
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.5, April 2014

46

Big Data Analysis with Dataset Scaling in Yet another

Resource Negotiator (YARN)

Gurpreet Singh Bedi
M.tech Student

Department of Computer Science Engineering
Thapar University, Patiala, India

Ashima Singh
Assistant Professor

Department of Computer Science Engineering
Thapar University, Patiala, India

ABSTRACT

The data is exceedingly large day by day. In some

organizations, there is a need to analyze and process the

gigantic data. This is a big data problem often faced by these

organizations. It is not possible for single machine to handle

that data. So we have used Apache Hadoop Distributed File

System (HDFS) for storage and analysis. This paper shows

experimental work done on the MapReduce Application on

Health sector dataset. The result shows the behavior of the

MapReduce application framework to map and reduce the big

volume of the data. The main problem is to check the

behavior of the MapReduce applications by increasing the

size of dataset. Our analysis lies in understanding the Apache

MapReduce application performance. We expect that

execution time increases linearly with the dataset size but our

analysis shows sometimes the execution time varies non-

linearly with the increase in the dataset size. The experimental

result shows that with scaling the datasets execution time

distinguishes.

Keywords

Big Data, Hadoop, MapReduce, YARN, Single Node, Multi

Node, Dataset Scaling.

1. INTRODUCTION TO BIG DATA
A human being is a kind of device that generates information

with a large value. A person is able to generate terabytes of

information in a day, millions of data generated could be used

in various fields like health centers. Data is growing at

phenomenal rate make it difficult to handle the data which is

in petabytes. The main problem is that handling of the data is

difficult as volume is increasing with the increase of the

resources. It can be measured in the many ways variety,

velocity, variability, complexity and the volume-

A) Variety- As the data is a traditional data or semi structured

data like web pages, documents, email social networking etc.

Unstructured data is very difficult to analyze and it is very

difficult to handle. So a variety of data comes into picture like

audio, video [1]. For example check the live records from

surveillance cameras to target a particular point.

B) Volume- Big word means the big store. The data that today

exists is in petabytes and it is supposed to be increased in

zettabytes in the coming future. Social networking also

continuously increasing the data in terabytes and that data is

very easy to handle by using existing Big Data Technology.

For example analyses of 12 terabytes of tweets created every

day. To estimate power consumption of a particular area,

conversion of 350 billion annual meter reading. So in this way

big volume of data is one of the most important dimensions of

Big Data.

C) Velocity- Velocity deals with the speed of the data that

generates from the various resources. This doesn’t limited to

the speed of incoming data only but also the speed of the flow

of the data. For example the data moves from sensor devices

to the vast databases, so to handle the data which large enough

our traditional system is not enough. Sometimes a minute late

becomes too late to handle critical cases like fraud detection,

scrutiny of millions of events to catch up the fraud activity. So

in time sensitive data velocity is needed to prevent the delays

because minute can led to the failure of the event. Big data

also analyze millions of call records to check particular

customer’s data.

D) Variability- Variability means inconsistencies in the flow

of the data. Data load is more critical as the data load

increases or decreases with the usage of the social media

applications.

E) Complexity- It is complex to transform the data coming

from the various data sources. It is necessary to correlate the

data.

F) Value- User run the queries and deduces the result by

filtering the data according to their condition. The results help

the people to find the latest trends by analyzing the market

strategy. The main challenge that comes is to design such

system that would be capable to handle the large amount of

the data. The second challenge is to filet the data comes from

the sources.

2. BIG DATA AND APACHE HADOOP
To build a search engine index was a difficult process as it

was needed to process millions of the web pages. In the search

engine the user asks a phrase and the search engine finds the

best match in the billions of the web pages. Actually mapping

is there by the Google to map the terms in the advance. This

follows the Google’s PageRank algorithm. Around 2000’s

Google invented the server architecture to implement the

PageRank. By 2006, they became part of a separate Apache

project, called Hadoop [2], the name comes from a stuffed toy

which is an elephant, the Cutting’s son owned at the time.

MapReduce works by splitting the data into phases – map

phase and reduce phase. Each phase of MapReduce with the

input and output are in key/value pairs. In 2008, Hadoop

broke the world record to sort terabytes of the data in less

amount of time.

3. DATA ANALYSIS AND HADOOP
To handle the data in short time, new tools are being used.

Apache Hadoop is one of such tool which is a java based

framework for analyzing large amount of the data [3]. Hadoop

is basically for processing large amount of data by using

multiple nodes. Apache hadoop uses its own algorithm to

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.5, April 2014

47

break down the big data into smaller parts called chunks [4]

and performs various operations on it and algorithm is called

MapReduce [9]. Hadoop uses HDFS which is its own file

system, helps fast transfer and avoid failures. Hadoop is used

by many companies like yahoo, Google, IBM for storing and

analyses of large amount of the data emphasis on efficiency

and throughput.

4. YET ANOTHER RESOURCE

NEGOTIATOR (YARN)
Yahoo started on Apache Hadoop framework in the year

2006. This replaces the WebMap Application [3] this was the

technology that builds the graph of the web to index the

search engine contents. At that time, nearly 100 billion nodes

were processed by the graph with trillions of the edges.

Dreadnaught , a framework reached the capacity of working at

nearly 1000 machines. Dreadnaught applications resembled

with the MapReduce programs [5], So Scalability arises as the

number one requirement in Yarn. The second was the multi-

tenancy, means optimizing the analytics. The early beginning

of hadoop bring large number of nodes, and load their data

onto the filesystem provided by hadoop HDFS and obtain the

final results by processing the nodes. At YAHOO users load

datasets that were adhoc datasets. To address the issues,

YAHOO developed Hadoop on Demand(HOD) framework to

allocate the clusters to manage independently MapReduce and

the HDFS [6]. Torque and Maui was one of the framework

where users submit their jobs to Torque and the Torque

enqueue the job and waits. It enqueues until the nodes become

available and ones it becomes available torque starts the

process on HOD, interact with maui/torque to start the slave

process which spawned the JobTracker to accept the jobs.

Serviceability was the main issue. Yahoo finally drew back

HOD due to lack of resource utilization. During the mapping

phase, JobTracker makes excessive effort to place the tasks

close to their input data in HDFS framework [7], mainly on

the node stores the replicas of that data, but the torque

allocates the nodes with concerning locality, the granted

nodes contain only small amount of replicas. Locality

awareness is the requirement which becomes the bases of

Yarn. In another scenario, task running on a single node

prevent the cluster from reuse. So jobs that held hundreds of

nodes remain idle. Now the other priority in Yarn is resource

utilization. The response time was overlooked by the time that

spent on the allocation. So this makes the users to work on

the shared clusters as the latency was high and the users offer

awaited clusters with their partners. Hadoop On Demand

(HOD) had little information to decide the allocation process.

API gives the users harsh results. The clusters became larger

and throughput has increased and also results in increase in

the bugs. Many features added to the jobtracker. This results

in the loss of all running jobs instead of losing a single

workflow. It mainly requires the users to manually recover. It

results into the pressure on the jobtracker which creates a

backlog in pipelines. Restarts lead to kill the users mapreduce

jobs until cluster recovered. Operating the cluster becomes

hard. Availability issues rises, because the JobTracker

allocates its structures for the job it initializes, its admission

control logic protects its own availability; it may delay

allocating the cluster resources to the jobs because the

overhead of tracking them could overpower the JobTracker

process. As Hadoop managed more tenants, vast datasets, its

requirements for the isolation became more rigorous, but the

authorization model lacked strong, scalable authentication, a

feature for multitenant clusters. This was added to the

multiple versions. Secure and auditable operation must be

preserved in YARN. Developers gradually hardened the

system to accommodate diverse needs for resources. While

MapReduce supports a wide range of use cases, it is not the

ideal model for all large-scale computation. For example to

come to a result many machine learning programs need

multiple iterations corresponding to a dataset. If certain

program follow this sequence of jobs this will delay the

overall execution time of the result. Now this delays the

progress to user’s productivity. The separation between the

both map and reduce prevents the deadlock between the two.

However, it can also responsible for the reduction in the flow

of the process. In Apache Hadoop, the overlap between the

map and reduce job is configured by the user for the job being

submitted, starting the tasks later increases the throughput,

starting early them reduces the latency [11]. The number of

the map and reduce job’s slots are however fixed by the

operators so map can’t be used to spawn the reduce tasks or

vice versa. No configuration is perfectly balanced as both

map and reduce tasks complete at definite rates respectively.

So a flexible model is needed to serve the purpose. The shared

clusters increases the utilization as compared with the Hadoop

On Demand (HOD), it also fulfills the demand of

serviceability and availability. To fix the issue in the

MapReduce, operators first shut down the cluster, place the

new bits to fix the bug, validate the upgrade and finally admit

the jobs. Thus, to upgrade the cluster makes the user to wait,

validate and then perform the jobs. The next requirement is

the backward compatibility with the existing system. YARN

is also backward compatible with the previous versions.

4.1. YARN Applications
YAHOO updates its processing flow from basic Hadoop

framework to YARN. The experiment prior to upgrading the

basic hadoop cluster and after upgrading the hadoop cluster to

YARN is performed. After the up gradation to Yarn, Yarn is

approximately processing five lakh jobs daily. The storage

reportedly increased by 350 petabytes. Yahoo survey reported

that prior to Yarn they don’t even run clusters bigger than

4000 nodes. The main aim of YARN was to increase the

scalability and improve the resource utilization. But this is

limited to near 7000 nodes and can’t scale further. The YARN

component Log aggregation has increase the overhead of the

Hadoop FileSytem Namenode. But the improvement is going

on to increase the namenode throughput. Also the main issue

is observed in the Hadoop framework with large amount of

small applications. These issues will be yet to be solved.

Apache Yarn, which gives a resource management framework

has much more capability then the simple MapReduce.

Apache Hadoop continues to go beyond the mapreduce.

However, MapReduce is still the core of many tasks

performed on Hadoop 1.x. Apache yarn has just increase the

capability to grow beyond the simple MapReduce. The basic

architecture of Hadoop 1.x. Mainly there are only two cores,

Hadoop file system and the MapReduce which form the basis

of all the process to be done. The remaining components must

use MapReduce for the jobs to be performed. So Apache

Hadoop provides the functionality for processing and has a

system of various tools, vendors and the applications.

Mapreduce limit the needs. To fulfill the needs, Hadoop was

started be the Hadoop team to run the jobs even the non-

Mapreduce within the same framework. MapReduce version

1(MRv1) is rearchitected and called MapReduce version

2(MRv2). YARN in addition to providing functionality to

existing MapReduce Applications, it also provides a new

support to the distributed application. It doesn’t change the

capability of existing MapReduce jobs. The new Yarn works

the same with addition capability. For exploring the large

datasets, Pig scripting language is used [12]. There is an issue

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.5, April 2014

48

in mapreduce that development cycle is large. The whole job

includes map, reduce, shuffle, compiling and packaging the

code, job submission and retrieving the final results is very

time consuming process. Pig has the ability to process

terabytes of the data with nearly half dozen lines of code. It

was developed by Yahoo for mining the large datasets.

4.2. YARN Process
Yarn has new components with additional facilities. These

components offer more capabilities and are more beneficial t

the end user. Resource Manager and Application Master are

responsible for the execution of the YARN Process [14].

a) Resource Manager (RM)- ResourceManager is a scheduler

which is also called a pure scheduler for the available

resources. It keeps the resources in use every time so it is

suitable for cluster utilization against a number of constraints.

For other policy constraints pluggable scheduler is used by the

ResourceManager that uses various algorithms like capacity

and fair scheduler.

b) Application Master (AM) - The important component in

YARN is the Application Master. The Application Master is,

an instance of the library and it is responsible for taking the

resources from the ResourceManager. It also works with the

NodeManager to execute and monitor the containers and their

resource consumption. It tracks their status and monitoring

progress. The ApplicationMaster design provides the number

of features including scalability as the Application Master

provides the functionality of the traditional ResourceManager

so that the system can scale more dramatically. Jobs

simulations scaling to thousands of node clusters doesn’t give

a specific issue. Resource Manager as a pure scheduler does

not have to provide fault-tolerance for the various resources

across the cluster. Control becomes local and not global, by

shifting fault tolerance to ApplicationMaster instance. Every

application in hadoop has its own instance of

ApplicationMaster. However, it’s feasible to implement an

ApplicationMaster to manage the set of applications like

ApplicationMaster for Pig, or Application Master of Hive to

manage the set of MapReduce jobs.

4.3. YARN comparison with MapReduce
The main aim of YARN is to split the responsibilities of the

JobTracker [15]. The responsibility of resource management

and information monitoring is divided into separate chunks, a

ResouceManager and an ApplicationMaster for each

application. ResourceManager and the slave per node,

NodeManager makes a new system for managing the

applications in the distributed manner. The main authority is

the ResourceManager which arbitrates the resources in the

system. Application master per application is the framewok

entity works with the NodeManager to monitor the tasks.

The Need for Non-MapReduce Workloads- MapReduce is

efficient strategy for many applications but it is not suitable

for everything. Many other programming models serves the

requirements like graph processing. Google Pregel and

Apache Giraph are one of the examples that serve graph

processing. MapReduce is basically for batch processing but

the real time processing is the main issue. A more robust

framework is needed so that organizations can face an

increased return on the investment. The processing power has

also increasing vastly. Apache Mapreduce is efficient for

operation upto 5000 nodes. In the current scenario, nodes are

managed by the TaskTrackers and JobTracker. JobTreacker

view the cluster as a group of nodes with distinct number of

map and reduce slots. Now the utilization issues may occur if

map slots are full while the reduce slots are empty or it could

be vice versa. NodeManager act as a slave, which launches

the applications containers, and also responsible to monitor

the resource usage like memory, disk, CPU, network and this

reports the same to Resource Manager [13]. Application

Master is responsible for the arrangement of the relevant

resource containers from the scheduler. It also tracks the

status and monitors the progress of the MapReduce job. So an

Application Master itself runs as a normal container. One of

the main things within the new system Yarn is that

MapReduce reuse the existing framework without any major

changes. This step was very needed to ensure compatibility

for existing MapReduce applications and users. MapReduce is

paired with the Hadoop Distributed File System (HDFS) to

provide a high bandwidth for the large clusters. The main aim

of Hadoop is to move the tasks to the servers on which the

data resides so the data movement to compute the servers is

reduced. Mainly, MapReduce tasks can be put on the same

node on which the data resides in HDFS. So this design keeps

the Input/Output on the local disk or on a neighboring server

on the same rack.

5. DATASET SCALING AND

PERFORMANCE
Each map executes with the same duration with the increase

in the input dataset but map execution time sometimes differs

with the difference in the applications [16].

A. Scaling K- of Data -We can change the dataset size in the

MapReduce tasks therefore we refer the increase in the dataset

size as k-scaling which means enlarging the dataset size by k

times.

B. K-Scaling and the Map Stage- K scaling means launching

more map tasks i.e. increasing by k-factor. Map job normally

present in the map slots, containers for amp tasks in java

virtual machines. The number of slots limits the number of

tasks that can run concurrently.

C. K-Scaling and the Reduce Stage- Reduce tasks has its own

slots i.e. input data partition. This is locally stored. When an

input data get scaled by k times which leads to the reduce

stage to do the k times of the prescaling. Since the reduce

tasks is fixed, therefore reduce tasks execution doesn’t get

changed at all.

5.1. Experiment Setup
For experiment setup, Apache Hadoop 2.2 has installed [17].

Hadoop cluster has then used with Ubunto 12.04, java 7 jdk

and VMware workstation 8.0.0. First step is to import the data

from data warehouse. Health Sector dataset has used which is

in comma separated value (csv) format [18]. It has then scaled

upto 100MB, 200MB and 400MB using random function in

Microsoft excel. Next step is to feed the data into hadoop

cluster and run it using java program which is made for the

purpose to map the rows one by one in key value format and

then to reduce the dataset row by row.

5.1.1. Experiment with increase in the nodes
First experiment has conducted to check the behavior of

MapReduce Program with the increase in the number of

nodes. So for this virtual machine workstation has used.

Ubunto 12.04 has cloned 3 times for the purpose to increase

the number of the nodes so to make one node as a master node

whose task is to give the job to other slave nodes. The

behavior of MapReduce application has then analyzed.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.5, April 2014

49

Table 1. Experiment Setup

Nodes 1 2 3

Database Size

Used (MB)

100, 200,

300, 400
100 100

Experiment with the increase in the number of nodes has

shown in Figure 1. Size of dataset used = 100 Mb. Following

figure shows as number of nodes increases, the execution time

decreases.

Figure 1: Execution time vs. Number of nodes

5.1.2. Experiment with the variation in the dataset

size
Experiment with the increase in the number of nodes. Size of

dataset used = 100 Mb, 200Mb, 300Mb and 400Mb.

Following figure shows increase in the execution time with

the increase in the dataset size.

Figure 2: Execution time vs. Dataset size

Results- The above figure shows the relationship between

execution time and the dataset size. We have used 100, 200,

300 and 400 MB of the dataset. So the actual relationship

between dataset size and the time execution has shown in the

graph. This shows the behavior of MapReduce application

with the increase in the dataset size. So it shows the impact of

increasing the input size. We expect that the mapreduce works

linearly with the increase in the dataset but the results show

something different behavior. Slight non-linear behavior with

increase in the dataset size. To verify the result, we identify

the map and reduce intensive programs. In this way, we

anaylze the behavior of Apache MapReduce application with

the dataset.

6. CONCLUSION
In this paper, best solution to Big Data by using Apache

Hadoop Yet Another Resource Negotiator (YARN) using

MapReduce programming framework which is based on java

is examined. The main aim was to analyze the big volume of

the Hospital data. The Hospital ratings with the large dataset

are also examined. It was done to observe the best hospital

where the patients got the recommended treatment to prevent

the blood clots on the day they admitted to the hospitals. The

solution has been proposed by using MapReduce which

estimated the overall ratings of the hospital. The graph has

been drawn to check the behavior of MapReduce application.

First experiment was carried to check the behavior between

execution time and scalability of the data. The second

experiment was done to check the execution time of

MapReduce paradigm with the single node and multi node

cluster of Apache Hadoop. Non-linear relationship between

the time and the dataset size is observed. In this, it has

examined the behavior of the MapReduce Application and

have considered the homogeneous Big Data as an input and

have done the analysis on that part.

7. REFERENCES
[1] Big data with the three dimensions: Volume, Velocity

and Variety". Available at: http://www-01.ibm.com/soft

ware/in/data/bigdata

[2] Tom White, “Hadoop: The Definitive Guide”, O’Reilly

Media 3rd edition, pp. 9-12.

[3] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox

“MapReduce for Data Intensive Scientific Analyses” in

Fourth IEEE International Conference on eScience,

2008.

[4] Impetus white paper,“Planning Hadoop Projects for

2011”, Available at: http://www.techrepublic.com/

whitepapers/planninghadoopnosql-projects-for-201/292

3717,March, 2011.

[5] Tom White, “Hadoop: The Definitive Guide”, 3rd

edition, O’Reilly Media, pp. 41-82.

[6] Saumitra Vaidya, Jyoti Nandimath, Ankur Patil, "Big

Data Analysis Using Apache Hadoop" in IEEE IRI 2013,

California, USA, August 14-16, 2013.

[7] “The Hadoop Architecture and Design”, Hadoop official

website. http://www.apache.org/common/docs/r0.16.4/

hdfs_d esign.html.

[8] P.Narayan, C.Neerdaels, T.Negrin, Ramakrishnan,

U.Srivastava, “Building cloud for Yahoo” in IEEE Data

Eng. Bull, page 36-42.

[9] Karthik Kambatla, Naresh Rapolu, Suresh Jagannathan,

Ananth Grama, “Asynchronous Algorithms in

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.5, April 2014

50

MapReduce”, in 2010 IEEE International Conference on

Cluster Computing.

[10] J.Li, C.Dyer, J.First “Data Intensive Text Processing

With MapReduce”, in Morgan Publishers, April 30,2010

[11] Aditya B. Patel, Manashvi Birla, Ushma Nair,

“Addressing Big Data Problem Using Hadoop and Map

Reduce”, IEEE International Conference on Engineering,

Dec, 2012.

[12] Karen Montgomery, “Big Data Now”, 2nd edition,

O’Reilly Media, page 83-93, 2012.

[13] Avita Katal, Mohammad Wazid, R H Goudar, “Big Data:

Issues, Challenges, Tools and Good Practices”, in IEEE

2013 conference in Graphic Era University, Dehradun,

India, 2013.

[14] “Apache Hadoop YARN: Yet Another Resource

Negotiator” in Santa Clara, California, USA, in October,

2013, ACM Publications.

[15] Arun Murthy, Jeffrey Markham, Vinod Vavilapalli,

Doug Eadline, “Moving Beyond MapReduce and Batch

Processing with Apache Hadoop 2”, Addison Welson

and Data Analytic Series, 2013.

[16] Fan Zhang, Majd Sakr, “Data Scaling And Map Reduce

Performance”, in 2013 IEEE International Conference on

Parallel & Distributed Processing Workshops and Phd

Forum.

[17] “Apache Mapreduce Setup”, Available at: http:www.

hadoop.apache.org/mapreduce.

[18] “Health Dataset”. Available at: http://www.healthdata.g

ov/dataset

IJCATM : www.ijcaonline.org

