
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.8, April 2014

1

 FPGA Implementation of 16 bit RSA Cryptosystem for

Text Message

Rohith S

Assistant Professor
Department of E&C
NCET, Bangalore,
Karnataka, India.

Poornima
Research scholar

Department of E&C
NCET, Bangalore,
Karnataka, India.

Mahesh C
Research scholar
Department of EC
NCET, Bangalore,
Karnataka, India

ABSTRACT

The rapid growth of the internet and electronic commerce has

brought to the forefront the issue of privacy in electronic

communication. In order to protect the information from

unauthorized parties we need to mask the information before

sending it through a communication channel. Currently RSA

is one of the algorithms which are not broken by hackers due

to its mathematical complexity. This paper presents a design

and implementation of 16-bit RSA Cryptosystem. The entire

cryptosystem is divided in to three parts: key generation,

encryption and decryption. The key generation is carried out

by using random number generator LFSR, “Sieve of

Eratosthenes” algorithm for prime number detection, Booth

multiplier for multiplication and Extended Euclidean

algorithm to find GCD of the public key and Euler‟s Totient

Function. Encryption and decryption is carried out by

Modular Multiplication and Modular Exponentiation by using

LR binary method. The encryption and decryption of the text

message “NAGARJUNA COLLEGE” is verified using

proposed RSA algorithm. The design is simulated using

Modelsim10.2b simulator and finally implemented on

Sparten-6 FPGA using Xilinx 13.4 software. Area and timing

parameters are computed with respect to Spartan-6 FPGA.

The results obtained from simulation are validated using

MATLAB code.

Keywords:

RSA, FPGA, Verilog, Cryptography, Encryption, Decryption.

1. INTRODUCTION
Cryptography is concerned with keeping communications

private. Modern cryptosystems are typically classified as

either public-key or private-key [1]. Private-key encryption

methods, such as the Data Encryption Standard (DES), use the

same key to both encrypt and decrypt data. The key must be

known only to the parties who are authorized to encrypt and

decrypt a particular message. Public-key cryptosystems, on

the other hand, use different keys to encrypt and decrypt data.

The public-key (e, n) is globally available. The private-key (d,

n) is kept confidential Private-key systems suffer from the key

distribution problem. In order for a secure communication to

occur, the key must first be securely sent to the other party.

An unsecure channel such as a data network cannot be used.

Public-key systems do not suffer from this problem because

of their use of two different keys. Messages are encrypted

with a public key and decrypted with a private key. No keys

need to be distributed for a secure communication to occur.

The RSA public-key cryptosystem is the most popular form of

public-key cryptography [2-5].

The RSA algorithm capitalizes on the fact that there is no

efficient way to factor very large numbers. As the number

become larger and larger, finding out the factor for that

number becomes extremely difficult. Even if the public key is

known by the unintended users, the data encrypted by the

RSA cannot be decrypted. This gives an additional level of

security.

RSA algorithm crypto system is most widely used Public key

cryptographic system[1-8]. RSA algorithm is very Good fit

for real time data security, high performance applications like

image capture with Encrypt/Decrypt, Financial application

like Credit card swipper etc will take out the risk of tampering

if implemented in hardware, High speed E-comers data

transmission/reception over internet. With the high quality,

guaranteed security and reliability the RSA algorithm

represents a real turning point for practical applications. Many

researchers proposed algorithm for RSA encryption and

decryption process. VLSI architecture to compute modular

exponentiation and modular multiplication for RSA public-

key cryptosystem is discussed in [7]. The conventional H-

algorithm is modified to find the modular exponentiation.

Author shown modified H-algorithm will reduces

computational complexity of the multiplication process.

Result shows the architecture of the modified modular

multiplication the iteration times are only half of

Montgomery‟s algorithm and the H-algorithm. In [8] the

architecture and modeling of RSA public key

encryption/decryption systems is discussed. Architecture uses

simple shift and add algorithm is used to implement the

blocks. It makes the processing time faster and used

comparatively smaller amount of space in the FPGA due to its

reusability. The VHDL code is synthesized and simulated

using Xilinx-ISE 10.1. It is verified that this architecture

support multiple key of 128bits, 256bits, and 512 bits. RSA

encryption algorithm, Montgomery unit for multiplication and

FPGA implementation RSA architecture are discussed in[9].

This Paper discusses implementation of 16-bit RSA algorithm

to encrypt and decrypt the text messages. The entire RSA

cryptosystem is divided into three parts: key generation,

encryption and decryption. The key generation stage aims to

generate a pair keys, i) public key ii) private key. Anyone

knowing the public key can encrypt messages, but cannot

decrypt. Key generation is carried out by using LFSR , Sieve

of Eratosthenes algorithm[] for prime number detection,

Booth multiplier for multiplication and Extended Euclidean

algorithm to find GCD. Encryption and decryption is carried

out by modular multiplication and modular exponentiation by

using LR binary method[]. The text message “NAGARJUNA

COLLEGE” is encrypted and decrypted using proposed RSA

algorithm. The architecture is synthesized using Xilinx-13.4

with respect to Spartan-6 FPGA and simulated using

Modelsim.

The rest of the paper is organized as follows. Section I

describes proposed design. Implementation and simulation

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.8, April 2014

2

results are given section II. In Section III gives the conclusion.

The final section IV gives the references used

2. PROPOSED DESIGN
The RSA algorithm was invented by Rivest, Shamir, and

Adleman in 1977 and published in 1978 [3]. It is one of the

simplest and most widely used public-key cryptosystems. The

RSA algorithm has 3 steps and the general description of the

overall components of RSA algorithm.

Key Generation

In RSA [1] data encryption/ decryption uses public key and

a private key. The public key can be known to everyone and is

used for encrypting messages. Messages encrypted with the

public key can only be decrypted in a reasonable amount of

time using the private key. To generate the keys following

algorithm is used.

1. Using Linear Feedback Shift Register (LFSR) with a

polynomial X16+X14+X13+X11+1 16 bit number is

generated. Here integer number of bit length 16 is

considered.

2. The so obtain number is random undergone for the

primality test using Sieve Eratosthenes process. If the

number is prime then assigned as a „p‟ or „q‟ else other

number will be obtained from LFSR.

3. So obtained random number p and q are used to compute

„n‟ using n = p*q Where „n‟ is the for both public and

private keys. „*‟ is multiplication symbol implemented

using 16 bit Booth algorithm.

4. Compute φ (n) = (p − 1)*(q − 1), where φ is is the

Euler‟s Totient Function computed using booth

multiplier.

5. Choose an integer e such that 1 < e <φ (n) and gcd(e,
φ(n)) = 1; i.e. e and φ(n) is a co prime „e‟ is released as

the public key exponent.

6. Determine d as d≡ e-1 (mod φ (n)), i.e., d is

the multiplicative inverse of e (modulo φ(n)). This is

more clearly stated as solve for d given de=1 (mod φ(n)).

This is often computed using the extended Euclidean

algorithm. „d‟ is kept as the private key exponent.

By construction de=1(mod φ (n)).The public key consists of

the modulus n and the public (or encryption) exponent e.

The private key consists of the modulus n and the private (or

decryption) exponent d, which must be kept secret. p, q, and

φ(n) must also be kept secret because they can be used to

calculate d.

Encryption

The encryption works using the public key (e, n). For any

input message “M”, the encrypted message “C” would be

calculated as: C=Me mod n. The modular exponentiation is

carried out using standard LR binary algorithm[].

Decryption

The decryption works using the public key (d, n). For any

input encrypted message “C”, the original message “M”

would be calculated is using: M=Cd mod n. Modular

exponentiation is carried out using LR binary algorithm.

3. IMPLEMENTATION AND

SIMULATION
The proposed design is implemented using Verilog HDL

programming language and simulation is done using

Modelsim 10.2b simulator. The design is synthesized with

respect to Spartan-6 FPGA. RSA algorithm is developed

using random number generator, prime number detector,

multiplier, Extended Euclidean Algorithm, encryption and

decryption. All these sub modules are implemented and

integrated to generate required output so that to achieve the

functional requirement of the project.

3.1 Random number generator

Fig 1: Simulation result of 16-bit random number

generator

Fig 1 shows the simulated result of LFSR. For example seed

value given to the 16-bit LFSR is 0110010001001111

[equivalent decimal value is 25679]. The sequences obtained

are 0011001000100111 [equivalent decimal value is 12839],

001100100010011 [equivalent decimal value is 6419] etc. this

is clearly depicted in waveform.

3.2 Prime number detector

Fig 2: Simulation result of 16-bit prime number detector

The sequence generated from LFSR module is given as input

to the prime number detector module. This module will test

whether the number is prime or not. Fig 2 shows the

simulation result of prime number detection module. For

example input value given to the prime number detector is

13009. The number is detected as a prime number so that the

output signal Yes_Prime is toggled and the output signal

prime_out outputs the prime number.

http://en.wikipedia.org/wiki/Greatest_common_divisor

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.8, April 2014

3

3.3 32-bit Booth multiplier

Fig 3: Simulation result of 32-bit Booth Multiplier

Fig 3 shows the waveform of the multiplication of two

numbers. The inputs i.e. 32-bit multiplicand „mc‟ is 234 and

32-bit multiplier „mp‟ is 23456 given to the multiplier are 234

and 23456. When „start‟ signal is high the multiplication

operation will start and which gives the 64 bit product i.e.

product=5488704.

3.4 Extended Euclidean algorithm

Fig 4: Simulation result of Extended Euclidean algorithm

Extended Euclidean algorithm has been implemented to find

the multiplicative inverse of the e (modulo φ (n)). Fig 4 shows

the simulation result of the Extended Euclidean algorithm. For

example input „e‟ is taken as „a‟ and φ (n) is „b‟ where a=120

and b=23. Last_Y is the required output that is 47.

3.5 Encryption

Fig 5: Simulation result of Encryption

The public key (e,n) obtained is used to Encrypt the data using

RSA cryptosystem. The simulation result for the input

M=21838 is shown in fig 5 Random number sequence is

generated using LFSR with respect to the seed value given

and it is tested by prime number detection algorithm. The

prime numbers obtained are named as „P‟ and „Q‟. So the

prime detector gives two prime number as output that is „P‟

and „Q‟. Then the modulus „N‟ and „φ (n)‟ is found using

booth multiplier by performing N=p*q=401*101, φ(n)=(p-

1)*(q-1)=400*100. The output value obtained are n= 40501

and φ(n)= 40000.The prime number in the range of 1 to 256 is

entered to find „E‟. It will check for the condition

1< E <φ(n) and gcd(E,φ(n))=1. If the condition is satisfied

then that number is taken as „E‟ i.e. E=17. Then the data is

encrypted using this public key „E‟ according to cipher text

C=ME mod N. Thus the encrypted data obtained is

Ciphertext1=34349.

3.6 Decryption

Fig 6: Simulation result of Decryption

Fig 6 shows the waveform of the decryption. The data is

decrypted using the private key „D‟ according to M=CD mod

N. For example the inputs are private key D=2353, encrypted

data Ciphertext1=34349 which is obtained in the encryption

process and modulus N=40501. Decrypted data is same as the

original data which was used during encryption i.e.

De_Ciphertext=21838.

3.7 Simulation result for encryption of

multiple characters
Simulation result shows the encryption and decryption of

multiple characters “NAGARJUNA COLLEGE”. In this two

characters are taken at a time and it is converted to ASCII

value, which is used for encryption and decryption.

Fig 7: Simulation result for encryption of multiple

characters

The figure 7 shows the encryption of multiple characters. The

entire module operation will start with toggling the

En_RSAsignal.All the control signals and information signal

or the message signal are stored in memory. The address 0 is

reserved for Seed_P, address 1 is reserved for Seed_Q,

address 2 is reserved for Seed_E, address 3 is reserved for

En_RSA, address 4 is reserved for En_Encryption and address

http://en.wikipedia.org/wiki/Greatest_common_divisor

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.8, April 2014

4

5 is reserved for En_Decryption. Messages are stored from

address 6 to address 15, as “NAGARJUNA COLLEGE”; this

is stored in the form of ASCII equal hex value, each ASCII

character will take 8 bits or 1 byte ; as the input message for

the module is 16 bits wide, the whole information is broken

into 2 character for each message.

So once the En_RSA signal is toggled, LFSR module will

take SEED_P, Seed_Q and generate a random number which

is fed to the prime number detector. The output of prime

number detector is named as P and Q where P=401 and

Q=101. By using two detected prime numbers N=p*Q=40501

and φ(N)=(P -1)*(Q-1)=40000 are computed. Then the public

key “E” is generated according to the condition 1<E<φ (N)

and gcd(E,φ (N))=1. The obtainedE=17 and φ (N)=40000 is

fed to “Extended Euclidean Algorithm” module to get “D”

value.

Here the two characters of message are stored in the form of

ASCII equal hex value i.e. NA=4E41, GA=4741, RG=524A,

UN=554E, A=41, CO=434F, LL=4C4C, EG=4547, E=45.

Once the P, Q, E, N and D are obtained and En_Encryption

signal is toggled; the encryption module will take value of E,

N and message from address 6 to address 15. The resultant

encrypted data are NA=3103, GA=2229, RJ=34520,

UN=34349, A=25848, CO=17385, LL=1373, EG=3478,

E=2463. These encrypted data are stored between address 17

to address 26.

3.8 Simulation result for decryption of

multiple characters

Fig 8: Simulation result for decryption of multiple

characters

Fig 8 shows the simulation result for decryption of multiple

characters. The inputs to the decryption module are private

key „D‟ which is found using Extended Euclidean algorithm,

encrypted data obtained in the encryption process and

modulus N. Decryption is carried out by taking two characters

at a time. It will be the original message given in the

encryption process i.e. “NAGARJUNA COLLLEGE”. When

the En_Decryption signal is toggled the decryption module

will take the D,N and encrypted data from address 17 to

address 26 and stores the decrypted data between address 27

to address 36.

3.9 Area utilization of RSA cryptography
The below chart shows the area utilized for RSA

cryptography by Xilinx Spartan 6

Table 1: Utilized area for RSA cryptography

The above table shows the device utilization summary of

whole RSA module in the device. Spartan 6 (XC6SLX16).

The whole implementation of RSA cryptography takes 1804

slices.

3.10 Latency & Clock Frequency of RSA

cryptography
The below chart shows the maximum frequency of RSA in

Xilinx Spartan 6

Fig 7: Time summary of RSA cryptography

The timing summary shows the maximum operating

frequency is 61.321MHz for RSA cryptography.

4. CONCLUSION
Cryptographic algorithm plays an important role for the

transmission of the data over the internet. There have been

lots of the cryptographic algorithms that have designed in the

past. RSA is one of most widely used cryptographic algorithm

in recent times. In this project 16-bit RSA cryptosystem is

implemented on FPGA. The RSA cryptosystem includes

random number generator LFSR, “Sieve of Eratosthenes”

algorithm for prime number detection, Booth multiplier for

multiplication, Extended Euclidean Algorithm for key

generation, L-R binary algorithm for encryption and

decryption. The design is simulated using Modelsim simulator

10.2b, and also synthesized and implemented on Sparten-6

FPGA using Xilinx 13.4 software, and the area and speed are

tabulated with respect to Sparten-6 FPGA. It shows

implementation of RSA cryptosystem takes 1804 slices and

maximum operating frequency is 61.321MHz .The results

obtained from simulation are validated using MATLAB code.

5. REFERENCES
[1] Whitfield Diffie and Martin E. Hellman “New Directions

in Cryptography” IEEE Transactions On Information

Theory, vol. It-22, no. 6, november 1976.

[2] Woei-JiunnTsaur and Chih-Hung Wang “A new

message-recovery combined fair blind signature scheme

with provable security using self-certified pairing-based

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.8, April 2014

5

cryptosystem” International Journal of Innovative

Computing, Information and Control Volume 8, Number

2, February 2012.

[3] R.L .Ri vest, A. Shamir, and L. Adleman, "A Method for

Obtaining Digital Signatures and Pub lic- Key

Cryptosystems", communicatios of the ACM 2 1 (1 9 7

8)

[4] Chiranth E Chakravarthy H.Y.A, Nagamohanareddy P,

Umesh T.H, Chethan Kumar M, " Implementation of

RSA Cryptosystem Using Verilog', International Journal

of Scientific & Engineering Research Volume 2, Issue 5,

May-20 1 I ISSN 2229-55 1 8

[5] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for

Obtaining Digital Signatures and Public-Key

Cryptosystems”. February, 1978 Volume 21, Number 2

pp. 120-126.

[6] Ridha Ghayoula, ElAmjedHajlaoui, TalelKorkobi,

MbarekTraii, HichemTrabelsi, “FPGA Implementation

of RSA Cryptosystem”, World Academy of Science,

Engineering and Technology 20 2008.d. 7, No 4, pp.

241_250.

[7] Jen-Shiun Chiang, Cheng-Chih Chien“ An Efficient

VLSI Architecture for Rivest Shamir-Adleman Public-

key Cryptosystem” Tamkang Journal of Science and

Engineering, Vol. 7, No 4, pp. 241_250.

[8] Sushanta Kumar Sahu “FPGA Implementation of RSA

Encryption System” International Journal of Computer

Applications (0975 – 8887) Volume 19– No.9, April

2011.

IJCATM : www.ijcaonline.org

