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ABSTRACT 

In this paper, electroencephalographic (EEG) signals are 

analyzed and classified based on a new multilevel transfer 

function quantum wavelet neural network (QWNN) model. 

The independent component analysis (ICA) is used as 

processing after normalization of these signals. Some features 

are extracted from the data using the clustering technique 

(CT). The classification result of the new model is compared 

with that of wavelet neural network (WNN), quantum neural 

network (QNN), and feed forward neural network (FFNN). 

The new QWNN model is found to achieve average 

classification accuracy of 94.187%, but classification 

accuracies using WNN, QNN and FFNN are 89.803%, 

83.713% and 75.076%, respectively 
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1. INTRODUCTION 
The electroencephalographic (EEG) examination is a standard 

procedure in the study of all forms of cerebral disease. Its use 

in the study of patients with seizures and those suspected of 

having seizures becomes essential [1]. 

The brain is an electrochemical organ. Its electrical activity 

(EEG) is easily recorded, amplified, and displayed [2]. The 

amplitude and frequency of EEG signals vary with human 

state (asleep or awake), age, health, etc. EEG represents the 

recording of spontaneous electrical activity of the brain. EEG 

signals are recorded in a short time, normally for 20-40 

minutes. The electrodes are placed at various positions on the 

scalp to get the required recordings. It is believed that the 

EEG signals represent the status of the whole body, as well as 

the electrical signals of the brain [3], [4].  

The EEG consists of a set of multichannel signals. The pattern 

of changes in signals indicates brain activities. In addition the 

EEG also reflects activation of the head musculature, eye 

movements, interference from nearby electrical devices, and 

changing conductivity in the electrodes due to the movements 

of the subject or physiochemical reactions at the electrode 

sites. All of these activities are referred to as background 

activities [5]. 

The amplitude of EEG signals is very low, varying between 5 

and 100 mV. There are five categories of these signals: delta,  

theta, alpha, beta, and gamma. Each of which is associated 

with a certain activity of the brain. 

EEG signals possess a combination of slow variations over 

long periods, with sharp, transient variations over short 

periods. Hence, it seems that wavelet neural networks 

(WNNs) are the more suitable choice than other mainstream 

neural networks for EEG analysis. The aim of the paper is to 

develop a new quantum wavelet neural network (QWNN) 

model for the analysis and classification of EEG signals. 

2. QUANTUM NEURAL NETWORKS 
QNN has an inherently fuzzy architecture which can encode 

the sample information into discrete levels of 

certainty/uncertainty. The goal is accomplished by using 

quantum neurons in the hidden layer of the network. The 

transfer function of the quantum neuron has the ability to form 

graded partitions in feature space. One possibility of obtaining 

this kind of transfer function is to take the superposition of  ns  

sigmoidal functions, each shifted by quantum interval 𝜃𝑠 
(s=1, 2, …, ns), where ns is called the total number of quantum 

levels [6]. 

Consider QNN with ni inputs, no output nodes and one layer 

of nh  hidden nodes. Let 𝑣𝑙𝑗 = [𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑛 𝑖𝑗 ]𝑇  be the 

weight vector connection of the jth hidden node to the inputs 

and 𝑤𝑗𝑖 = [𝑤1𝑖 , 𝑤2𝑖 , … , 𝑤𝑛𝑕 𝑖]
𝑇  be the weight vector 

connection of the ith output node to hidden nodes. Let the 

activation function of the hidden nodes be the sigmoid 

function𝑔𝑜 : R → [0,1]. Then the input to the 𝑗𝑡𝑕 hidden node 

from 𝑘𝑡𝑕 feature vector 𝑥𝑘  is ĥj
k =  𝑣𝑙𝑗 𝑥𝑙

𝑘𝑛 𝑖
𝑙=1 . Suppose a 

multi-level hidden node has 𝑛𝑠 discrete quantum levels. Then 

its activation function can be written as a superposition of 𝑛𝑠 
sigmoid functions, each shifted by 𝜃𝑠  [7]. 

𝑔 𝑥 =
1

𝑛𝑠
 𝑔𝑜  (𝛽𝑕  (𝑥 −
𝑛𝑠
𝑠=1 𝜃𝑠))                                      (1) 

where 𝑔𝑜 𝑥 = 1
(1 + 𝑒−𝑥)  is a sigmoid function, 𝛽𝑕  is a 

slope factor of hidden function, and 𝜃𝑠  defined the jump-

positions in activation function. Therefore, the response of the  

𝑗𝑡𝑕 multi-level hidden unit to the 𝑘𝑡𝑕 feature vector 𝑥𝑘can be 

written as [6] 

Ĥ𝑗
𝑘 =

1

𝑛𝑠
 𝑕𝑗

𝑘𝑛𝑠
𝑠=1 =

1

𝑛𝑠
 𝑔𝑜  (𝛽𝑕  (ĥj

k −
𝑛𝑠
𝑠=1 𝜃𝑗

𝑠))            (2)         

The response of the 𝑖𝑡𝑕 output nodes to the 𝑘𝑡𝑕 feature vector 

can be written as 𝑧𝑖
𝑘 = 𝑓 ŷ𝑖

𝑘 , where ŷ𝑖
𝑘 =  𝑤𝑗𝑖Ĥ𝑗

𝑘𝑛𝑕
𝑗=1  and 

𝑓 𝑥 = 𝑔𝑜  (𝛽𝑜  𝑥). 𝛽𝑜  is the slope factor of output function.  

3. THE LEARNING ALGORITHM OF 

QNN 
The gradient-descent-based algorithm is used to train the 

QNN. In each training epoch, the training algorithm updates 

both connectivity weights among different layers and 

quantum intervals of the hidden layer [8]. 
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3.1 Updating the Weights in QNN 
First should train the weights which involve presenting all the 

training set to the network and a forward pass and back 

propagation like a normal neural network. Let 𝑑𝑖
𝑘 =

[𝑑1
𝑘𝑑2

𝑘𝑑3
𝑘 …𝑑𝑛𝑜

𝑘 ]𝑇  be the desired output vector for the 𝑘𝑡𝑕  

input feature vector 𝑥𝑘 = [𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑛 𝑖
𝑘 ]. Let 𝑧𝑖

𝑘 =

[𝑧1
𝑘𝑧2

𝑘𝑧3
𝑘 …𝑧𝑛𝑜

𝑘 ]𝑇  be the actual output. A gradient-descent-

based algorithm for learning the synaptic weights of the QNN 

can be derived by minimizing the quadratic error function 

sequentially for each 𝑘 [8] ,[9]. 

𝐸𝑘 =
1

2
 (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑧𝑖

𝑘)2  with   𝑘 = 1,2,… ,𝑚                 (3)  

Where 𝑧𝑖
𝑘  is the actual output of the training pattern 𝑘 and 

output 𝑖. 𝑑𝑖
𝑘  is desired output of the training pattern 𝑘 and 

output 𝑖. 𝑚 is the total number of the training pattern. E are 

mean square error functions.  

Example-by-Example or on-line learning (in which the 

weights are adjusted after every training pattern) is used to 

update the weights.  

The parameters 𝑣𝑙𝑗 , 𝑤𝑗𝑖   are updated by minimizing objective 

function 𝐸𝑘  [6]  

∂E𝑘

𝜕𝑤𝑗𝑖
= 𝛽𝑜𝑒𝑖

𝑘𝑧𝑖
𝑘 1 − 𝑧𝑖

𝑘  Ĥ𝑗
𝑘                                                (4)                  

∂E𝑘

𝜕𝑣𝑙𝑗
= 𝛽𝑕𝛽𝑜  𝑒𝑖

𝑘𝑧𝑖
𝑘 1 − 𝑧𝑖

𝑘 
𝑛𝑜
𝑖=1 𝑤𝑗𝑖

1

𝑛𝑠
 𝑕𝑗

𝑠,𝑘𝑛𝑠
𝑠=1  1 − 𝑕𝑗

𝑠,𝑘 𝑥𝑙
𝑘                                                                               

(5) 

Where 𝑒𝑖
𝑘=𝑧𝑖

𝑘 − 𝑑𝑖
𝑘 . 

At any epoch 𝑟, adjustment of parameters 𝑣𝑙𝑗 , 𝑤𝑗𝑖  are 

performed according to 

w𝑗𝑖  𝑟 + 1 = w𝑗𝑖 (𝑟) − 𝛼
∂E𝑘

∂w 𝑗𝑖
                                           (6)  

v𝑙𝑗  𝑟 + 1 = v𝑙𝑗 (𝑟) − 𝛼
∂E𝑘

∂v𝑙𝑗
                                             (7) 

Where 𝛼 is the learning rate, 0 < 𝛼 < 1. 

3.2 Updating the Quantum Intervals 
The QNN must be first trained to recognize the occurrence of 

transitions between classes. The synaptic weights of the QNN 

must be updated to enable the network to learn the class 

boundaries on the feature space [9]. After that training the 

quantum intervals 𝜃𝑗
𝑠 , before the jump-positions are updated, 

the training set is presented to the network. Once again to 

calculate <Ĥ𝑗
𝑐𝑖> (it's the sum of outputs of hidden neurons for 

all the inputs that belong to class 𝑐𝑖  divided by the number of 

samples in that class). This is seem as a kind of forward pass, 

then 𝜃𝑗
𝑠  is updated.  

The idea of amendments to quantum intervals is to realize the 

minimal output variety of hidden layer neuron based on the 

same category of sample data, essentially, it’s also based on 

the negative gradient algorithm, and the samples at the fuzzy 

boundary which do not belong to the same category can be 

mapped to different class by this algorithm. The variance of 

the output of the 𝑗𝑡𝑕 hidden nodes for 𝑖𝑡𝑕 class is [10] 

𝜎𝑗 ,𝑖
2 =  (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
−Ĥ𝑗

𝑘)2                                          (8) 

Where  < Ĥ𝑗
𝑐𝑖 > =

1

𝐶𝑖
 Ĥ𝑗

𝑘
𝑥𝑘𝜖𝑐𝑖

 

The adjustment of quantum intervals 𝜃𝑗
𝑠  will be realized by 

minimizing objective function G. 

𝐺 =
1

2
  𝜎𝑗 ,𝑖

2𝑛𝑜
𝑖=1

𝑛𝑕
𝑗=1 =

1

2
   (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)2𝑛𝑜
𝑖=1

𝑛𝑕
𝑗=1                  

                                                                                      (9) 

The update equation for 𝜃𝑗
𝑠  can be obtained by setting the 

change in 𝜃𝑗
𝑠 , say ∆𝜃𝑗

𝑠  proportional to the gradient of G with 

respect to 𝜃𝑗
𝑠  as 

∆𝜃𝑗
𝑠 = −𝛼𝜃

𝜕𝐺

𝜕𝜃𝑗
𝑠  =    (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘) [ 
𝜕<Ĥ

𝑗

𝑐𝑖>

𝜕𝜃𝑗
𝑠 −

𝑛𝑜
𝑖=1

 
 Ĥ𝑗

𝑘

𝜕𝜃𝑗
𝑠]                                                                                  (10)            

Where  𝛼𝜃  is the learning rate, 0 < 𝛼𝜃 < 1. The definition of 

Equation (8) gives 

𝜕<Ĥ
𝑗

𝑐𝑖>

𝜕𝜃𝑗
𝑠 =  

1

𝐶𝑖
 

𝜕Ĥ𝑗
𝑘

𝜕𝜃𝑗
𝑠𝑥𝑘𝜖𝑐𝑖
                                                     (11) 

𝜕Ĥ𝑗
𝑘

𝜕𝜃𝑗
𝑠 =

−𝛽𝑕

𝑛𝑠
 𝑕𝑗

𝑠,𝑘 1 − 𝑕𝑗
𝑠,𝑘 =

𝑛𝑠
𝑠=1

−𝛽𝑕

𝑛𝑠
 𝑣𝑗

𝑠,𝑘𝑛𝑠
𝑠=1               (12) 

Where  𝑣𝑗
𝑠,𝑘 = 𝑕𝑗

𝑠,𝑘 1 − 𝑕𝑗
𝑠,𝑘     , < 𝑣𝑗

𝑠,𝑐𝑖 > =
1

𝐶𝑖
 𝑣𝑗

𝑠,𝑘
𝑥𝑘𝜖𝑐𝑖

  

Substituting Equations (11) and (12) into Equation (10) gives 

the update equation as: 

∆𝜃𝑗
𝑠 = 𝛼𝜃

𝛽𝑕

𝑛𝑠
  (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
−Ĥ𝑗

𝑘)
𝑛𝑜
𝑖=1  (< 𝑣𝑗

𝑠,𝑐𝑖 > −𝑣𝑗
𝑠,𝑘)                                                                             

(13) 

The network is trained in a sequence of adaptation cycles. 

Each adaptation cycle involves the adaptation of all the 

internal parameters of the network, that is, the synaptic 

weights and the locations 𝜃𝑗
𝑠  of the shifted and superimposed 

sigmoid functions of the hidden units. Since the criterion 

employed for updating the parameters 𝜃𝑗
𝑠  is based on all the 

input vectors from the training set, 𝜃𝑗
𝑠  are updated after the 

presentation of all the inputs to the network and the 

corresponding adaptation of the synaptic weights [6].  

4. QUANTUM WAVELET NEURAL 

NETWORK 
The traditional neural networks have many disadvantages of 

slow speed, low accuracy convergence and shortcomings of 

generalization ability for pattern recognition. The concept of 

Quantum Neural Network (QNN) is developing in the 1990s; 

it can overcome the shortcomings and inadequacies of 

traditional neural network model by introducing quantum 

mechanics. QNN based on multilayer activation function is a 

three-layer network structure (input layer, hidden layer and 

output layer), where the input layer and output layer are the 

traditional feed forward neural networks while the quantum of 

hidden layer neurons borrowed the idea of superposition of 

quantum states in quantum theory. These QNNs are of very 

high theoretical value and application potential due to that 

they combine the respective advantage of neural computation 

and quantum computation.  

QNN combines with wavelet theory form the quantum 

wavelet neural network (QWNN). The hidden layer neurons 

of the QWNN model using a linear superposition of wavelet 

function as incentive function, not only can express more of 

the status and magnitude, but also can improve network speed 

and accuracy of convergence [8]. A motivation for using 

QWNN is that they can quantify indeterminate sampling data 

by learning arithmetic. The QWNN will press certain 
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comparison to assign it to all related categories if 

characteristic vector of sample is edge overlap which locates 

two types of modes. This make network have the feature of 

fuzziness and assign indeterminate data to all related 

categories.  

5. MODEL FOR QUANTUM WAVELET 

NEURAL NETWORK 
Quantum wavelet neural network (QWNN) is a new field 

which combines the quantum neural network (QNN) with 

wavelet theory. It is meaningful for QNN and classical neural 

network since will overcome some intractable problems and 

improve the network performance essentially. The incentive 

function of the hidden layer of QWNN uses superposition of 

nonlinear wavelet; here we selected Mexican hat functions. 

Such a hidden layer nodes can express more states [8]. The 

multilevel transfer function has several different quantum 

intervals, the different classes of data are mapped onto 

corresponding state; accordingly the classification has greater 

degree of freedom. Mexican hat wavelet has been chosen to 

serve as an adaptation basis function to network’s hidden 

layer for this QWNN, due to that data used correlates to the 

shape of the Mexican hat. As well the Mexican hat wavelets 

are continuous and differentiable wavelets respect to its 

dilation and translation parameters, the expression is as 

following:  

𝜑 𝑡 = 1.373 ∗ (1 + 2𝜋𝑡2)𝑒−𝜋𝑡
2
                                   (14)                     

As shown in Figure 1, the structure of QWNN includes three 

layers. The input layer includes ni nodes, the hidden layer 

includes nh multilevel nodes and the output layer includes no 

nodes. Let the synaptic weight connection of the jth hidden 

nodes to the 𝑙𝑡𝑕 input be 𝑤𝑙𝑗 . synaptic weight connection of 

the ith output nodes to the jth hidden nodes be 𝑣𝑗𝑖 . Let 

𝑥𝑘 = [𝑥1
𝑘 , 𝑥2

𝑘 , 𝑥3
𝑘 , … , 𝑥𝑛 𝑖

𝑘 ]𝑇∀𝑘 = 1,… ,𝑚, where m is the 

number of the feature vectors of data set 𝑋. Suppose a 

multilevel hidden node has ns  discrete quantum levels. Then 

its activation function can be written as a superposition of ns  

activation functions, each shifted by 𝜃𝑠 ,  

𝑕 𝑥 =
1

𝑛𝑠
 𝑕𝑜(𝛽 𝑥 − 𝜃𝑠 )
𝑛𝑠
𝑠=1                                        (15)       

Where  𝑕𝑜(. ) is activation function, 𝛽 is slope factor, {𝜃𝑠} is 

defined as the jump positions in the activation function. The 

step widths of the multilevel activation function, called the 

quantum intervals, are determined by jump positions  {𝜃𝑠} . 

Then the input to the jth hidden node from kth feature vector 

is ĥj
k =  𝑤𝑙𝑗 𝑥𝑙

𝑘𝑛 𝑖
𝑙=1 . Therefore response of the jth multilevel 

hidden node to the kth feature vector 𝑥𝑘  can be written as 

𝐵𝑗 =
1

𝑛𝑠
 𝑕[𝛽 ĥj

k − 𝜃𝑗
𝑠 ]

𝑛𝑠
𝑠=1       𝑠 = 1,2, … , 𝑛𝑠  and                      

j=1,2,…,𝑛𝑕                                                                       (16) 

Where h (•) = 𝑕(
𝑥𝑙−𝜏𝑗

𝜆𝑗
) is the incentive function of hidden 

nodes, 𝜆𝑗  is dilation factor and 𝜏𝑗  is translation factor. 

The output vector of output layer is  

𝐶𝑖
𝑘 =  𝑣𝑗𝑖𝐵𝑗

𝑛𝑕
𝑗=1  , i=1,2,…,𝑛𝑜                                          (17) 

The general model of the QWNN is  

𝐶𝑖
𝑘 =  𝑣𝑗𝑖

𝑛𝑕
𝑗=1 ( 

1

𝑛𝑠
 𝑕 (

(𝛽  ( 𝑤𝑙𝑗 𝑥𝑙)−𝜃𝑗
𝑠  )−𝜏𝑗

𝑛 𝑖
𝑙=1

𝜆𝑗

𝑛𝑠
𝑠=1 ))          (18)                                                                                                                

Where k is sample number. 

The linear partition generated by an additional hidden node 

has all the degree of freedom to align itself along any 

direction on the feature space. On the other hand, the 

activation function within multilevel hidden nodes transfer 

function can only “spread-out” or “collapse-in” parallel to 

each other [10]. Another advantage could be reduction of the 

number of nodes in the hidden layer which could lead to a 

smaller number of weights [11]. 

6. GRADIENT DESCENT BASED 

LEARNING ALGORITHM FOR 

QUANTUM WAVELET NEURAL 

NETWORK 
The gradient descent based learning algorithm is easily 

computed, better for large data sets. Convergence of this 

algorithm depends on the learning rate α. If it is too large 

(such as constant) oscillation may occur. If it is too small, 

may not move far enough to reach a local minimum [12]. This 

can be done in two ways: example-by-example (or on-line 

learning), in which the weights are adjusted after every 

training pattern; and batch (or off-line) learning, in which 

learning weight adjustment occurs after all of the training 

examples have been presented to the network once [13].  

 

Fig 1: Quantum wavelet neural network structure. 

The learning of QWNN parameters is considered in two steps. 

The synaptic weights need to be updated first in order to train 

the QWNN to consistently partition the feature space of the 

given data set. Simultaneously, the uncertainty present in the 

feature space must be learned through the adaptation of the 

parameters 𝜃𝑟
𝑠   [10].  

6.1 Updating the Weights in QWNN 
Let 𝑌𝑖

𝑘 = [𝑌1
𝑘𝑌2

𝑘𝑌3
𝑘 …𝑌𝑛𝑜

𝑘 ]𝑇  be the desired output vector for 

the kth input feature vector 𝑥𝑘  . Let 𝐶𝑖
𝑘 = [𝐶1

𝑘𝐶2
𝑘𝐶3

𝑘 …𝐶𝑛𝑜
𝑘 ]𝑇  

be the actual output vector. A gradient descent based 

algorithm for learning the synaptic weights of the QWNN can 

be derived by minimizing the quadratic error function 

sequentially for each k.  
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𝐸𝑘 =
1

2
 (𝑌𝑖

𝑘𝑛𝑜
𝑖=1 − 𝐶𝑖

𝑘)2                                                  (19) 

Where k = 1, 2, …, m. 𝐶𝑖
𝑘  is the actual output of the training 

pattern k and output i. 𝑌𝑖
𝑘  is the desired output of the training 

pattern k and output i. m is the total number of the training 

pattern. E are mean square error functions. 

The weights are adjusted after each feature vector 𝑥𝑘  is given 

as the input to the QWNN so that 𝐸𝑘  is minimized, this 

method called example-by-example or on-line learning. The 

advantages of this method are [12]:  

 It requires less computation per step. 

 Randomization may help escape poor local minima. 

 It allows working with a stream of data rather than a 

static set. 

The parameters 𝑤𝑙𝑗 , 𝑣𝑗𝑖 , 𝜆𝑗 , 𝜏𝑗  are updated by minimizing 

objective function 𝐸𝑘   

∂E𝑘

∂V 𝑗𝑖
=𝑒𝑖*𝐵𝑗                                                                         (20)  

∂E𝑘

∂w𝑟𝑗
=𝑒𝑖v𝑗𝑖

1

𝑛𝑠
 

∂h

∂𝑥𝑙
′

𝑛𝑠
𝑠=1  𝛽𝑥𝑙                                                (21) 

𝑥𝑗
′ = 𝛽( 𝑤𝑙𝑗 𝑥𝑙

𝑛 𝑖
𝑙=1 − 𝜃𝑗

𝑠)  

Where  

𝑡𝑗
′ =

𝑥𝑗
′−𝜏𝑗

𝜆𝑗
 ,     𝑒𝑖=𝐶𝑖

𝑘 − 𝑌𝑖
𝑘  

𝜕𝑕

𝜕𝑤𝑖𝑟
= 1.373 ∗ 4𝜋𝑡 𝑒−𝜋𝑡

2
−  2𝜋𝑡 ∗ 1.373(1 + 2𝜋𝑡2)𝑒−𝜋𝑡

2
                      

                                                                                         (22) 

At any epoch h, adjustment of parameters 𝑤𝑙𝑗 , 𝑣𝑗𝑖 , 𝜆𝑗 , 𝜏𝑗  are 

performed according to 

v𝑗𝑖  𝑕 + 1 = v𝑗𝑖 (𝑕) − 𝛼
∂E𝑘

∂V𝑗𝑖
                                           (23)                                          

w𝑙𝑗  𝑕 + 1 = w𝑙𝑗  𝑕 − 𝛼
∂E𝑘

∂w 𝑙𝑗
                                        (24)                                                   

Where 𝛼 is the learning rate, 0 < 𝛼 < 1. 

6.2 Updating the Quantum Intervals 
The quantum intervals of quantum nodes in the hidden layer 

can be learned by minimizing the class-conditional variances 

at the output of hidden nodes [14]. On other hand quantum 

intervals can be learned by minimal output variety of hidden 

layer node based on the same data category of sample data 

[10]. The output of variance for class 𝑐𝑖   is  

𝜎𝑗 ,𝑖
2 =  (< 𝐵𝑗 ,𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖 − 𝐵𝑗 ,𝑘)2                                     (25)                                                        

Where      < 𝐵𝑗 ,𝑐𝑖 > =
1

|𝑐𝑖 |
 𝐵𝑗 ,𝑘𝑥𝑘∈𝑐𝑖  

< 𝐵𝑗 ,𝑐𝑖 > is the sum of outputs of hidden nodes for all the 

inputs that belong to class 𝑐𝑖  divided by the number of 

samples in that class. 

The adjusting of quantum intervals 𝜃𝑗
𝑠  will be realized by 

minimizing objective function G.  

G=
1

2
  𝜎𝑗 ,𝑖

2𝑛𝑜
𝑖=1

𝑛𝑕
𝑗=1 =

1

2
   (< 𝐵𝑗 ,𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖 − 𝐵𝑗 ,𝑘)2𝑛𝑜

𝑖=1
𝑛𝑕
𝑗=1                                                                                                                                                              

                                                                                         (26) 

The update equation for 𝜃𝑗
𝑠  can be obtained by setting the 

change in 𝜃𝑗
𝑠 , say ∆𝜃𝑗

𝑠proportional to the gradient of G with 

respect to 𝜃𝑗
𝑠  as: 

∆𝜃𝑗
𝑠 = −𝛼𝜃

𝜕𝐺

𝜕𝜃𝑗
𝑠 =   (< 𝐵𝑗 ,𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖 − 𝐵𝑗 ,𝑘)[

𝜕<𝐵𝑗 ,𝑐𝑖>

𝜕𝜃𝑗
𝑠 −

𝑛𝑜
𝑖=1

𝐵𝑗 ,𝑘

𝜕𝜃𝑗
𝑠]                                                                                  (27) 

Where 𝛼𝜃  is the learning rate of 𝜃𝑗
𝑠  𝑎𝑛𝑑 0 < 𝛼𝜃 < 1.  

𝜕<𝐵𝑗 ,𝑐𝑖>

𝜕𝜃𝑗
𝑠 =  

1

|𝐶𝑗 |
 

𝜕 𝐵𝑗 ,𝑘

𝜕𝜃𝑗
𝑠𝑥𝑘𝜖𝑐𝑖                                                (28)                                                                   

𝜕 𝐵𝑗 ,𝑘

𝜕𝜃𝑗
𝑠 =

1

𝑛𝑠

𝜕𝑕

𝜃𝑗
𝑠 = −

1

𝑛𝑠

𝜕𝑕

𝜕𝑋𝑖
′ 𝛽                                                  (29)                                               

Where 
𝜕𝑕

𝜕𝑋𝑖
′=[1.373 4𝜋𝑡 𝑒𝑥𝑝−𝜋𝑡

′ 2
− 2𝜋𝑡 ∗

1.373 1 + 2𝜋𝑡2 𝑒𝑥𝑝−𝜋𝑡
′ 2

]
−1

𝜆𝑗
 

Let      DB𝑗 ,𝑘 =
𝜕 𝐵𝑗 ,𝑘

𝜕𝜃𝑗
𝑠 = −

𝛽

𝑛𝑠

𝜕𝑕

𝜕𝑋𝑖
′     , and  

< DB𝑗 ,𝑘 > =  
𝜕 < 𝐵𝑗 ,𝑐𝑖 >

𝜕𝜃𝑗
𝑠 = −

𝛽

𝑛𝑠

1

𝐶𝑗
 

𝜕𝑕

𝜕𝑋𝑖
′

𝑥𝑘𝜖𝑐𝑖

 

Substitution of Equations (28) and (29) into Equation (27) 

gives the update equation as: 

∆𝜃𝑗
𝑠 = −𝛼𝜃

𝛽

𝑛𝑠
  (< 𝐵𝑗 ,𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖 − 𝐵𝑗 ,𝑘) 
𝑛𝑜
𝑖=1 ∗ (< DB𝑗 ,𝑘 >

−DB𝑗 ,𝑘)                                                                           (30) 

Where 𝛼𝜃 ∈  0,1  is the learning ratio of 𝜃𝑗
𝑠 . 

𝜃𝑗
𝑠  can be updated according to the above equations: 

(𝜃𝑗
𝑠)𝑕+1 = (𝜃𝑗

𝑠)𝑕 − 𝛼𝜃
𝜕𝐺

𝜕𝜃𝑗
𝑠                                              (31) 

Algorithm:  Training The QWNN 

    Initialize all the parameters according to the above 

equations. 

    Update the synaptic weights: 

    For k=1,2,…,m 

          For j=1,2,…, 𝑛𝑕  

    ĥj
k =  𝑤𝑙𝑗 𝑥𝑙

𝑘𝑛 𝑖
𝑙=1   

    𝑕𝑗
𝑘,𝑠 = 𝛽 ĥj

k − θj
s                  𝑠 = {1,2,… , 𝑛𝑠}  

    𝐻𝑗
𝑘𝑠 =

𝑕𝑗
𝑘𝑠−𝑡𝑗

𝜆𝑗
  

    𝐵𝑗
𝑘 =

1

𝑛𝑠
 𝑕[ 𝐻𝑗

𝑘𝑠 ]
𝑛𝑠
𝑠=1   

        For i=1,2,….,𝑛𝑜  

    𝐶𝑖
𝑘 =  𝑣𝑗𝑖𝐵𝑗

𝑛𝑕
𝑗=1   

         For i=1,2,…,𝑛𝑜  

    𝑑𝑣𝑖
𝑘 = 𝑌𝑖

𝑘 − 𝐶𝑖
𝑘   

          For j=1,2,…, 𝑛𝑕   and i=1,2,….,𝑛𝑜  

           v𝑗𝑖 = v𝑗𝑖 − 𝛼𝑑𝑣𝑖
𝑘𝐵𝑗

𝑘   

            For j=1,2,3,…,𝑛𝑕  

             𝑑𝑤𝑗
𝑘 =

1

𝜆𝑗
∗  

1

𝑛𝑠
 

𝜕𝑕

𝜕𝑡

𝑛𝑠
𝑠=1  𝐻𝑗

𝑘𝑠  ∗   𝑑𝑣𝑖
𝑘 ∗ 𝑣𝑗𝑖

𝑛𝑜
𝑖=1   

             For j=1,2,3,…,𝑛𝑕   and 𝑙 = 1,2,… , 𝑛𝑖  

             w𝑗𝑖 = w𝑗𝑖 − 𝛼 𝛽 𝑑𝑤𝑖
𝑘𝑥𝑙

𝑘   

    Update the quantum intervals: 

           For k=1,2,…,𝑚 

            For j=1,2,…,𝑛𝑕  

    ĥj
k =  𝑤𝑙𝑗 𝑥𝑙

𝑘𝑛 𝑖
𝑙=1  

    𝑕𝑗
𝑘,𝑠 = 𝛽(ĥj

k − θj
s)𝑠 = {1,2,… , 𝑛𝑠} 

    𝐻𝑗
𝑘𝑠 =

𝑕𝑗
𝑘𝑠−𝑡𝑗

𝜆𝑗
 

    𝐵𝑗
𝑘 =

1

𝑛𝑠
 𝑕[ 𝐻𝑗

𝑘𝑠 ]
𝑛𝑠
𝑠=1  

    𝐷𝐵𝑗
𝑘,𝑠 =

𝜕𝑕

𝜕𝑡
[ 𝐻𝑗

𝑘,𝑠 ] 
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              For j=1,2,…,𝑛𝑕  

    < 𝐵𝑗 ,𝑐𝑖 > = 
1

𝑐𝑖
 𝐵𝑗

𝑘
𝑥𝑘∈𝑐𝑖

 

    < 𝐷𝐵𝑗
𝑘,𝑠 > = 

1

𝑐𝑖
 𝐷𝐵𝑗

𝑘,𝑠
𝑥𝑘∈𝑐𝑖

 

     For k=1,2,…,m 

 For q=1,2,…,𝑛𝑕     and   For s=1,2,…,𝑛𝑠 

𝜃𝑞
𝑠 = 𝜃𝑞

𝑠 + 𝛼𝜃
𝛽

𝑛𝑠
   < 𝐵𝑗 ,𝑐𝑖 > −𝐵𝑗

𝑘 (< 𝐷𝐵𝑗
𝑘,𝑠

𝑥𝑘∈𝑐𝑖

𝑛𝑜

𝑖=1

> − 𝐷𝐵𝑗
𝑘,𝑠) 

   

7. DATA SELECTION 
From the data available at [15], the whole database consists of 

five EEG data sets (denoted A – E), each containing 100 

single channel EEG signals of 23.6 seconds from five separate 

classes. Sets A and B consist of signals taken from surface 

EEG recordings of five healthy volunteers with eye open and 

eye closed, respectively. Signals in sets C and D were 

recorded in seizure-free intervals from five epileptic patients 

from the hippocampal function formation of the opposite 

hemisphere of the brain and from within the epileptic zone, 

respectively. Set E contains the records of five epileptic 

patients during seizure activity. All EEG recordings were 

made with the same 128-channel amplifiers system, using an 

average common reference [14]. The recorded data are 

digitized at 173.61 samples per second using 12-bit resolution. 

Band-pass filter setting is 0.53-40 Hz (12 dB/oct). The 

amplitude of EEG recordings is given in micro volt. 

8. CLASSIFICATION OF EEG SIGNAL 
The classification operation of EEG signals can be divided 

into three stages. Stage one is used to process raw EEG 

signals in such a way that they are ready to be used. Stage two 

is feature extraction by cluster technique (CT). The last stage 

is EEG signal classification by QWNN.  

8.1 Normalization 
Normalization is a process to simplify the data. Each feature 

should be normalized (rearrange the data to range between 0 

and 1) before the processing. 

8.2 Data Processing 
Raw EEG data is generally a mixture of several things: brain 

activity, eye blinks, muscle activity, environmental noise, etc. 

After the data have been collected, the preprocessing step 

starts to remove all noise and artifacts from the signal, but 

preserving all the characteristics of the original signal. As well 

as cleaning the signal from the influence of the reference 

electrode, if one is used [16].  

All the above can be performed using different methods and 

algorithms, but Independent Component Analysis (ICA) is the 

best method for processing EEG signals. ICA is adequate if 

the data are no Gaussian, nonlinear, and no stationary [17]. 

EEG signal has all these properties, therefore ICA is used.  

A simple definition of the ICA problem can be given by 

reducing the problem to two original signal sources, s1 and s2, 

and two recorded mixtures, x1 and x2. The mixtures of the 

two sources are given by: 

𝑥1(𝑛) = 𝑎11𝑠1 𝑛 + 𝑎12𝑠2 𝑛                                        (32)                                             

𝑥2(𝑛) = 𝑎13𝑠1 𝑛 + 𝑎14𝑠2 𝑛                                        (33)     

Where 𝑎11 , 𝑎12 , 𝑎13 , and 𝑎14  are parameters that depend on 

the position and characteristics of the recording locations [18]. 

The problem is now defined as solving for the source signals 

s1 and s2 using only mixtures x1 and x2.  

8.3 Feature Extraction 
Feature extraction is the process of extracting useful 

information from the signal. Features are characteristics of a 

signal that are able to distinguish between normal and 

abnormal of EEG signals. The requirements for feature 

extraction are [19]: 

 reduce the size of the data by selecting 

appropriate features,  

 the selected features should be minimally 

redundant and the expected results should 

maximally depend on these features, 

 preserve all information from the signal that is 

needed for classification. 

 It is basically impossible to apply any classification method 

directly to EEG samples, because of the large amount and the 

high dimension of the examples to describe such a big variety 

of clinical situation. There are many methods (feature 

extraction) used for this purpose [20].  

Cluster technique (CT) is used to characterize brain activities 

from recording, several features are computed from the 

segmented data. These features allow representing each 

segmented data as a point in input vector space. The CT 

method is proposed for feature extraction from the original 

EEG database. This approach is conducted in three steps, 

which determines different clusters, sub clusters and statistical 

features extracted from each sub cluster, respectively. 

The steps of CT approach are: 

1) Step 1: Each EEG data is divided into n groups, 

which are called clusters with specific time interval. 

2) Step 2: Each cluster is partitioned into m sub 

clusters with a specific duration. 

3) Step 3: Eight statistical features are extracted from 

each sub cluster data point. The statistical features 

are minimum, maximum, mean, median, first 

quartile range, third quartile range, inter-quartile 

range, and standard deviation of the EEG data. 

9. EXPERIMENTS ON EEG SIGNALS 
The epileptic EEG data have five sets, set A to set E. Each set 

contains 100 channels of data. Every channel consists of 4096 

data points with 23.6 seconds. Each channel data is 

normalized and then divided into 16 groups, where each group 

is called cluster. Each cluster consists of 256 data points of 

1.475 seconds. Then every cluster is again partitioned into sub 

clusters and each sub cluster contains 64 observations of 

0.3688 second. Eight statistical features are calculated from 

each sub cluster. These features are the input for each of four 

different techniques applied to classify EEG signals. These 

techniques are Feed Forward Neural Network (FFNN), 

Quantum Neural Network (QNN), Wavelet Neural Network 

(WNN), and finally the new model of Quantum Wavelet 

Neural Network (QWNN).  

The number of elements of each pair of sets has been divided 

into two parts. The first part is used for training the network, it 

is called training samples. These samples usually take 70% 

from data. Then the error and accuracy of training data are 

calculated. The second part is used for testing the network, it 
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is called testing samples. The testing samples are the 

remainder 30% of data, from which the error and accuracy of 

testing data are usually calculated. The performance of a 

particular run of the program, or a particular reading by an 

expert is evaluated in terms of the accuracy of classification, 

where: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡𝑖𝑛𝑔  𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100%                                         

                                                                                         (34) 

10. RESULTS OF QUANTUM 

WAVELET NEURAL NETWORK 

MODEL 
In this work, the data has been divided into two parts: the 

learning part and the testing part. Each trial is composed of 

feature vectors. The selection of the patterns for training and 

testing was made randomly. Training was conducted until 

standard of error fell below 0.0001 or a maximum iteration 

limit of 200 was reached. The mean square error (MSE) 

denotes the error limit to stop QWNN training.  

A three layer structure of QWNN is applied. It consists of 32 

inputs, 2 outputs, and 64 hidden layer nodes. The slope factor 

of multilevel transfer function is chosen to be 1.25 by trial and 

error. 

The number of levels in quantum hidden layer will be chosen 

as a compromise between increased efficiency or increased 

computation cost.  We will choose ns=10. We can choose 

greater than this but that will increase computation cost. The 

data must be dividable by the number of your choice because 

feature space cannot be divided into two regions and a half.  

The experiment results demonstrate that our proposed QWNN 

classifier achieves excellent performance in terms of 

classification accuracy compared to FFNN, QNN, and WNN; 

that will be discussed fully in the next section. As shown in 

Table 1, the average accuracy of 94.187% is obtained over 

200 iterations. The average of MSE is 0.07188 decreasing 

with the increase of the number of iterations which means that 

the network is convergence to a solution as iterations number 

increases.  

11. DISCUSSION 
An epileptic EEG data is used in this work to test the 

performance of the proposed QWNN model. All calculations 

are performed using MATLAB (version 7.0.019920.R14). 

Here, different pairs of two-class EEG signals from five data 

sets in epileptic EEG data are to be classified. 1600 vectors of 

32 dimensions (the dimensions of the extracted features) are 

obtained from each data set. 2240 vectors are used for training 

and 960 vectors for testing. 

 

 

 

 

 

 

 

Table 1. Performance of QWNN for different pairs of two-

class EEG signal from the epileptic EEG data 

Different 

pairs 

MSE for 

training set 

MSE for 

testing set 

Accuracy for 

testing set (%) 

Sets A and 

E 

0.0448 0.3054 97.946 

Sets B and 

E 

0.0711 0.3572 95.535 

Sets C and 

E 

0.0629 0.2292 95.758 

Sets A and 

D 

0.1231 0.5907 84.062 

Sets D and 

E 

0.0575 0.3130 97.633 

Average 0.07188 0.3591 94.187 

The proposed QWNN model is the most efficient to classify 

EEG signals. It is important to note that the EEG data from 

sets A and E are more classifiable than the other cases, 

because there are large variations among the recorded EEG. 

Due to the nature of large differences, it is easier to classify 

set A and set E as demonstrated by 97.946% accuracy of 

classification. In this application, the pair of sets A and D 

produce lowest classification accuracy of 84.062%.  

The result of the experiments shows that the proposed QWNN 

model has improved the classification accuracy compared to 

the FFNN, QNN, and WNN classifiers. Table 2 illustrates this 

fact. 

FFNN produces the lowest classification accuracy of 75.076% 

among the reported methods, because it creates its internal 

representations from sample information provided by training 

data. Training from sample data means that if a training vector 

belongs to the ith class, the ith output unit is required to 

respond with 1 while the responses of all other output units 

are required to be 0. The disadvantage of FFNN as compared 

with other methods is that, it is incapable of allowing the 

sample information to be encoded into certain levels (graded) 

of certainty/uncertainty. 

The classification of QNN based on multilayer activation 

function is of more freedom than traditional FFNN, because 

activation function of the hidden nodes has a number of 

different quantum intervals. By adjusting the quantum 

intervals, the different classes of data are mapped onto 

corresponding state; accordingly the classification has more 

freedom. This is clear from Table 2, where the average 

accuracy of QNN is 83.713% while it is 75.076% for FFNN.  

WNN is fast, simple, robust, and reliable. Its classification 

accuracy is better than QNN and FFNN. WNN overcomes the 

problem of the sigmoid activation functions of QNN by using 

wavelet as activation function. But WNN has not inherently 

fuzzy architecture; therefore it should not be capable of 

generalizing the sample information into various graded levels 

of certainty over the entire feature space. 

Quantum neural networks (QNNs) combined with wavelet 

theory can give full play to their respective advantages. This 

combination can optimize the topology of quantum neural 

network with premises of ensuring classification capabilities, 
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thus making the network clearer, simpler, and greatly reduces 

the size of the network and improve the learning speed. The 

other advantages of QWNN are overcoming the problems of 

slow speed and low accuracy of convergence and the 

shortcomings of generalization ability for pattern recognition 

of the traditional neural network. 

TABLE 2. Comparison of EEG classification results  

Classification 

method 

MSE for 

training 

set 

MSE for 

testing 

set 

Accuracy for 

testing set 

(%) 

FFNN 0.1755 0.361 75.076 

QNN 0.1654 0.3967 83.713 

WNN 0.046 0.4892 89.803 

QWNN 0.07188 0.3591 94.187 

 

Replacing sigmoid function in QNN with Mexican hat 

wavelet basis function in QWNN solves the problem of QNN 

that the shape of sigmoid function is not identical to the shape 

of EEG signal. Mexican hat wavelet is often used for time-

frequency analysis of EEG signals, because it can capture 

EEG events well. Another key advantage of Mexican hat 

wavelet is that it will manage to detect the great changes in 

EEG signals. Therefore, Mexican hat mother wavelet is used 

as activation function to provide considerable flexibility in 

designing the QWNN. Experiments show that the average 

accuracy is 94.187% for QWNN, whereas it is 83.713% for 

QNN. Also, the advantage of QWNN over FFNN is that if the 

eigenvectors of samples are located in the overlap edges of 

two modes, the QWNN will distribute them to all the relevant 

categories in proportion. The responses of the hidden nodes to 

input segments from the training and testing sets indicate that 

the trained QWNN and QNN produce a more structured 

internal representation of input samples than that produced by 

the trained WNN and FFNN. This experimental result was 

justified by illustrating the ability of trained QWNN and QNN 

to implement a multilevel partition of the input space. 

12. CONCLUSION 
This paper presents a new QWNN model with Mexican hat as 

incentive function applied for classification of EEG signals. It 

overcomes the problems of slow speed and low accuracy of 

convergence and the shortcomings of generalization ability 

for pattern recognition of the traditional neural network. The 

combination of QNN with wavelet makes the network clearer 

and greatly reduces the size of the network, as well as 

improving the learning speed. Since we can choose the 

suitable basis function for the data in QWNN, therefore 

QWNN is more flexible than the other methods. In addition, 

this paper presents a learning algorithm. The validity of the 

model and the study algorithm are proved by simulation. The 

results proved that QWNN combined the theory of quantum 

superposition with wavelet theory can improve the accuracy 

and accelerate the speed of convergence. QWNN can classify 

the pattern precisely, and provides a method for those two 

modes which have overlap edges with difficulty to classify. 
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