 (1989), 28-40.
- [10] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull Polish Acad. Sci. Math. 43 (1995), No. 2, 143-151.
- [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222224.
- [12] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998. the Absence of the Mountain
- [13] K. W. Jun and Y. H. Lee, On the Hyers–Ulam–Rassias stability of a pexiderized quadratic inequality, Math. Ineq. Appl., 4(1) (2001), 93118.
- [14] S.-M. Jung and P. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38 (2001), No. 3, 645-656.
- [15] M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, arXiv math.FA/0412474.
- [16] M. S. Moslehian, On the Orthogonal Stability of the Pexiderized quadratic equation, arXiv: math/0412475v2 [math.FA] 12 Feb 2005.
- [17] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43 (1998), no. 3, 89-124.
- [18] Th. M. Rassias, On the Stability of the Linear mapping in Banach spaces, Procc. Of the Amer. Math. Soc., (72)(2)(1978), 297-300.
- [19] Th. M. Rassias, On the Stability of the functional equations in Banach spaces, J. Math. Anal. Appl., (251)(2000), 264-284
- [20] J. Ratz, On orthogonally additive mappings, Aequations Math. 28 (1985),35-49.
- [21] J. Sikorska "Generalized orthogonal stability of some functional equations" Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 12404, Pages 1–23 DOI 10.1155/JIA/2006/12404

- [22] F. Skof Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
- [23] Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40 (1990), 190-200.
- [24] S. M. Ulam, A collection of the Mathematical Problem, Interscience Publ. New York, 1960.
- [25] F. Vajzovic, Uber das Funktional H mit der Eigenschaft: $(x, y) = 0 \Rightarrow H(x+y)+H(x-y) = 2H(x)+2H(y)$, Glasnik Mat. Ser. III 2 (22) (1967), 73-81.

IJCA™: www.ijcaonline.org