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ABSTRACT
A RNA or DNA sequence motif is a short sequence found within
a particular nucleic acid sequence families. Most amino acid and
nucleic acid sequences have some level of functional or struc-
tural similarities. These similarities are mostly represented by
short, contiguous sequences called motif. Motif discovery is an
important aspect of molecular biology. This is because the knowl-
edge of these sequences helps determine their structural proper-
ties, signal sites and/or ligand-binding sites. In most cases, de-
pending on the function of the motif, these contiguous regions
can be highly conserved with an homology of nearly 100%. Sev-
eral algorithms have been proposed for the discovery of motifs.
In this paper, the codon-based scoring method is employed to de-
tect motifs and with their invariants. The result obtained shows
the reliability and robustness of the method as motifs are dis-
covered irrespective of their length and position in a sequence.
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1. INTRODUCTION
A nucleic acid sequence motif is a short sequence found within
a particular nucleic acid sequence families. Most amino acid and
nucleic acid sequences have some level of functional or structural
similarities. These similarities are mostly represented by short, con-
tiguous sequences. Knowledge of these sequences helps determine
their structural properties, signal sites and/or ligand-binding sites.
In most cases, depending on the function of the motif, these con-
tiguous regions can be highly conserved with an homology of
nearly 100%. Sequence motif can assist the biologist in classifying
unknown nucleotides or amino acid sequences into their respective
families and functions.
The motif discovery task can be defined as follows:
Given a database N = (N1, N2, · · · , Nk) ∈ {A,C,G, [UT ]}, it is
required to find M, a ”short” nucleotide sequence referred to as a
motif.

1.1 Motif Discovery Algorithms
Several motif detection algorithms have been proposed. An algo-
rithm like the expectation maximization (EM) algorithm is a de-
terministic optimization algorithm used to identify conserved do-
mains and protein-binding sites in aligned proteins and unaligned
DNA sequences, respectively [10]. It also works with sites that may
include gaps [7]. EM employs two major steps in motif detection.
The first step is the expectation step and the maximization step is
the second [12]. The algorithm has to be run several times to search
for improved scores [9]. It forces the selection of the highest prob-
able sequence exhibiting a probability of leading to locally optimal
solutions rather than globally optimal solutions. Gibbs sampling is
another statistical-probabilistic optimization method for motif de-
tection. It is a stochastic equivalent of EM. Gibbs samples all possi-
ble motif locations based on their probabilities, with a chance of es-
caping a locally optimal solution. MOTIF [15] searches for motifs
using the Prosite catalogue. In the Prosite catalogue, proteins are
grouped based on similarity in their biochemical functions. MO-
TIF has the problem of always providing a motif even for random
sequences, thus making it difficult to determine the significance of
the found patterns (motifs). Combining MOTIF with Gibbs tends
to solve this problem. The eMOTIF method of motif analysis is
described by Nevill-Manning et al. [13]. The eMotif uses statisti-
cal analysis to identify amino acids that are together in the same
column of multiple aligned sequences. The Multiple EM for Mo-
tif Elicitation (MEME) is yet another motif discovery program de-
signed to use the expectation maximization method [1]. MEME is
a web resource for performing local multiple sequence alignments
using the EM method.
There are three categories of motif discovery algorithms [6]. These
are string alignment algorithms, exhaustive enumeration algorithms
and heuristic methods. String alignment algorithms, as in the Lev-
enshtein distance, find sequence motifs by minimizing a cost func-
tion. The exhaustive enumeration algorithms run in exponential
time, depending on how long the motif actually is, although they
could find optimal motifs. Heuristic methods are generally not
flexible. A further classification of pattern discovery algorithms
has been done by Thijs et al. [16]. These algorithms are classi-
fied into word analysis methods and probabilistic sequence models.
The word analysis methods are based on some intelligent word-
counting strategies, while the probabilistic sequence models use a
position probability matrix to represent the motif.
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2. THE ALGORITHMIC CHALLENGE IN MOTIF
DISCOVERY

There are biological sequences with some form of mutations. To
find similar patterns, therefore, demands insertion, deletion or sub-
stitution. The algorithmic challenge here involves finding motifs of
definite lengths and mutations within a dataset of sequences. This
problem is referred to as the (l,s)-motif problem or a planted variant
of motif M.
Given a nucleotide sequence here called motif M of length l, it is
required to find M with s number of substitutions from a database
of N sequences each of length d. The problem here involves find-
ing a motif with fewer substitutions. Several algorithms have been
employed in solving the planted (15,4)-motif problem, where N=20
and d=600, without a substantial result [14]. To deal with this prob-
lem, the use of random projections of the input’s substrings is em-
ployed by Buhler and Tompa [5]. COBASM is employed to attempt
a solution to this problem. To arrive at a global optimum, zero value
is attributed to s in one instance, and p in another, with the value of
p > 0. This implies that the algorithm is to find M where there is
no substitution at all and where there is k substitutions.

3. THE CODON-BASED SCORING METHOD
The codon-based scoring method (COBASM) [2] used in this pa-
per employs the codon arrangement as depicted on the codon (or
genetic code) table. It considers grouping the constituent bases into
three, based on their codon arrangements. The reason for consider-
ing groups of three bases is because it is biologically significant and
meaningful to consider a triplet of bases as it is useful in the for-
mation of amino acids. Blocks of three similar nucleotides are used
to capture the codon arrangement as indicated on the codon (ge-
netic code) table in the formation of the twenty amino acids found
in protein. Blocks of two, four or five will not give a meaningful
interpretation of the concept being investigated. For example, the
pairs, GC and AT, are the only compatible base pairs when consid-
ering the pairing of DNA bases in the formation of DNA’s double
helix. Pairing A and C are incompatible and will yield no signifi-
cant result. This is because the pair between A and C are incom-
patible and chemically unstable, owing to the loss of the hydrogen
bond formed within the base pair. This fact renders the choice of
blocks of two, four or five irrelevant and biologically insignificant.
Therefore, basing the underlying concept upon a combination of
bases other than the codon concept presented in this paper is not
biological and as thus, will produce no significant result.
COBASM takes an entire source sequence and compares each char-
acter with the target sequence as does the Levenshtein distance
[11], but with some major improvements. The scoring method pro-
posed in this paper assigns a score of 1 to each corresponding pair
of nucleotides that are similar, and 0 to dissimilar pairs. An addi-
tional 1 is given for consecutive blocks of three pairs of similar
nucleotides. The codon-based similarity is explained as follows:
Consider two sequences su and sv as source and target sequences,
respectively. In the first instance, sequences of equal length were
considered. Each successive block of bases in the source sequence
is placed in adjacent blocks in the target sequence. Corresponding
sequences are scored accordingly. This is the basic idea employed
in the detection of motif and the conceptual clustering of sequences
[4]. Secondarily, a situation where n (length of su) and m (length
of sv) are unequal, i.e n 6= m, the sequences are treated as follows:
A pair-wise search is conducted among the sequences. A pair-wise
search in this case involves the positioning of individual characters
in the source sequence against the target sequence until their last

characters meet. The movement (pair-wise comparison) along the
source sequence is done (n−m) times. This has also been described
in the pseudo-code represented by Figure I.
From the above, it is clear that d(su, sv)=d(sv, su) when n=m,
and when n 6= m, d(su, sv)=d(sv, su) indicating symmetricality.
The psedo-code for the casen = m and n < m is also presented.
For n > m, d(sv, su) is used instead of d(su, sv), see Baridam [3]
for the detailed description of the implementation.

3.1 The Application
COBASM takes an entire dataset of source sequences and com-
pares each with a target, in this case the motif. Where there is a
match, there is a score of 1 per character. If there are consecutive
blocks of three nucleotides that are similar, following the genetic
code or codons’ table, an additional 1 is added to the score.
A COBASM search is conducted and every match is scored instead
of penalizing a mismatch, as does the Levenshtein distance. By do-
ing so, the algorithm is able to capture both optimal local and global
alignment between pairs of sequences. The edit distance captures
only the optimal global alignment between a pair of sequences, and
ignores many other local alignments that could represent important
features shared by the pair of sequences [8].
For an entire search with varied mutations or substitutions (1 <
s < l), percentage homology is employed. To achieve this result,
the following terms are defined. These are target fitness, source fit-
ness and sequence homology. The target fitness, serving as a thresh-
old, is the sum of the length of M and one-third of same, i.e. 4l

3
,

bearing in mind that every block of three nucleotides earns an ex-
tra score; otherwise it is the total length of M, i.e. l. The sequence
homology is 70% of the target fitness, i.e. ( 70

100
)( 4l

3
) = 14l

15
. The

source fitness is the value calculated for the source sequence by
the COBASM. For a source sequence to be considered similar, the
source fitness must be greater than or equal to the sequence homol-
ogy. This implies that a block in the source sequence must not be
less than the fitness calculated for the motif - the threshold against
which source fitness values are being compared.

4. EXPERIMENTAL RESULTS
Four different synthetic motifs from the Homo sapiens’ skin DNA
were used in the experiment. The motifs were tested against se-
quences of varied lengths. The longest sequence used was Se-
quence 10 of length 1471, and Sequence 8, the least with 134 bases.
Table 1 shows the results from motifs of less than five bases. The
frequency of the occurrence of each of the motifs is shown. Com-
paring this with Table 2 containing motifs with several invariants,
it is clear that the motifs were detected and the location within the
sequences.
The result presented in Table 1 shows the level of similarity be-
tween the sequences. With Motif 1, high level of similarity is iden-
tified between Sequences 3, 10, 11, 15 and 19. Similarity is also
established between Sequences 2, 4, 5, 6, 14 and 16 with motif 1.
With Motif 4, similarity is established between Sequences 1, 4, 10,
14 and 19. Similarity between Sequence 10 and Sequences 1, 4 and
14 results from the length of the sequence.
From Table 2, the (20,9)-motif invariant was detected in six posi-
tions (116, 263, 413, 580, 1043 and 1060)in Sequence 5, and one
location in sequence 4 (position 105). The (10,4)-motif invariant
occurred up to nine times in Sequence 2; the (10,3)-motif invariant
was detected in seven locations within sequence 1.
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Initialize S_1 and S_2
for |S_1|: i= 1 to n do

for |S_2|: j= 1 to m do //determine the length of the longest
//sequence if sequences are unaligned
//or unequal.

if n < m then //if length of sequences are not equal
//do pattern-element-search

Compare s_1[i] with s_2[j],s_2[j+1],...,s_2[m-n]
and s_1[i+1] with s_2[j+1],s_2[j+2],...,s_2[m-n+1]
if s_1[i] = s_2[j] then

score = 1
else score = 0
endif

endif
if n = m then //examine each character of S_1 and S_2

if s_1[i] = s_2[j] then
score = 1

else score = 0
endif

endif
//split sequences S_1 and S_2 (including
//gaps if aligned) into blocks of three
//bases each and compare adjacent blocks.

for i,j >= 0 do //total block-match.
if s_1[i+1,i+2,i+3] = s_2[j+1,j+2,j+3] then

score = score+1
else
return score
endif

endfor
endfor

endfor
return score

Fig. 1. A pseudo-code for the codon-based similarity measure

Table 1. Frequency of discovered motifs with s=0
Sequence Sequence Motif Frequency Sequence Sequence Motif Frequency

Length 1 2 3 4 Length 1 2 3 4
1. 576 2 4 0 19 11. 858 10 1 10 4
2. 540 8 2 1 0 12. 853 2 2 3 0
3. 630 15 2 3 0 13. 742 1 3 4 3
4. 851 5 4 1 24 14. 880 5 2 2 20
5. 1097 6 1 3 1 15. 838 10 4 7 8
6. 996 6 3 5 1 16. 851 6 6 9 2
7. 551 2 0 4 0 17. 566 2 0 2 6
8. 134 0 0 1 0 18. 865 2 6 6 1
9. 617 1 3 2 5 19. 789 12 4 7 14

10. 1471 12 5 7 15 20. 953 3 5 4 4

5. CONCLUSION
This paper presented the application the codon-based scoring
method to the detection of motif. Various motif invariants were
used in the experimental analysis. Results obtained clearly shows
the robustness of the method.
The method employed here have been used in the clustering of nu-
cleic acid sequences with significant improvements over existing
algorithms like the edit distance and Euclidean distance. The re-
sults obtained in this paper further strengthens the usability and
robustness of the algorithm. The application of the method in the
clustering of amino acids is advocated.
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