Hyers-Ulam-Rassias Stability of Orthogonal Pexiderized Quadratic Functional Equation

IZ. EL-Fassi
Professor
Laboratory LAMA, Harmonic Analysis and
functional Team, Department of Mathematics
- Faculty of Sciences -
University of Ibn Tofail, Kenitra, Morocco

S. Kabbaj
Professor and Research scholar Laboratory LAMA, Harmonic Analysis and functional Team, Department of Mathematics
- Faculty of Sciences -
University of Ibn Tofail, Kenitra, Morocco

Abstract

The Hyers-Ulam-Rassias stability of the conditional quadratic functional equation of Pexider type $f(x+y)+f(x-y)=2 g(x)-2 h(y)$ is established where \perp is a symmetric orthogonality in the sense of Rätz.

Keywords

Hyers-Ulam-Rassias stability, Orthogonal spaces, Pexiderized Quadratic functional equations.

1. INTRODUCTION

S.M. Ulam [24] is the pioneer of the stability problem in functional equations. In 1940, while he was delivering a talk before the Mathematics Club of the University of Wisconsin, he discussed a number of unsolved problems. Among them was the following question concerning the stability of homomorphisms:
Let G be a group and H be a metric group with metric $\mathrm{d}(.$, . .). Given $\varepsilon>0$, does there exist a $\theta>0$ such that if a function $\mathrm{g}: \mathrm{G} \rightarrow \mathrm{H}$ satisfies $\mathrm{d}(\mathrm{g}(\mathrm{xy}), \mathrm{g}(\mathrm{x}) \mathrm{g}(\mathrm{y}))<\theta$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{G}$, then there exists a homomorphism $\mathrm{a}: \mathrm{G} \rightarrow \mathrm{H}$ with $\mathrm{d}(\mathrm{g}(\mathrm{x}), \mathrm{a}(\mathrm{x}))<\varepsilon$ for all $\mathrm{x} \in \mathrm{G}$? In 1941, D. H. Hyers [11] was the first mathematician to present the result concerning the stability of functional equations on Banach spaces. This result of Hyers [11] is stated as follows:

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies $\|\mathrm{f}(\mathrm{x}+\mathrm{y})-\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})\| \leq \varepsilon$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\varepsilon \geq 0$. Then there exists a unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ such that $\|\mathrm{f}(\mathrm{x})-\mathrm{T}(\mathrm{x})\| \leq \varepsilon$, for
all $x \in X$. The generalized version of D. H. Hyers [11] result was given by famous Greece mathematician Th. M. Rassias [18] in 1978, where $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies the inequality $\|f(x+y)-f(x)-f(y)\| \leq \delta\left(\|x\|^{p}+\|y\|^{p}\right)$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\delta \geq 0$ and $0 \leq \mathrm{p}<1$. The stability paper [19] given by Th. M. Rassias has significantly influenced in the development of stability of functional equations and hence named as Hyers-Ulam-Rassias stability of functional equations.

Let us denote the the sets of real, nonnegative real numbers and positive integers by R, R^{+}and N, respectively.

Suppose that X is a real vector space with $\operatorname{dim} X \geq 2$ and \perp is a binary relation on with the following properties:
(O1) totality of \perp for zero: $\mathrm{x} \perp 0,0 \perp \mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$;
(O2) independence: if $x, y \in X-\{0\}, x \perp y$ then x, y are linearly independent;
(O3) homogeneity: if $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \perp \mathrm{y}$, then $\alpha \mathrm{x} \perp \beta \mathrm{y}$ for all $\alpha, \beta \in \mathrm{R}$;
(O 4) the Thalesian property: Let P is a 2-dimensional
subspace of X. If $x \in P$ and $\lambda \in R^{+}$, then there
exists $\mathrm{y}_{0} \in \mathrm{P}$ such that $\mathrm{x} \perp \mathrm{y}_{0}$ and $\mathrm{x}+\mathrm{y}_{0} \perp \lambda \mathrm{x}-\mathrm{y}_{0}$.
The pair (X, \perp) is called an orthogonality space. By an orthogonality normed space we mean an orthogonality space equipped with a norm.
Some examples of special interest are (i) The trivial orthogonality on a vector space X defined by (O1), and for non-zero elements $x, y \in X, x \perp y$ if and only if x, y are linearly independent.
(ii) The ordinary orthogonality on an inner product space ($\mathrm{X},\langle.,$.$\rangle) given by \mathrm{x} \perp \mathrm{y}$ if and only if $\langle\mathrm{x}, \mathrm{y}\rangle=0$.
(iii) The Birkhoff-James orthogonality on a normed space ($\mathrm{X},\|\cdot\|$) defined by $\mathrm{x} \perp \mathrm{y}$ if and only if $\|\lambda \mathrm{x}+\mathrm{y}\| \geq\|\mathrm{x}\|$ for all $\lambda \in \mathrm{R}^{+}$.

The relation \perp is called symmetric if $\mathrm{x} \perp \mathrm{y}$ implies that $\mathrm{y} \perp \mathrm{x}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Clearly examples (i) and (ii) are symmetric but example (iii) is not. However, it is remarkable to note, that a real normed space of dimension greater than or equal to 3 is an inner product space if and only if the Birkhoff-James orthogonality is symmetric.

Let X be a vector space (an orthogonality space) and ($\mathrm{Y},+$) be an abelian group. A mapping $f: X \rightarrow Y$ is called (orthogonally) additive if it satisfies the so-called (orthogonal) additive functional equation $f(x+y)=f(y)+f(x)$ for all $x, y \in X$ (with $x \perp y$). A mapping $f: X \rightarrow Y$ is said to
be (orthogonally) quadratic if it satisfies the so-called (orthogonally) Jordan-von-Neumann quadratic function equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ (with $\mathrm{x} \perp \mathrm{y}$). For example, a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between real vector spaces is quadratic if and only if there exists a (unique) symmetric bi-additive mapping $B: X \times X \rightarrow Y$ such that $f(x)=B(x, x)$ for all $x \in X$. In fact, $B(x, x)=\frac{1}{4}(f(x+y)-f(x-y))$, cf. [2]. In the recent decades, stability of functional equations have been investigated by many mathematicians. They have so many applications in Information Theory, Economic Theory and Social and Behaviour Sciences; cf. [1]. The first author treating the stability of the quadratic equation was F. Skof [22] by proving that if f is a maping from a normed space X into a Banach space Y satisfying $\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varepsilon \quad$ for \quad some $\varepsilon>0$, then there is a unique quadratic function $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ such that $\|f(x)-g(x)\| \leq \frac{\varepsilon}{2}$. P. W. Cholewa [3] extended
Skofs theorem by replacing X by an abelian group G. Skof's result was later generalized by S. Czerwik [4] in the spirit of Hyers-Ulam-Rassias. K.W. Jun and Y. H. Lee [13] proved the stability of quadratic equation of Pexider type. The stability problem of the quadratic equation has been extensively investigated by some mathematicians [17], [5], [6].

The orthogonal quadratic equation

$$
\mathrm{f}(\mathrm{x}+\mathrm{y})+\mathrm{f}(\mathrm{x}-\mathrm{y})=2 \mathrm{f}(\mathrm{x})+2 \mathrm{f}(\mathrm{y}), \mathrm{x} \perp \mathrm{y}
$$

was first investigated by F. Vajzović [25] when X is a Hilbert space, Y is the scalar field, f is continuous and \perp means the Hilbert space orthogonality. Later H. Drljević [7], M. Fochi [9] and G. Szabó [23] generalized this result.
One of the significant conditional equations is the so-called orthogonally quadratic functional equation of Pexider type

$$
\begin{equation*}
f(x+y)+f(x-y)=2 g(x)+2 h(y), x \perp y \tag{1}
\end{equation*}
$$

M. S. Moslehian [16] proved the Hyers-Ulam stability of the Pexiderized Quadratic Equations (1) in orthogonality spaces.

Throughout the paper, we denote (X, \perp) an orthogonality normed space and $(\mathrm{Y},\|\cdot\|)$ is a real Banach space. In order to avoid some definitional problems, we also assume for the sake of this paper that $0^{0}=1$.

2. MAIN RESULTS

In this section we show the Hyers-Ulam-Rassias stability of the orthogonally Pexiderized Quadratic functional Equations (1) in orthogonality spaces.

Lemma 2.1 (see [16]) If a : $\mathrm{X} \rightarrow \mathrm{Y}$ satisfying

$$
a(x+y)+a(x-y)=2 a(x)
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$ and \perp is symmetric, then $a(x)-a(0)$ is orthogonally additive.

Theorem 2.2 Let $\mathrm{f}, \mathrm{g}, \mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ are mappings satisfying

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 g(x)-2 h(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2}
\end{equation*}
$$

for some $\varepsilon \geq 0, \mathrm{p} \in \mathrm{R}^{+} \backslash[1,2]$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. Suppose that \perp is symmetric on X . If f is odd then there exists a unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that
$\|\mathrm{f}(\mathrm{x})-\mathrm{T}(\mathrm{x})-\mathrm{Q}(\mathrm{x})\| \leq \frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{\mathrm{p}}$
$\|\mathrm{g}(\mathrm{x})-\mathrm{g}(0)-\mathrm{T}(\mathrm{x})-\mathrm{Q}(\mathrm{x})\| \leq\left(\frac{\varepsilon}{2}+\frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right) \square \mathrm{x} \square^{\mathrm{p}}$
for all $\mathrm{x} \in \mathrm{X}$, where

$$
\alpha:=1+3^{\mathrm{p}}+2^{\mathrm{p}+1} .
$$

Proof. Define $F(x)=f(x)-f(0)=f(x), G(x)=g(x)-g(0)$,
and $\mathrm{H}(\mathrm{x})=\mathrm{h}(\mathrm{x})-\mathrm{h}(0)$. Then $\mathrm{F}(0)=\mathrm{G}(0)=\mathrm{H}(0)=0$
Use (O1) and put $\mathrm{x}=\mathrm{y}=0$ in (2) with $\mathrm{p} \in \mathrm{R}^{+} \backslash[1,2]$ and subtract the argument of the norm of the resulting inequality. We get
$\|F(x+y)+F(x-y)-2 G(x)-2 H(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{P}\right)$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Put $\mathrm{x}=0$ in (3). We can do this because of (O1). Then

$$
\begin{equation*}
\|2 \mathrm{H}(\mathrm{y})\| \leq \varepsilon\|\mathrm{y}\|^{\mathrm{p}} \tag{4}
\end{equation*}
$$

for all $\mathrm{y} \in \mathrm{X}$. Similarly, by putting $\mathrm{y}=0$ in (3) we get

$$
\begin{equation*}
\|2 \mathrm{~F}(\mathrm{x})-2 \mathrm{G}(\mathrm{x})\| \leq \varepsilon\|\mathrm{x}\|^{\mathrm{p}} \tag{5}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{X}$.
Whence

$$
\begin{align*}
& \|F(x+y)+F(x-y)-2 F(x)\| \leq \| F(x+y)+F(x-y) \\
& -2 G(x)-2 H(y)\|+\| 2 F(x)-2 G(x)\|+\| 2 H(y) \| \\
& \leq 2 \varepsilon\left(\|x\|^{p}+\|y\|^{P}\right) \tag{6}
\end{align*}
$$

for all $x, y \in X$ with $x \perp y$.

Fix $x \in X . B y(O 4)$, there exists $y_{0} \in X$ such that $x \perp y_{0}$ and $x+y_{0} \perp x-y_{0}$. Since \perp is symmetric, $\mathrm{x}-\mathrm{y}_{0} \perp \mathrm{x}+\mathrm{y}_{0}$ too. Using inequality (6) and the oddness of we get
$\left\|\mathrm{F}\left(\mathrm{x}+\mathrm{y}_{0}\right)+\mathrm{F}\left(\mathrm{x}-\mathrm{y}_{0}\right)-2 \mathrm{~F}(\mathrm{x})\right\| \leq 2 \varepsilon\left(\|\mathrm{x}\|^{\mathrm{p}}+\|\mathrm{y}\|^{\mathrm{p}}\right)$ $\left\|\mathrm{F}(2 \mathrm{x})+\mathrm{F}\left(2 \mathrm{y}_{0}\right)-2 \mathrm{~F}\left(\mathrm{x}+\mathrm{y}_{0}\right)\right\| \leq 2 \varepsilon\left(\left\|\mathrm{x}+\mathrm{y}_{0}\right\|^{\mathrm{p}}+\right.$

$$
\left.\left\|x-y_{0}\right\|^{\mathrm{p}}\right)
$$

$\left\|F(2 x)-F\left(2 y_{0}\right)-2 F\left(x-y_{0}\right)\right\| \leq 2 \varepsilon\left(\left\|x+y_{0}\right\|^{p}+\right.$

$$
\left.\left\|x-y_{0}\right\|^{p}\right)
$$

Then

$$
\begin{aligned}
& \|\mathrm{F}(2 \mathrm{x})-2 \mathrm{~F}(\mathrm{x})\| \leq\left\|\mathrm{F}\left(\mathrm{x}+\mathrm{y}_{0}\right)+\mathrm{F}\left(\mathrm{x}-\mathrm{y}_{0}\right)-2 \mathrm{~F}(\mathrm{x})\right\|+ \\
& \frac{1}{2}\left\|\mathrm{~F}(2 \mathrm{x})+\mathrm{F}\left(2 \mathrm{y}_{0}\right)-2 \mathrm{~F}\left(\mathrm{x}+\mathrm{y}_{0}\right)\right\|+\frac{1}{2} \| \mathrm{F}(2 \mathrm{x})-\mathrm{F}\left(2 \mathrm{y}_{0}\right) \\
& -2 \mathrm{~F}\left(\mathrm{x}-\mathrm{y}_{0}\right) \| \leq 2 \varepsilon\left\{\|\mathrm{x}\|^{\mathrm{p}}+\left\|\mathrm{y}_{0}\right\|^{\mathrm{p}}+\left\|\mathrm{x}+\mathrm{y}_{0}\right\|^{\mathrm{p}}\right. \\
& \left.+\left\|\mathrm{x}-\mathrm{y}_{0}\right\|^{\mathrm{p}}\right\}
\end{aligned}
$$

From the definition of the orthogonality, since $x \perp y_{0}$, we derive $\quad\|x\| \leq\left\|x+y_{0}\right\|$ and $\|x\| \leq\left\|x-y_{0}\right\|$ (for $\lambda=1$ and $\lambda=-1$, respectively), and, analogously, from $\mathrm{x}+\mathrm{y}_{0} \perp \mathrm{x}-\mathrm{y}_{0} \quad$ and $\quad \mathrm{x}-\mathrm{y}_{0} \perp \mathrm{x}+\mathrm{y}_{0} \quad$ we derive $\left\|x+y_{0}\right\| \leq\|2 x\|$ and $\left\|x-y_{0}\right\| \leq\|2 x\|$. From these relations and the triangle inequality we have

$$
\left\|y_{0}\right\| \leq\left\|x-y_{0}\right\|+\|x\| \leq 3\|x\|
$$

As p is a nonnegative real number, we have the approximations

$$
\begin{aligned}
& \left\|\mathrm{y}_{0}\right\|^{\mathrm{p}} \leq 3^{\mathrm{p}}\|\mathrm{x}\|^{\mathrm{p}} \\
& \left\|\mathrm{x}+\mathrm{y}_{0}\right\|^{\mathrm{p}} \leq 2^{\mathrm{p}}\|\mathrm{x}\|^{\mathrm{p}},\left\|\mathrm{x}-\mathrm{y}_{0}\right\|^{\mathrm{p}} \leq 2^{\mathrm{p}}\|\mathrm{x}\|^{\mathrm{p}}
\end{aligned}
$$

Then we obtain

$$
\begin{equation*}
\|\mathrm{F}(2 \mathrm{x})-2 \mathrm{~F}(\mathrm{x})\| \leq 2 \varepsilon \alpha\|\mathrm{x}\|^{\mathrm{p}} \tag{7}
\end{equation*}
$$

with

$$
\alpha:=1+3^{\mathrm{p}}+2^{\mathrm{p}+1}
$$

Assume first that $0 \leq p<1$. Then from (7) we have

$$
\begin{equation*}
\left\|\frac{\mathrm{F}(2 \mathrm{x})}{2}-\mathrm{F}(\mathrm{x})\right\| \leq \varepsilon \alpha\|\mathrm{x}\|^{\mathrm{p}} \tag{8}
\end{equation*}
$$

for all $x \in X$.
Replacing x by $2^{k} x(k \in N)$ in (8) we get

$$
\begin{equation*}
\left\|\frac{\mathrm{F}\left(2^{\mathrm{k}+1} \mathrm{x}\right)}{2}-\mathrm{F}\left(2^{\mathrm{k}} \mathrm{x}\right)\right\| \leq \varepsilon \alpha\left\|2^{\mathrm{k}} \mathrm{x}\right\|^{\mathrm{p}} \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\frac{\mathrm{F}\left(2^{\mathrm{k}+1} \mathrm{x}\right)}{2^{\mathrm{k}+1}}-\frac{\mathrm{F}\left(2^{\mathrm{k}} \mathrm{x}\right)}{2^{\mathrm{k}}}\right\| \leq 2^{\mathrm{k}(\mathrm{p}-1)} \varepsilon \alpha\|\mathrm{x}\|^{\mathrm{p}} \tag{10}
\end{equation*}
$$

Whence

$$
\begin{align*}
\| \sum_{k=0}^{n-1}\left\{\frac{F\left(2^{k+1} x\right)}{2^{k+1}}-\frac{F\left(2^{k} x\right)}{2^{k}}\right\} & \left\|\leq \sum_{\mathrm{k}=0}^{\mathrm{n}-1}\right\| \frac{\mathrm{F}\left(2^{\mathrm{k}+1} \mathrm{x}\right)}{2^{\mathrm{k}+1}}-\frac{\mathrm{F}\left(2^{\mathrm{k}} \mathrm{x}\right)}{2^{\mathrm{k}}} \| \\
& \leq \varepsilon \alpha\|\mathrm{x}\|^{\mathrm{p}} \sum_{\mathrm{k}=0}^{\mathrm{n}-1} 2^{\mathrm{k}(\mathrm{p}-1)} \tag{11}
\end{align*}
$$

It follow from (11) that

$$
\begin{equation*}
\left\|\frac{\mathrm{F}\left(2^{\mathrm{n}} \mathrm{x}\right)}{2^{\mathrm{n}}}-\mathrm{F}(\mathrm{x})\right\| \leq \varepsilon \alpha\left(\frac{1-2^{\mathrm{n}(\mathrm{p}-1)}}{1-2^{\mathrm{p}-1}}\right)\|\mathrm{x}\|^{\mathrm{p}} \tag{12}
\end{equation*}
$$

Replacing x by $2^{\mathrm{m}} \mathrm{x}(\mathrm{m} \in \mathrm{N})$ in (12) we obtain
$\left\|\frac{\mathrm{F}\left(2^{\mathrm{n}+\mathrm{m}} \mathrm{x}\right)}{2^{\mathrm{n}}}-\mathrm{F}\left(2^{\mathrm{m}} \mathrm{x}\right)\right\| \leq \varepsilon \alpha 2^{\mathrm{mp}}\left(\frac{1-2^{\mathrm{n}(\mathrm{p}-1)}}{1-2^{\mathrm{p}-1}}\right)\|\mathrm{x}\|^{\mathrm{p}}$

Then
$\left\|\frac{\mathrm{F}\left(2^{\mathrm{n}+\mathrm{m}} \mathrm{x}\right)}{2^{\mathrm{n}+\mathrm{m}}}-\frac{\mathrm{F}\left(2^{\mathrm{m}} \mathrm{x}\right)}{2^{\mathrm{m}}}\right\| \leq 2^{\mathrm{m}(\mathrm{p}-1)} \varepsilon \alpha\left(\frac{1-2^{\mathrm{n}(\mathrm{p}-1)}}{1-2^{\mathrm{p}-1}}\right)\|\mathrm{x}\|^{\mathrm{p}}$

As $\lim _{m, n \rightarrow+\infty}\left\{2^{\mathrm{m}(\mathrm{p}-1)} \varepsilon \alpha\left(\frac{1-2^{\mathrm{n}(\mathrm{p}-1)}}{1-2^{\mathrm{p}-1}}\right)\|\mathrm{x}\|^{\mathrm{p}}\right\}=0$
Then $\left\{\frac{\mathrm{F}\left(2^{\mathrm{n}} \mathrm{x}\right)}{2^{\mathrm{n}}}\right\}$ is Cauchy sequence in Banach space
$(Y,\|\|$.$) . Hence \lim _{n \rightarrow+\infty} \frac{F\left(2^{n} x\right)}{2^{n}}$ exists and we well defines the odd mapping $a(x)=\lim _{n \rightarrow+\infty} \frac{F\left(2^{n} x\right)}{2^{n}}$ from X into Y satisfying

$$
\begin{equation*}
\|\mathrm{a}(\mathrm{x})-\mathrm{F}(\mathrm{x})\| \leq \frac{\varepsilon \alpha}{1-2^{\mathrm{p}-1}}\|\mathrm{x}\|^{\mathrm{p}} \tag{15}
\end{equation*}
$$

for all $x \in X$.
For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$, by applying inequality (6) and (O3) we obtain
$\left\|2^{-n} F\left(2^{n}(x+y)\right)+2^{-n} F\left(2^{n}(x-y)\right)-2^{-n+1} F\left(2^{n} x\right)\right\|$
$\leq 2^{-n+1} \varepsilon\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} y\right\|^{p}\right)$
$=2 \varepsilon 2^{\mathrm{n}(\mathrm{p}-1)}\left(\|\mathrm{x}\|^{\mathrm{p}}+\|\mathrm{y}\|^{\mathrm{p}}\right)$
If $\mathrm{n} \rightarrow+\infty$ then we deduce that

$$
a(x+y)+a(x-y)-2 a(x)=0
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$ Moreover
$\mathrm{a}(0)=\lim _{\mathrm{n} \rightarrow+\infty} 2^{-\mathrm{n}} \mathrm{F}\left(2^{\mathrm{n}} .0\right)=0$. Using Lemma 2.1 we conclude that a is an orthogonally additive mapping.

In the case $\mathrm{p}>2$ we start from the inequality

$$
\begin{equation*}
\left\|\mathrm{F}(\mathrm{x})-2 \mathrm{~F}\left(\frac{\mathrm{x}}{2}\right)\right\| \leq 2^{1-\mathrm{p}} \varepsilon \alpha\|\mathrm{x}\|^{\mathrm{p}} \tag{17}
\end{equation*}
$$

where $\alpha=1+3^{\mathrm{p}}+2^{\mathrm{p}+1}$.

Replacing x by $2^{-k} x \quad(k \in N)$ in (17) we get

$$
\begin{equation*}
\left\|\mathrm{F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}}}\right)-2 \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}+1}}\right)\right\| \leq \frac{2 \varepsilon \alpha}{2^{\mathrm{p}}} 2^{-\mathrm{kp}}\|\mathrm{x}\|^{\mathrm{p}} \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|2^{\mathrm{k}} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}}}\right)-2^{\mathrm{k}+1} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}+1}}\right)\right\| \leq \frac{2 \varepsilon \alpha}{2^{\mathrm{p}}} 2^{\mathrm{k}(1-\mathrm{p})}\|\mathrm{x}\|^{\mathrm{p}} \tag{19}
\end{equation*}
$$

Whence

$$
\begin{array}{r}
\left\|\sum_{k=0}^{\mathrm{n}-1}\left\{2^{\mathrm{k}} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}}}\right)-2^{\mathrm{k}+1} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}+1}}\right)\right\}\right\| \leq \sum_{\mathrm{k}=0}^{\mathrm{n}-1} \| 2^{\mathrm{k}} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}}}\right)- \\
2^{\mathrm{k}+1} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{k}+1}}\right)\left\|\leq \frac{2 \varepsilon \alpha}{2^{\mathrm{p}}}\right\| \mathrm{x} \|^{\mathrm{p}} \sum_{\mathrm{k}=0}^{\mathrm{n}-1} 2^{\mathrm{k}(1-\mathrm{p})} \tag{20}
\end{array}
$$

It follow from (20) that

$$
\begin{equation*}
\left\|\mathrm{F}(\mathrm{x})-2^{\mathrm{n}} \mathrm{~F}\left(\frac{\mathrm{x}}{2^{\mathrm{n}}}\right)\right\| \leq \frac{\varepsilon \alpha}{2^{\mathrm{p}-1}-1}\left(1-\frac{1}{2^{\mathrm{n}(\mathrm{p}-1)}}\right)\|\mathrm{x}\|^{\mathrm{p}} \tag{21}
\end{equation*}
$$

Same as the first case $(0 \leq p<1)$ we find, for each $x \in X$ the sequence $\left\{2^{n} F\left(2^{-n} x\right)\right\}$ is Cauchy sequence in Banach $\operatorname{space}(Y,\|\|$.$) . Hence \lim _{n \rightarrow+\infty} 2^{n} F\left(2^{-n} x\right)$ exists and we well define the odd mapping $a(x)=\lim _{n \rightarrow+\infty} 2^{n} F\left(2^{-n} x\right)$ from X into Y satisfying

$$
\begin{equation*}
\|\mathrm{a}(\mathrm{x})-\mathrm{F}(\mathrm{x})\| \leq \frac{\varepsilon \alpha}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{\mathrm{p}} \tag{22}
\end{equation*}
$$

for all $x \in X$, also we deduce that

$$
a(x+y)+a(x-y)-2 a(x)=0, a(0)=0
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$.
By the first case and the second case we obtain

$$
\begin{equation*}
\|\mathrm{a}(\mathrm{x})-\mathrm{F}(\mathrm{x})\| \leq \frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{\mathrm{p}} \tag{23}
\end{equation*}
$$

where

$$
a(x+y)+a(x-y)-2 a(x)=0, a(0)=0
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. and a is an orthogonally additive mapping . By corollary 7 of [20], a has the form $\mathrm{T}+\mathrm{Q}$ with T additive and Q quadratic. If there are another Q' quadratic mapping and another additive mapping T^{\prime} satisfying the required in our theorem and $a^{\prime}=T^{\prime}+Q^{\prime}$. Then

$$
\begin{gather*}
\left\|\mathrm{a}(\mathrm{x})-\mathrm{a}^{\prime}(\mathrm{x})\right\| \leq\|\mathrm{a}(\mathrm{x})-\mathrm{F}(\mathrm{x})\|+\left\|\mathrm{F}(\mathrm{x})-\mathrm{a}^{\prime}(\mathrm{x})\right\| \\
\leq \frac{2 \varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{\mathrm{p}} \tag{24}
\end{gather*}
$$

for all $x \in X$ and $p \in R^{+} \backslash[1,2]$. Using the fact that additive mapping are odd and quadratic mapping are even we obtain

$$
\begin{align*}
& \left\|\mathrm{T}(\mathrm{x})-\mathrm{T}^{\prime}(\mathrm{x})\right\|=\frac{1}{2} \| \mathrm{T}(\mathrm{x})+\mathrm{Q}(\mathrm{x})-\mathrm{T}^{\prime}(\mathrm{x})- \\
& \mathrm{Q}^{\prime}(\mathrm{x})+\mathrm{T}(\mathrm{x})-\mathrm{Q}(\mathrm{x})-\mathrm{T}^{\prime}(\mathrm{x})+\mathrm{Q}^{\prime}(\mathrm{x}) \| \\
& \leq \frac{1}{2}\left\|\mathrm{~T}(\mathrm{x})+\mathrm{Q}(\mathrm{x})-\left(\mathrm{T}^{\prime}(\mathrm{x})+\mathrm{Q}^{\prime}(\mathrm{x})\right)\right\|+ \\
& \frac{1}{2}\left\|\mathrm{~T}(\mathrm{x})-\mathrm{Q}(\mathrm{x})-\left(\mathrm{T}^{\prime}(\mathrm{x})-\mathrm{Q}^{\prime}(\mathrm{x})\right)\right\| \\
& \leq \frac{1}{2}\left\|\mathrm{a}(\mathrm{x})-\mathrm{a}^{\prime}(\mathrm{x})\right\|+\frac{1}{2}\left\|\mathrm{a}(-\mathrm{x})-\mathrm{a}^{\prime}(-\mathrm{x})\right\| \\
& \leq \frac{2 \varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{\mathrm{p}} \tag{25}
\end{align*}
$$

for all $\mathrm{x} \in \mathrm{X}$ and $\mathrm{p} \in \mathrm{R}^{+} \backslash[1,2]$.
Similarly

$$
\begin{align*}
& \left\|\mathrm{Q}(\mathrm{x})-\mathrm{Q}^{\prime}(\mathrm{x})\right\|=\frac{1}{2} \| \mathrm{T}(\mathrm{x})+\mathrm{Q}(\mathrm{x})-\mathrm{T}^{\prime}(\mathrm{x})- \\
& \mathrm{Q}^{\prime}(\mathrm{x})-\mathrm{T}(\mathrm{x})+\mathrm{Q}(\mathrm{x})+\mathrm{T}^{\prime}(\mathrm{x})-\mathrm{Q}^{\prime}(\mathrm{x}) \| \\
& \leq \frac{1}{2}\left\|\mathrm{a}(\mathrm{x})-\mathrm{a}^{\prime}(\mathrm{x})\right\|+\frac{1}{2}\left\|\mathrm{a}(-\mathrm{x})-\mathrm{a}^{\prime}(-\mathrm{x})\right\| \\
& \leq \frac{2 \varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{p} \tag{26}
\end{align*}
$$

for all $\mathrm{x} \in \mathrm{X}$ and $\mathrm{p} \in \mathrm{R}^{+} \backslash[1,2]$.
If $0 \leq \mathrm{p}<1$ we have

$$
\begin{align*}
\left\|\mathrm{T}(\mathrm{x})-\mathrm{T}^{\prime}(\mathrm{x})\right\|= & \left.\frac{1}{\mathrm{n}} \| \mathrm{T}(\mathrm{nx})-\mathrm{T}^{\prime}(\mathrm{nx})\right) \| \\
& \leq \frac{2 \varepsilon \alpha}{1-2^{\mathrm{p}-1}} \mathrm{n}^{\mathrm{p}-1}\|x\|^{\mathrm{p}} \tag{27}
\end{align*}
$$

and

$$
\begin{align*}
\left\|Q(x)-Q^{\prime}(x)\right\|= & \frac{1}{n^{2}}\left\|Q(n x)-Q^{\prime}(n x)\right\| \\
& \leq \frac{2 \varepsilon \alpha}{1-2^{p-1}} n^{p-2}\|x\|^{p} \tag{28}
\end{align*}
$$

for all $x \in X$.
Tending $\mathrm{n} \rightarrow+\infty$ we infer that $\mathrm{T}=\mathrm{T}^{\prime}$ and $\mathrm{Q}=\mathrm{Q}^{\prime}$.
Then $\mathrm{a}=\mathrm{a}^{\prime}$.
Otherwise if $\mathrm{p}>2$ we have

$$
\begin{align*}
\left\|T(x)-T^{\prime}(x)\right\|= & \left.n \| T\left(\frac{1}{n} x\right)-T^{\prime}\left(\frac{1}{n} x\right)\right) \| \\
& \leq \frac{2 \varepsilon \alpha}{2^{p-1}-1} n^{-p+1}\|x\|^{p} \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
\left\|Q(x)-Q^{\prime}(x)\right\| & \left.=n^{2} \| Q\left(\frac{1}{n} x\right)-Q^{\prime}\left(\frac{1}{n} x\right)\right) \| \\
& \leq \frac{2 \varepsilon \alpha}{2^{p-1}-1} n^{-p+2}\|x\|^{p} \tag{30}
\end{align*}
$$

for all $\mathrm{x} \in \mathrm{X}$. Taking the limit, we conclude that $\mathrm{T}=\mathrm{T}^{\prime}$ and $\mathrm{Q}=\mathrm{Q}^{\prime}$.

Then $a=a^{\prime}$.
Using (5) and (23) we infer that for all $\mathrm{x} \in \mathrm{X}$

$$
\begin{align*}
\|\mathrm{G}(\mathrm{x})-\mathrm{a}(\mathrm{x})\|= & \|\mathrm{G}(\mathrm{x})-\mathrm{F}(\mathrm{x})\|+\|\mathrm{F}(\mathrm{x})-\mathrm{a}(\mathrm{x})\| \\
& \leq\left(\frac{\varepsilon}{2}+\frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right)\|\mathrm{x}\|^{\mathrm{p}} \tag{31}
\end{align*}
$$

Finally we get

$$
\|f(x)-T(x)-Q(x)\| \leq \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1}-1}\|x\|^{p}
$$

and

$$
\begin{aligned}
& \| \mathrm{g}(\mathrm{x})-\mathrm{g}(0))-\mathrm{T}(\mathrm{x})-\mathrm{Q}(\mathrm{x}) \| \leq\left(\frac{\varepsilon}{2}+\right. \\
& \left.\frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right)\|\mathrm{x}\|^{\mathrm{p}}
\end{aligned}
$$

for all $\mathrm{x} \in \mathrm{X}$. This completes the proof of theorem.

Remark 2.3 (i) If $G=k . F$ for some number $k \neq 1$, then Inequality (5) implies that $\left\lvert\, 1-\mathrm{k}\| \| \mathrm{F}(\mathrm{x})\left\|\leq \frac{\varepsilon}{2}\right\| \mathrm{x}\right. \|^{\mathrm{p}}$ for all $x \in X$ and $p \in R^{+} \backslash[1,2]$. Hence

$$
|1-\mathrm{k}|\left|\left|2^{-\mathrm{n}} \mathrm{~F}\left(2^{\mathrm{n}} \mathrm{x}\right)\right|\right| \leq \frac{\varepsilon}{2} 2^{\mathrm{n}(\mathrm{p}-1)}\|\mathrm{x}\|^{\mathrm{p}} ; 0 \leq \mathrm{p}<1
$$

and $|1-\mathrm{k}|\left\|2^{\mathrm{n}} \mathrm{F}\left(2^{-\mathrm{n}} \mathrm{x}\right)\right\| \leq \frac{\varepsilon}{2} 2^{\mathrm{n}(1-\mathrm{p})}\|\mathrm{x}\|^{\mathrm{p}} ; \mathrm{p}>2$
so $\mathrm{a}(\mathrm{x})=\left\{\begin{array}{l}\lim _{\mathrm{n} \rightarrow+\infty} 2^{-\mathrm{n}} \mathrm{f}\left(2^{\mathrm{n}} \mathrm{x}\right)=0 \text { if } 0 \leq \mathrm{p}<1 \\ \lim _{\mathrm{n} \rightarrow+\infty} 2^{\mathrm{n}} \mathrm{f}\left(2^{-\mathrm{n}} \mathrm{x}\right)=0 \text { if } \mathrm{p}>2\end{array}\right.$
for all $\mathrm{x} \in \mathrm{X}$.
(ii) Similarly, if $H=k . F$ for some number $k \neq 1$, then it follows from (4) that $\mathrm{a}(\mathrm{x})=0$.

Corollary 2.4 Let f, g, h: X $\rightarrow \mathrm{Y}$ are mappings satisfying

$$
\|f(x+y)+f(x-y)-2 g(x)-2 h(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. Suppose that \perp is symmetric on X. If f is odd then there exists a
unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \|f(x)-T(x)-Q(x)\| \leq 4 \varepsilon \\
& \|g(x)-g(0)-T(x)-Q(x)\| \leq \frac{17 \varepsilon}{4}
\end{aligned}
$$

for all $x \in X$.
Corollary 2.5 Let f, $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ are mappings satisfying
$\|f(x+y)+f(x-y)-2 f(x)-2 h(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for some $\varepsilon \geq 0, \mathrm{p} \in \mathrm{R}^{+} \backslash[1,2]$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. Suppose that \perp is symmetric on X . If f is odd then there exists a unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\|f(x)-T(x)-Q(x)\| \leq \frac{\varepsilon \alpha \operatorname{sgn}(p-1)}{2^{p-1}-1}\|x\|^{p}
$$

for all $x \in X$, where

$$
\alpha:=1+3^{\mathrm{p}}+2^{\mathrm{p}+1} .
$$

Theorem 2.6 Let $\mathrm{f}, \mathrm{g}, \mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ are mappings satisfying
$\|f(x+y)+f(x-y)-2 g(x)-2 h(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$
for some $\varepsilon \geq 0, \mathrm{p} \in \mathrm{R}^{+} \backslash\{2\}$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. If f is even mapping then there exists a unique quadratic mapping $\mathrm{q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{gathered}
\|f(x)-f(0)-q(x)\| \leq \frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\|\mathrm{x}\|^{\mathrm{p}} \\
\|\mathrm{~g}(\mathrm{x})-\mathrm{g}(0)-\mathrm{q}(\mathrm{x})\| \leq\left(\frac{\varepsilon}{2}+\frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}}
\end{gathered}
$$

and

$$
\|\mathrm{h}(\mathrm{x})-\mathrm{h}(0)-\mathrm{q}(\mathrm{x})\| \leq\left(\frac{\varepsilon}{2}+\frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}}
$$

for all $\mathrm{x} \in \mathrm{X}$.
Proof. Define $F(x)=f(x)-f(0), G(x)=g(x)-g(0)$,
and $\mathrm{H}(\mathrm{x})=\mathrm{h}(\mathrm{x})-\mathrm{h}(0)$. Then $\mathrm{F}(0)=\mathrm{G}(0)=\mathrm{H}(0)=0$ and F is even mapping.
Use (O1) and put $\mathrm{x}=\mathrm{y}=0$ in (32) with $\mathrm{p} \in \mathrm{R}^{+} \backslash\{2\}$ and subtract the argument of the norm of the resulting inequality from that of inequality (32) to get

$$
\begin{equation*}
\|\mathrm{F}(\mathrm{x}+\mathrm{y})+\mathrm{F}(\mathrm{x}-\mathrm{y})-2 \mathrm{G}(\mathrm{x})-2 \mathrm{H}(\mathrm{y})\| \leq \varepsilon\left(\|\mathrm{x}\|^{\mathrm{p}}+\|\mathrm{y}\|^{\mathrm{P}}\right) \tag{33}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$.
Put $x=0$ in (33), we can do this because of (O1). Then

$$
\begin{equation*}
\|2 \mathrm{~F}(\mathrm{y})-2 \mathrm{H}(\mathrm{y})\| \leq \varepsilon\|\mathrm{y}\|^{\mathrm{p}} \tag{34}
\end{equation*}
$$

for all $\mathrm{y} \in \mathrm{X}$. Similarly, by putting $\mathrm{y}=0$ in (33) we get

$$
\begin{equation*}
\|2 \mathrm{~F}(\mathrm{x})-2 \mathrm{G}(\mathrm{x})\| \leq \varepsilon\|\mathrm{x}\|^{\mathrm{p}} \tag{35}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{X}$.

Hence

$$
\begin{align*}
& \|F(x+y)+F(x-y)-2 F(x)-2 F(y)\| \leq \| F(x+y)+ \\
& F(x-y)-2 G(x)-2 H(y)\|+\| 2 F(x)-2 G(x) \|+ \\
& \|2 F(y)-2 H(y)\| \leq 2 \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{36}
\end{align*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$.
Then by Theorem 5.1 of [21] there exist a unique quadratic mapping $\mathrm{q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\|\mathrm{F}(\mathrm{x})-\mathrm{q}(\mathrm{x})\| \leq \frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\|\mathrm{x}\|^{\mathrm{p}}
$$

Moreover by (34) and (35) we obtain

$$
\begin{aligned}
& \|\mathrm{G}(\mathrm{x})-\mathrm{q}(\mathrm{x})\| \leq\left(\frac{\varepsilon}{2}+\frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}} \\
& \|\mathrm{H}(\mathrm{x})-\mathrm{q}(\mathrm{x})\| \leq\left(\frac{\varepsilon}{2}+\frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}}
\end{aligned}
$$

for all $\mathrm{x} \in \mathrm{X}$. This completes the proof of theorem.
Corollary 2.7 Let $f, g, h: X \rightarrow Y$ are mappings satisfying

$$
\|f(x+y)+f(x-y)-2 g(x)-2 h(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. If f is even mapping then there exists a unique quadratic mapping $\mathrm{q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{gathered}
\|f(x)-f(0)-q(x)\| \leq 3 \varepsilon \\
\|g(x)-g(0)-q(x)\| \leq \frac{13 \varepsilon}{4}
\end{gathered}
$$

and

$$
\|\mathrm{h}(\mathrm{x})-\mathrm{h}(0)-\mathrm{q}(\mathrm{x})\| \leq \frac{13 \varepsilon}{4}
$$

for all $\mathrm{x} \in \mathrm{X}$.
Theorem 2.8 Let $\mathrm{f}, \mathrm{g}, \mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ are mappings satisfying $\|f(x+y)+f(x-y)-2 g(x)-2 h(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for some $\varepsilon \geq 0, \mathrm{p} \in \mathrm{R}^{+} \backslash[1,2]$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. Suppose that \perp is symmetric on X . Then there exists a unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
\|\mathrm{f}(\mathrm{x})-\mathrm{f}(0)-\mathrm{T}(\mathrm{x})-\mathrm{Q}(\mathrm{x})\| \leq & \varepsilon\left(\frac{6 \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}+\right. \\
& \left.\frac{\alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right)\|\mathrm{x}\|^{p}
\end{aligned}
$$

$$
\|g(x)-g(0)-T(x)-Q(x)\| \leq \varepsilon\left(1+\frac{6 \operatorname{sgn}(p-2)}{2^{\mathrm{p} / 2}-2}+\right.
$$

$$
\left.\frac{\alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right)\|\mathrm{x}\|^{p}
$$

and
$\left\|h(x)-h(0)-\frac{1}{2} Q(x)\right\| \leq \varepsilon\left(1+\frac{6 \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}}$ for all $x \in X$, where

$$
\alpha:=1+3^{\mathrm{p}}+2^{\mathrm{p}+1}
$$

Proof. Let f^{e}, g^{e} and h^{e} are the even mappings such that $f^{\mathrm{e}}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})}{2}, \mathrm{~g}^{\mathrm{e}}(\mathrm{x})=\frac{\mathrm{g}(\mathrm{x})+\mathrm{g}(-\mathrm{x})}{2}$
and $\quad h^{\mathrm{e}}(\mathrm{x})=\frac{\mathrm{h}(\mathrm{x})+\mathrm{h}(-\mathrm{x})}{2}$.
We have

$$
\begin{aligned}
\left\|f^{\mathrm{e}}(\mathrm{x}+\mathrm{y})+\mathrm{f}^{\mathrm{e}}(\mathrm{x}-\mathrm{y})-2 \mathrm{~g}^{\mathrm{e}}(\mathrm{x})-2 \mathrm{~h}^{\mathrm{e}}(\mathrm{y})\right\| & \leq \varepsilon\left(\|\mathrm{x}\|^{\mathrm{p}}\right. \\
& \left.+\|\mathrm{y}\|^{\mathrm{p}}\right)
\end{aligned}
$$

By theorem 2.6 there exists a unique quadratic mapping
$\mathrm{q}^{\prime}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|\mathrm{f}^{\mathrm{e}}(\mathrm{x})-\mathrm{f}(0)-\mathrm{q}^{\prime}(\mathrm{x})\right\| \leq \frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\|\mathrm{x}\|^{\mathrm{p}} \\
& \left\|\mathrm{~g}^{\mathrm{e}}(\mathrm{x})-\mathrm{g}(0)-\mathrm{q}^{\prime}(\mathrm{x})\right\| \leq\left(\frac{\varepsilon}{2}+\frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}}
\end{aligned}
$$

and

$$
\left\|\mathrm{h}^{\mathrm{e}}(\mathrm{x})-\mathrm{h}(0)-\mathrm{q}^{\prime}(\mathrm{x})\right\| \leq\left(\frac{\varepsilon}{2}+\frac{6 \varepsilon \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}\right)\|\mathrm{x}\|^{\mathrm{p}}
$$

Also let $\mathrm{f}^{\mathrm{o}}, \mathrm{g}^{\mathrm{o}}$ and h^{o} are the odd mappings such that $\mathrm{f}^{\mathrm{o}}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})}{2}, \mathrm{~g}^{\mathrm{o}}(\mathrm{x})=\frac{\mathrm{g}(\mathrm{x})-\mathrm{g}(-\mathrm{x})}{2}$ and $\quad h^{\circ}(x)=\frac{h(x)-h(-x)}{2}$. We have
$\left\|\mathrm{f}^{\mathrm{o}}(\mathrm{x}+\mathrm{y})+\mathrm{f}^{\mathrm{o}}(\mathrm{x}-\mathrm{y})-2 \mathrm{~g}^{\mathrm{o}}(\mathrm{x})-2 \mathrm{~h}^{\mathrm{o}}(\mathrm{y})\right\| \leq \varepsilon\left(\|\mathrm{x}\|^{p}\right.$ $\left.+\|\mathrm{y}\|^{p}\right)$

By Theorem 2.2 then there exists a unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}^{\prime}: \mathrm{X} \rightarrow \mathrm{Y}$ such that
$\left\|f^{\mathrm{o}}(\mathrm{x})-\mathrm{T}(\mathrm{x})-\mathrm{Q}^{\prime}(\mathrm{x})\right\| \leq \frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\|\mathrm{x}\|^{\mathrm{p}}$
$\left\|\mathrm{g}^{\mathrm{o}}(\mathrm{x})-\mathrm{T}(\mathrm{x})-\mathrm{Q}^{\prime}(\mathrm{x})\right\| \leq\left(\frac{\varepsilon}{2}+\frac{\varepsilon \alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right)\|\mathrm{x}\|^{\mathrm{p}}$
for all $x \in X$, with

$$
\alpha:=1+3^{\mathrm{p}}+2^{\mathrm{p}+1} .
$$

Whence
$\| f(x)-f(0)-T(x)-Q^{\prime}(x)-q^{\prime}(x)| |=$ $\left\|f^{e}(x)-f(0)-q^{\prime}(x)+f^{\circ}(x)-T(x)-Q(x)\right\|$ $\leq\left\|f^{e}(x)-f(0)-q^{\prime}(x)\right\|+\left\|f^{\circ}(x)-T(x)-Q(x)\right\|$
$\leq \varepsilon\left(\frac{6 \operatorname{sgn}(\mathrm{p}-2)}{2^{\mathrm{p} / 2}-2}+\frac{\alpha \operatorname{sgn}(\mathrm{p}-1)}{2^{\mathrm{p}-1}-1}\right)\|\mathrm{x}\|^{\mathrm{p}}$
Similarly we find

$$
\begin{aligned}
& \left\|g(x)-g(0)-T(x)-Q^{\prime}(x)-q^{\prime}(x)\right\| \\
& \quad \leq \varepsilon\left(1+\frac{6 \operatorname{sgn}(p-2)}{2^{p^{\prime 2}}-2}+\frac{\alpha \operatorname{sgn}(p-1)}{2^{p-1}-1}\right)\|x\|^{p} \\
& \left\|h(x)-h(0)-q^{\prime}(x)\right\| \leq \varepsilon\left(1+\frac{6 \operatorname{sgn}(p-2)}{2^{\mathrm{p} / 2}-2}\right)\|x\|^{p}
\end{aligned}
$$

taking $Q(x)=2 Q^{\prime}(x)=2 q^{\prime}(x)$ for all $x \in X$, we find the complete proof of the theorem.

Corollary 2.9 Let $\mathrm{f}, \mathrm{g}, \mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ are mappings satisfying

$$
\|f(x+y)+f(x-y)-2 g(x)-2 h(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \perp \mathrm{y}$. Suppose that \perp is symmetric on X. Then there exists a unique additive mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \|f(x)-f(0)-T(x)-Q(x)\| \leq 7 \varepsilon \\
& \|g(x)-g(0)-T(x)-Q(x)\| \leq \frac{15 \varepsilon}{2} \\
& \left\|h(x)-h(0)-\frac{1}{2} Q(x)\right\| \leq \frac{7 \varepsilon}{2}
\end{aligned}
$$

and
for all $x \in X$.

3. REFERENCES

[1] J. Aczél, A short course on functional equations, D. Reidel Publ. Co.,Dordrecht, 1987.
[2] J. Aczél and J. Dhombres, Functional Equations in Several Vaiables, Cambridge Univ. Press, 1989.
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[6] S. Czerwik (ed.), Stability of Functional Equations of Ulam - Hyers-Rassias Type, Hadronic Press, 2003.
[7] F. Drljevic, On a functional which is quadratic on Aorthogonal vectors. Publ. Inst. Math. (Beograd)(N.S.) 54(1986), 63-71.
[8] IZ. EL-Fassi, N. Bounader, A. Chahbi and S. Kabbaj, "On the stability of sigma quadratic functional equation" Jyoti Academic Press, Vol.2, Issue 2, 2013, Page 61-76, ISSN 2319-6939
[9] M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38 (1989), 28-40.
[10] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull Polish Acad. Sci. Math. 43 (1995), No. 2, 143-151.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222224.
[12] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998. the Absence of the Mountain
[13] K. W. Jun and Y. H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Ineq. Appl., 4(1) (2001), 93118.
[14] S.-M. Jung and P. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38 (2001), No. 3, 645-656.
[15] M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, arXiv math.FA/0412474.
[16] M. S. Moslehian, On the Orthogonal Stability of the Pexiderized quadratic equation, arXiv: math/0412475v2 [math.FA] 12 Feb 2005.
[17] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43 (1998), no. 3, 89-124.
[18] Th. M. Rassias, On the Stability of the Linear mapping in Banach spaces, Procc. Of the Amer. Math. Soc., (72)(2)(1978), 297-300.
[19] Th. M. Rassias, On the Stability of the functional equations in Banach spaces, J. Math. Anal. Appl., (251)(2000), 264-284
[20] J. Ratz, On orthogonally additive mappings, Aequations Math. 28 (1985),35-49.
[21] J. Sikorska "Generalized orthogonal stability of some functional equations" Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 12404, Pages 1-23 DOI 10.1155/JIA/2006/12404
[22] F. Skof Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983) 113129.
[23] Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40 (1990), 190-200.
[24] S. M. Ulam, A collection of the Mathematical Problem, Interscience Publ. New York, 1960.
[25] F. Vajzovic, Uber das Funktional H mit der Eigenschaft: (x, y) $=0 \Rightarrow \mathrm{H}(\mathrm{x}+\mathrm{y})+\mathrm{H}(\mathrm{x}-\mathrm{y})=$ $2 \mathrm{H}(\mathrm{x})+2 \mathrm{H}(\mathrm{y})$, Glasnik Mat. Ser. III 2 (22) (1967), 73-81.

