
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

1

 Dynamic Resources for Multicore Processor using

Register File Protection

H. G. Konsowa

Faculty of Engineering, Helwan
University, Cairo, Egypt

E. M. Saad
Faculty of Engineering, Helwan

University, Cairo, Egypt

M. H. A. Awadalla
Faculty of Engineering, Helwan

University, Cairo, Egypt
Electrical and Computer

Engineering Dept., SQU, Oman

ABSTRACT

A massive investment in the design multicore has been

accomplished through technologies that impose significant

barriers to assure the reliable operation of future chips.

Extremely complex, parallel, multi-core processor fabricated

in these technologies will become more vulnerable to several

factors that produce transient (soft) errors or permanent (hard)

errors. One of the critical issues to protect a processor is the

register file. It registers the architectural states for long

periods and also it can be read frequently. This paper presents

a new eviction policy to the registers entry from error code

correction table in the insertion stage for the integer register

file protection process. The paper presents a qualitative

comparison with other eviction policies (random and the least

recently used, LRU). Also it addresses the effect of using the

integer register protection with dynamic resource fetch policy

on the overall performance by adding the protection for

integer registers files to the dynamic allocated resource (fetch

policy). The achieved results show that the dynamic fetch

policy WZ-FETCH outperforms in all addressed benchmark

programs in case of using register file protection.

General Terms
Multicore Processor Design, Dynamic design

Keywords

Multicore, Resource allocation, Register sharing, Register

renaming, Simultaneous Multi-Threading (SMT).

1. INTRODUCTION
Simultaneous Multithreading (SMT) increases processor

throughput by permitting the parallel execution of many

threads. Static resource sectionalization techniques have been

suggested, but are not as effective as dynamically controlling

the resource usage of each thread since program phases are

not fixed all the time. Static resource partitioning [1], [2]

evenly split up critical resources among all threads, thus

preventing resource monopolization by a single thread.

However, this method lacks flexibility and can cause resource

to remain idle when one thread has no need for them, even if

other threads could benefit from additional resources. This

section includes a briefly review for previous works on

dynamic resource allocation in multiprocessor, multithreaded

and multicore platforms. Although several proposals that

address the management of a single micro-architectural

resource exist in the literature, proposals to manage multiple

interacting resources on multicore chips at runtime are much

scarce. The authors in [3] proposed an algorithm that

dynamically assigns resources to each thread according to

thread behavior changes. Advanced Real-time Processor

Architecture (ARPA) system analyzes the resource usage

efficiency of each thread in a time period and assigns more

resources to threads which can use them in a more efficient

way. The purpose of ARPA is to improve the efficiency of

resource utilization, thereby improving overall instruction

throughput. In microprocessor organization’ arena as

microarchitectural complexity increases, (crossing instruction-

layer correspondence to thread level-parallelism and toward

multi-core and many-core architectures), it is more difficult to

explain concepts like cache, out-of-Order and speculative

execution, power consumption, and the fundamental

interaction among the architecture components. It is important

to know the architecture concepts by observing the flow of

instructions in time, also by exploring the impact of different

processors configuration on performance. Any simulator must

exhibit both the structural relationships between

microarchitectural components and the temporal dependences

between executed instructions that are in-flight in the pipeline

structures. Multicore processor architectures incorporate CPU

cores, memory arrays (e.g. caches, register files), memory

control logic and interconnection logic. The register files are

one of the critical structures of these memory arrays to protect

a processor. It is a sizable structure that stores architecture

state. It often stores data for long periods and is read

frequently, which increases the probability of spreading a

faulty datum to other parts of the machine. The register files

that occupy a large portion of processor die can be

successfully protected using well-known information-

redundancy techniques like Error-Correcting Codes (ECC).

Thus, the key element of online error detection is to protect

the units of the processor, CPU cores (which dominate the

remaining die area), the memory hierarchy control logic

(memory consistency), and the interconnection logic. Several

online error detection techniques for the register files have

been recently proposed .A protection mechanism for soft

errors in register files should have no performance shock;

keep the remaining Architectural Vulnerability Factor (AVF)

[4] to a small value. To implement such a mechanism, the two

observation parameters on the use of registers in general-

purpose processors are observed. The first one is that the data

stored in a physical register is not always useful. Not all soft

error in a physical register will affect the processor’s

architectural state. Consequently, the register needs to be

protected when it is contained a useful data. The second

observation is that not all the registers are equally vulnerable

to soft errors. A small set of long-lived registers account for a

large fraction of the time that registers need to be protected.

The contribution of the most other registers to the vulnerable

time could be ignored. The paper is organized as follows.

Section 2 describes the related work to this paper. Section 3

illustrates the proposed methodologies. Section 4 describes

and discusses the simulation results. Section 5 concludes the

paper.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

2

2. RELATED WORKS
 The background will cover three related areas:

 Register life time analysis and simulation

framework.

 Microarchitecture level soft error vulnerability

analysis.

 Dynamic fetch policies.

2.1 Register Life Time Analysis and

Simulation Framework
In recent out-of-order processors, the instructions are fetched,

decoded, and then sent to the rename stage. After the

processor decodes an instruction with a destination register, it

allocates a free physical register, creates a new register

version. Instructions in the Issue queue until they are selected

for carrying out by the Select stage. Select stage selects an

instruction for execution once all of the source operand is

ready, and the instruction is at the head among the ready

instructions. Later, the instruction is executed in a Functional

unit. After execution, an instruction’s solvent is broadcasted

on the Bypass network, so that any dependent instruction can

immediately use it. The result is also written to the

corresponding physical register, and the instruction updates its

ROB status. The instruction retires once it reaches the head of

the ROB.

Lifetime

Useful time Dead time

Allocation Usages

Idle

Multiple Reads

Write Deallocation

Fig 1: Physical register life cycle

To explain the rename stage, the register version is kept until

the instruction that determine the corresponding logical

register retires, this is necessary to handle precise exceptions.

Observe that a register version is written to only once but can

be read multiple times. . As Fig. 1 shows, the life-time of a

register version lasts from register allocation to de-allocation.

This full period is divided into three different intervals:

allocation until write interval; write until last read interval;

last read to de-allocation interval. These intervals are called

PreWrite, Useful, and PostLastRead respectively. This means

that only the Useful period time needs to be protected. The

used simulation (Multi2Sim) is modified [5] to be capable of

simulating dynamic resources for multicore. This simulation

is a framework for heterogeneous computing systems,

including models for super-scalar, multithreaded, multicore,

and graphics processors. Multi2Sim simulator is adapted to

cope with multicore processor dynamic design by adding

dynamic feature in the policy of thread selection in fetch stage

[6].

The used framework consists of multicore simulation tool and

a subset of benchmark programs used to evaluate an

architectural enhancement of multicore by workload all

threads of multicore using one benchmark program which can

be executed in parallel way or multiple benchmark programs

that can be executed in sequential workload way [7].

Mult2sim simulation tool supports a set of parameters that

specify how stages are organized in multithreaded design. The

pipeline model in multicore simulator is divided into five

stages as shown in Fig. 2: fetch stage, decode stage, rename

stage, issue stage, execution stage and commit stage. Stages

can be shared among threads or private per thread except

execute stage, which is shared by definition of multithread.

The register renaming mechanism is implemented in

simulation. Multi2sim uses a simplification of x86 logical

registers. There are 32 possible logical dependences between

microinstructions, which are listed in Fig.3. a.

 General purpose registers are used for computations

and intermediate results.

 Specific purpose registers implicitly or explicitly

modified by some microinstructions, such as the

stack pointer or base pointer for array accesses.

 Segment registers.

 Multi2sim specific register are internally used by

the macroinstruction decoder to communicate

corresponding microinstructions with one another.

Fetch

Fetch

queue

Trace

queue

Trace

cache

Decode

IQ

L
S

Q

Register

file

Commit

WritebackData

cache

Instr.

cache
Issue

Operation

queue
ROB

FU

Dispatch

Fig 2: Processor pipelines.

The x86 architecture uses a set of flags that are modified by

some arithmetic instructions, and later consumed mainly by

conditional branches to decide whether to change the program

sequence or not. Flags such as of, cf, and df are overflow,

carry, and direction flags respectively and they are tracked as

separate dependences among instruction. On the other hand,

flags zf, pf, and sf are zero, parity, and sign flags respectively,

these three flags are named zps as shown in Fig. 3 a and any

x86 instruction can modify all of them. Thus they are tracked

as a single dependence. The value associated with each logical

register, i.e. each potential input dependence for an

instruction is stored in the physical register file. As

represented in Fig.3 b, the register file consists of a set of

physical registers that store operation results. Each physical

register is formed of a 32-bit data, jointly with a 6-bit field

storing the x86 flags. The implementation of rename process

into the multi2sim simulation is explained as follows: at a

given instant, each logical register is mapped to a given

physical register in the register file, containing the associated

value. In used renaming model, logical register and renaming

work independently. This means, for example that register eax

and flag cf can be mapped to the same register file entry. In

this case, the value field stores the contents of eax, while a

specific bit in the flags field contains the value for cf. Each

logical register is mapped to a different physical register, but

x86 flags can be mapped all to the same physical register,

even if the latter already has an associated logical register.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

3

General purpose

eax ebx

ecx edx

Segments registers

es ds

cs Fs

ss gs

X86 Flags

Zps of

cf df

Specific purpose

esp ebp

esi edi

 Multi2sim specific

aux 1 aux2

ea data

32 bits 6 bits

.

values flags

.

Initial RAT state

eax 0

ebx 1

… … ..

fs 12

gs 13

Zps 0

of 1

cf 2

df 3

Aux1 14

Aux2 15

… … …

a) Logical
dependences

b) Physical
register file

c) Register
aliasing table

Fig 3: Register renaming.

A Register Aliasing Table (RAT) holds the current mappings

for each logical register. Additionally, a Free Register Queue

(FRQ) contains identifiers corresponding to free (not

allocated) physical registers. When new instruction writing

into logical register i is renamed, a new physical register is

taken from FRQ and the new mapping for i is stored in RAT.

The previous mapping p0 of logical register i will be needed

later, and is stored in the ROB entry associated with the

renamed instruction. When subsequent instructions

consuming i are renamed, RAT will make them read its

contents in p, when they will find the associated value

When the instruction writing on i is committed, it releases the

previous mapping of i, i.e., physical register p0, returning it to

FRQ if necessary. Notice that, unlike a classical renaming

implementation ignoring flags, a physical register can have

several entries in RAT pointing to it (the maximum is the

number of flags plus one logical register). Thus, a counter is

associated with each physical register, which will only be

freed and sent back to FRQ in case of this counter is 0.

2.2 Microarchitecture Level Soft Error

Vulnerability Analysis
The microarchitecture level, broadcast vulnerability to soft

errors can be modeled using several methodologies. For

example, Li and Adve [8] estimate the reliability using a

probabilistic model of the error generation and propagation

process in a central processing unit In the past, statistical fault

injection has also been used in several studies [9]-[11] to

evaluate architectural reliability. In this work, the reliability of

central processor microarchitecture structures is estimated

using the Architectural Vulnerability Factor (AVF) computing

method acting introduced in [12], [13].

AVF of a hardware system is the probability that a transient

fault in that hardware structure can cause erroneous output of

a program. The overall hardware structure’s computer error

rate is determined by two factors: the raw error rate of the

hardware device, mainly determined by circuit design and

processing technology, and AVF. Since the hardware raw

error rate normally does not vary with code execution of

instrument, AVF can be used as a good dependability figurer

to quantify how vulnerable the hardware is to soft errors at

different program execution phase. To compute AVF, it needs

to distinguish those fleck that affect the final arrangement

output and those that do not. A subset of processor state of

bits required for architecturally correct execution (ACE) are

called ACE bits [12]. AVF of a hardware structure in a given

cycle is the percentage of ACE bits that the structure holds,

and AVF of a hardware structure during program execution is

the average AVF at any point of time. In practice, identifying

un-ACE bits, the processor state bits that do not affect correct

program execution, is much easier. Examples of locations that

often contain un-ACE bits include idle or invalid states,

uncommitted instructions and dynamically dead instructions

and data. An instruction is considered dynamically dead if its

result is not used by any other instructions and therefore will

not affect the final output of the program. A cycle accurate

execution driven simulator can be used to identify un-ACE

bits and to track the residency cycles of the un-ACE bits in

hardware structures. To compute AVF of the entire processor,

AVF of all hardware components are added together after

being weighted with the number of bits in each structure.

P. Montesinos et al. [14] proposed a ParShield, as a novel

architecture that provides cost-effective protection for registry

file against soft errors. ParShield relies on the Shield concept,

which selectively protects a subset of the registers by

generating, storing, and checking ECC s of only the most

vulnerable registers while they contain useful information.

Shield supports three operations on one such register: (i) when

the register is written, Shield generates and save ECC of the

written data, (ii) when the register is read , Shield checks

whether the register contents are still valid, and (3) Shield

keeps ECC of the data until the register is read for the last

time. Shield assumes a single -bit fault model.

Read

 time_1

Release

time
read

time_n

Write

 time

Allocation

time

Read

time_2

Release

time
Write

 time

Allocation

time
Un-ACE period

ACE period

1-Written but not read

2-Written and read n times

 Fig 4: ACE periods for two register versions.

Mukherjee et al. [12] proposed the concept of Architecturally

Correct Execution (ACE) to compute a die structure ’s AVF.

ACE analysis divides a bit’s lifetime into ACE and un-ACE

periods. A bit is in ACE state when a change in its value will

produce an error AVF for a one bit is the fraction of time that

it is in ACE state. To calculate the amount time a bit in ACE

State, the first assumption is the whole register life time is in

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

4

ACE state, and then the fraction that can be proven as it is un-

ACE state will be removed. The fraction left is an upper leap

on the ACE time.

Fig 5: Physical register life cycle.

Fig 6: Registers lifetime framework

2.3 Fetch Policies
Static fetch policy is used to be compared with dynamic fetch

policy (WZ-FETCH) which is introduced in [15]. The static

fetch policy selects a certain thread to serve for certain time

slice then switch to another thread and so on but WZ-FETCH

policy depends on the Ordinary Least Square (OLS)

regression statistic method [16]. WZ-FETCH policy, the used

algorithm of selecting fetch threads, will select the thread

which has least miss value of L2 data cache miss to increase

data locality. To predict the future L2 data cache miss, OLS

regression equation using number of samples equal to the

window array size for each thread will be used, i.e. the

function to calculate the future L2 data cache miss is found on

thread level. This function is called regression engine. The

WZ-FETCH fetch policy is the best fetch policy in all used

benchmarks programs for all used metrics.

WZ-FETCH fetch policy is represented as a history-aware

resource because it used previous data to take decision based

on prediction information.

This paper is focused on characterizing AVF phase behavior

of an individual microarchitecture structure where the study of

a component based reliability analysis is more suitable for the

design and optimization of reliability-aware architecture. For

example, the hardware components that yield high AVFs can

be identified and protected, either at the design or run-time

stages.

3. THE PROPOSED METHODOLOGY
This paper is focused on three issues:

 Register life time analysis.

 Register file protection with new eviction police.

 Comparison between different fetch policies using

register file protection.

3.1 The Register Life Time Analysis
 The register life time analysis includes the following:

 A study for a used register type for some splash

benchmarks weather integer or float measured by

the total consumed cycles from allocation to de-

allocation period.

 Breakdown of useful periods for integer registers

for some of splash benchmarks.

 A study for all integer and float registers to compare

between useful and post last read periods. for

register life time.

3.2 Register File Protection
The register protection study states that the protection

overhead for Barns benchmark as an example using processor

design consists of two cores, each of them includes two

threads. The new contribution in this part is adding new

eviction policy to the registers entry from ECC table when it

is fully occupied. Also the effect of using different eviction

replacement policy for register protection will be measured.

This can be accomplished by comparing the number of reads

of register aliasing table in case of using register life time

protection and no protection used. When using protection

register life time, two eviction replacement polices are used,

random and least recent used (LRU) policies and compared

with the developed strategy in (LRU99). This work is applied

using Barnes, FFT, FMM and Sort Benchmarks. There is no

problem to add new entry in ECC table if it is empty.

However, if it is full so any used entry can be freed by

applying random or LRU eviction policy. In the new eviction

policy, it uses the same concept of LRU but it is different in

the starting of searching window. This searching can be

started from the current location (LRU 99) for time saving.

3.3 Comparison between Different Fetch

Policies Using Register File Protection
In this section, the comparison between static fetch and

dynamic fetch policy (WZ-FETCH) is introduced in [12].

The static fetch policy selects a certain thread to serve for

certain time slice and then switch to another thread and so on

however WZ-FETCH policy depends on the Ordinary Least

Square (OLS) regression statistic method [13]. To predict the

future L2 data cache miss, OLS regression equation, called

regression engine, using number of samples equal to the

window array size for each thread is presented. The used

algorithm of selecting fetch threads will select the thread

which has least miss value of L2 data cache to increase data

locality. WZ-FETCH is the best fetch policy in all used

benchmarks programs for all used metrics.

Phreg_1 2

Phreg_2 1

Phreg_n 1

Avfrec_1

Avfrec_2

Avfrec_o

a) Physical registers file c) AVF records b) Logical registers table

Number of logical

 register instances

RF

L1_phreg1

L2_phreg1

Lm_phregn

L3_phreg2

read

 time_1

Release

time
Read

time_n

Write

 time

Allocation

time

Read

time_2
Read

 time_1

Release

time
read

time_n

Write

 time

Allocation

time

Read

time_2

Read

 time_1

Release

time
Read

time_n

Write

 time

Allocation

time

Read

time_2

Read

 time_1

Release

time
Read

time_n

Write

 time

Allocation

time

Read

time_2

1. Not allocatted 2. Wasted

3. Insufficient 4. Exceeding

Rgister

 ECC table

 entry

Time

Time

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

5

4. SIMULATION RESULTS
For register life time analysis, Instruction Per Cycle (IPC) is

the main measurement unit in this paper. IPC throughput is

measured as the sum of the IPC values of all running threads,

it measures how effectively resources are being used. It is

necessary to select the number of consumed CPU cycles to be

used to differentiate between short life time and long life time

registers. Fig. 7 and Fig. 8 are described that if the consumed

cycles is less than or equal 10 cycles, the register is defined as

short life time register otherwise the register is defined as long

life time register.

Fig 7: Integer registers life time analysis for some

SPLASH benchmark programs. .

Fig 8: Float registers life time analysis for some SPLASH

benchmark programs.

Fig. 9: Total consumed CPU cycles from allocation to de-

allocation periods for integer and float registers.

Total consumed CPU cycles from allocation to de-allocation

periods for integer registers is greater than consumed cycles

for float registers as shown in Fig. 9. So, all incoming

analysis will be based on integer registers.

Fig 10: Average consumed cycles by integer registers.

Fig.10 illustrates that the useful period for all integer registers

is a small fraction of the register’s lifetime.

Fig. 11 shows the useful period breakdown for integer

registers. This period is divided to writes, reads and de-

allocations periods for each register

Fig 11: Cycles breakdown of useful period for integer

registers for some of Splash benchmarks.

Fig 12: Register protection overheads for BARNES

benchmarks from Splash benchmarks.

Fig. 12 shows the protection overhead for Barnes benchmark

as an example using processor design consists of two cores

each of them includes two threads.

Fig. 13 states that the number of CPU cycles which are

consumed when accessing of AVF hardware component. This

AVF hardware component is used for protection the useful

life time of integer registers. Some of benchmarks from

Splash suite are used for this figure.

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000

Fig 13: Consumed CPU cycles for protection of integer

register file (AVF).

Fig.14 presents the number of reads in ECC tables for several

benchmarks from Splash suite which represents the protection

latency. To draw this figure, read counter is added to count all

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

6

reads from ECC table to check the register value correctness.

Fig 14: Number of reads in ECC tables (AVF Latency).

Fig 15: Register life time analysis after adding protection

feature measured by distribution percentage of consumed

CPU cycles.

The addition of ACE to the multicore design leads to more

consumed CPU cycles. AVF takes part of these cycles. This

figure affirms that AVF for Barnes benchmark consumed

round 4% from ACE consumed CPU cycles and 1% for LU

benchmarks using ECC tables with limited size to store the

register values from first read to de-allocation period which is

the critical values of the integer registers. After many trials,

ECC size is selected to be 100 entries for that ECC table. In

this section, the results of applying protection using many

eviction or replacement policies or no protection on many

benchmarks are illustrated in Fig. 16 to Fig. 19, these ECC

eviction policies are Random, LRU or LRU99, the result of

LRU99 outperforms.

Fig 16: Number of access for register aliasing table in

Barnes benchmark.

(a) Reads. (b) Writes.

Fig 17: Number of accesses for register aliasing table in

FMM benchmark.

(a) Reads. (b) Writes.

Fig 18: Number of accesses for register aliasing table in

FFT benchmark.

(a) Reads. (b) Writes

Fig 19: Number of accesses for register aliasing table in

Sort benchmark.

(a) Reads. (b) Writes.

Moreover, different fetch policies “Static and WZ_FETCH”

are applied on several benchmarks of SPLASH suite after

adding AVF protection for the register files. The protection is

done using LRU99 eviction policy. Fig. 20 depicts the number

of CPU cycles which consumed in reading of protected

integer registers for all used benchmarks. The WZ-FETCH

fetch policy is the best fetch policy in all used benchmarks

programs except in LU benchmark. The CPU read cycles is

the same value for the two fetch policies. Fig 21 shows the

average CPU cycles consumed by integer register for all the

life time periods from allocation to de-allocation for many

benchmarks using different fetch policy. It is proved also that

WZ_FETCH fetch policy is the best fetch policy. This means

that the use of register file protection does not affect the

ranking of WZ_FETCH fetch policy as the best fetch policy.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.7, April 2014

7

Fig 20: Average CPU cycles

consumed by integer registers

between allocations to de-

allocations for different fetch

policies.

Fig 21: Number of CPU read

cycles for integer registers

using AVF protection for

different fetch policies

5. CONCLUSIONS
 In this paper, the proposed mechanism relies on using

dynamic resource in the fetch stage with register protection,

which protects a subset of the registers by generating, storing,

and checking the ECCs of only the most vulnerable registers.

The paper presents an eviction policy to the registers entry

from ECC table in the insertion stage for the integer register

file protection process and compares it with old eviction

policies (random and LRU). Also it addresses the effect of

using the integer register protection with dynamic resource

fetch policy on the overall performance by adding the

protection for integer registers files to the dynamic allocated

resource (fetch policy). The achieved results depicts that the

dynamic fetch policy WZ-FETCH outperforms in all

addressed benchmark programs in case of using register file

protection. This means that the use of register file protection

does not affect the ranking of WZ_FETCH fetch policy as

being a best fetch policy.

6. REFERENCES
[1] Marr, D. T., Binns, F., Hill, D. L., G. Hinton, Koufaty,

D. A., Miller, J. A. and Upton, M. 2002. Hyper-

Threading Technology Architecture and Microarchi-

tecture,. Intel Technology J., vol.6, no.1, (Feb. 2002), 4-

15.

[2] Raasch, S. E. and Reinhardt, S. K. 2003. The Impact of

Resource Partitioning on SMT Processors. Proc. 12th

Int'l Conf. Parallel Architecture and Compilation

Techniques (Sept. 2003), 15-26.

[3] Wang, H., Koren, I. and Krishna, C. 2011. An Adaptive

Resource Partitioning Algorithm in SMT Processors.

Parallel and Distributed Systems, IEEE Transactions on,

Volume: 22, Issue: 7 July.

[4] Slegel, T., Averill, I., R.M., Check, M., B. Giamei,

Krumm, B., Krygowski, C., Li, W., Liptay, J.,

MacDougall, J., McPherson, T., Navarro, J., Schwarz, E.,

Shum, K. and Webb, C. 1999. IBM’s S/390 G5

Microprocessor Design. IEEE Micro, vol. 19.

[5] “The Multi2Sim Simulation Framework”

http://www.multi2sim.org, 2011.

[6] Konsowa, H. G., Saad, E. M. and Awadalla, M. H. A.

2012. Updating Multicore Processor Simulator to

Support Dynamic Design in Fetch stage. National Radio

Science Conference (NRSC).

[7] Ubal, R., Sahuquillo, J., Petit, S, and L_opez, P. 2012.

Multi2Sim: A Simulation Framework to Evaluate

Multicore-Multithreaded Processors. In Proc. of the 19th

Int'l Symposium on Computer Architecture and High

Performance Computing.

[8] Li, X. D., Adve, S. V., Bose, P., and Rivers, J. A. 2005.

SoftArch: An Architecture Level Tool for Modeling and

Analyzing Soft Errors, In Proceedings of the

International Conference on Dependable Systems and

Networks.

[9] Kim, S., and Somani, A. K. 2002. Soft Error Sensitivity

Characterization of Microprocessor Dependability

Enhancement Strategy. The International Conference on

Dependable System and Networks.

[10] Wang, N. J., Quek, J., Rafacz, T. M. and Patel, S. J.

2004. Characterizing the Effects of Transient Faults on a

High-Performance Processor Pipeline, In Proceedings of

the International Conference on Dependable Systems and

Networks.

[11] Czeck, E. W. and Siewiorek, D. 1990. Effects of

Transient Gate-level Faults on Program Behavior, In

Proceedings of the International Symposium on Fault-

Tolerant Computing.

[12] Mukherjee, S. S., Weaver, C., Emer, J., Reinhardt, S. K.

and Austin, T. 2003. A Systematic Methodology to

Compute the Architectural Vulnerability Factors for a

High-Performance Microprocessor, In Proceedings of the

International Symposium on Microarchitecture.

[13] Biswas, A., Cheveresan, R., Emer, J., Mukherjee, S. S.,

Racunas, P. B. and Rangan, R. 2005. Computing

Architectural Vulnerability Factors for Address-Based

Structures, In Proceedings of the International

Symposium on Computer Architecture.

[14] Montesinos, P., Liu, W. and Torrellas, J. 2007. Using

Register Lifetime Predictions to Protect Register Files

against Soft Errors. Dependable and Secure Computing

(TDSC), IEEE Transactions on, Volume: 22, Issue: 7

(June 2007).

[15] Konsowa, H. G., Saad, E. M. and Awadalla, M. H. A.

2012. New Fetch Policies for Multicore Processor

Simulator to Support Dynamic Design in Fetch Stage.

JOURNAL OF COMPUTER SCIENCE.

[16] Cottrell, A. Regression Analysis: Basic Concepts.

[Online]. Available: Regression.pd.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5772147
http://www.multi2sim.org/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5772147

