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ABSTRACT
The determination of the intersection curve between two surfaces
may be seen as two different and sequential problems (1) determin-
ing initial points of the intersection curve and (2) tracing it from
these points. Presented in this paper are: one technique for comput-
ing the initial point, and two methods for tracing the intersection
curve of two parametric surfaces. Algorithms, implementation, and
illustrative examples will be discussed as well as a comparative
analysis of each method.
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1. INTRODUCTION
For a long time now of computer aided manufacturing [CAM] and
computer aided design [CAD], intersection algorithms have always
played a central role in making geometric modeling systems work.
The first geometric modelers were curve based, and efficient algo-
rithms were developed giving satisfactory intersection results. One
example of such a system was the AUTOKON system, a com-
plete batch oriented CAD/CAM-system for ship building which
was developed in Norway in the 1960s. However, when surface
and volume based systems were developed, intersection algorithms
became more complex.
In curve based systems, the result of an intersection is points or
segments of the curves being intersected. Thus, describing the in-
tersection is fairly straight forward. In surface based systems the
result of an intersection is points, curves, and regions of the sur-
faces being intersected[14].

1.1 Motivation
The computation of self-intersection for a patch or inter-
section between two patches is an important problem in
Computer Aided Geometric Design [CAGD]; and this prob-
lem was the main topic of the European project GAIA II
[http//www.sintef.no/static/AM/gaiatwo/].
In fact calculation of intersection curves between surfaces can
be applied to various fields, such as computational geometry,
solid modeling, geometric processing, computer aided design

[CAD], computer aided geometric design [CAGD], manufacturing,
numerical-controlled machining, visualization, and robotics.
In many applications, there is need to find the curves where two
surfaces intersect, for example

—Constructing a contour map to graphically represent a prescribed
surface or hyper-surface.

—Computing silhouettes to improve the graphical display of sur-
faces.

—Performing Boolean operations on solid bodies.
—Constructing smooth blending curves and surfaces.
—Finding offset curves and surfaces, e.g., Numerical-Controlled

machining (NC-construction) (Theoretically defined offsets can
have self-intersections)[22].

The main goal concerning the surface to surface intersection prob-
lem is to develop robust, accurate and fast algorithms for computing
the intersection curve between two surfaces, needing the least user
intervention.

1.2 Related Work
Researchers around the world have attempted to solve this prob-
lem; however, no perfect algorithm has been introduced. Each al-
gorithm has several problems, specifically with the characteristic
points. Bajaj et al.[4] presented a method in which a third-order
Taylor a approxiamant is constructed by taking steps of variable
lengths and the curve is computed using the general Newton iter-
ation procedure. This method also presents techniques to handle
singularities. Montaudouin et al. [29] presented a method where
power series are used to approximate plane algebraic curves and
surface intersections. General intersection problems have been ad-
dressed by [33, 15]. Lattice evaluation methods were used to de-
termine the intersection curve[32]. Reviews of general intersec-
tion methods are numerous[5, 20, 30, 13]. Wilf and Manor[35]
presented a method using a modification of Levins ruled-surface
parameterization scheme, guided by invariant-factors classification
and furthermore, by factorization of the parameterization polyno-
mials. Markot and Magedson[28] presented a procedural method
to parameterize the intersection curve of two surfaces by com-
puting exact points on the true intersection curve. A parallel al-
gorithm using the divide-and-conquer method was presented by
Burger and Schaback[7]. The computational complexity of this al-
gorithm was also analyzed. Search techniques were used to refine
the interval progressively[19]. Another method that was applied
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to the surface-surface intersection problem is a topological and
differential-equation method[11]. In this method, the vector field
defined as the gradient of the oriented distance function is used
to detect critical points in the field such as singularities. Tensorial
differential equations are then used to trace intersection segments.
Another method that uses unidimensional searches to detect inter-
section points was presented by Aomura and Uehara[3]. Surface
intersection using parallelism was addressed by Chang et al.[10].
A different approach to higher-dimensional formulation including
offsets, equal distance surfaces and variable radius blending sur-
faces was discussed by Hoffman[21]. A higher-dimensional formu-
lation was also used by Chuang[12] to determine a local and global
approximant. Marching methods have been extensively used by re-
searchers in this field[11]. The accuracy of marching methods has
been improved by proper control of the step size. Singularities were
analyzed by Abdel-Malek,K. ,Harn-Jou Yah and Rockwood, A.[1]
by locally constructing a second-order approximant to each surface.
Parametric surface-surface intersection has also been addressed by
Houghton et al.[23] Garrity and Warren[18] and Mullenheim[26].
Singularities along the intersection curve have been identified in
the work by Lukacs[27] who used the quadratic of the curves cur-
vature to detect any bifurcation points. Eigen values of this system
were then studied to determine the form of the matrix, and there-
fore its behavior at critical points. Most numerical algorithms re-
quire the estimation of a starting point on or close to the solution
curve. This topic forms the starting point of this paper. In recent
years, there have been many studies concerning the determination
of the initial points for tracing intersection curves. Cugini et al.[7]
introduced the concept of shrinking bounding boxes that cover the
total space. Parts of the two surfaces existing in the same bounding
box are identified to calculate a starting point. The curve is then
traced by introducing one additional constraint as the tangent to
an advancing plane. The problem of loop detection was also ad-
dressed using relatively simpler algorithm[22, 34]. Although these
algorithms may miss intersection components, they are somewhat
simpler, more geometric, and in some cases more effective. Muel-
lenheim [25] presented an iterative method for calculating a starting
point that is close to a solution curve. The starting point has also
been computed using lattice and subdivision methods[27]. Con-
tinuation methods[2, 31, 21, 16] were recently used to trace the
curve and to determine tangents at bifurcation points[1]. Currently,
the most widely used surface intersection algorithm is recursive
subdivision[9, 10]. In most approaches, the determination of ini-
tial points faces the task of solving multivariable polynomial sys-
tems. Mrio C. F. and Marcos S. G. T. used the Projected Polyhedral
Method to solve the multivariable polynomial systems[17]. Finally,
in one of the new studies[8], the authors proposed a new method
for computing an equation of a plane curve that is in correspon-
dence with the intersection space curve of these two surfaces for
very general parameterizations. This paper focuses on the problem
of computing the intersection of two parametric surfaces X(u, v)
and Y (s, t) , since a common representation of surfaces in Solid
Modeling and Computer Aided Geometric Design (CAGD) uses
parameterized patches.( we address the computation of the intersec-
tion curve of two surface patches of bidegree (2,2),i.e., biquadratic
patches.).
The rest of this paper is structured as follows. Section 2 we intro-
duce and review the problem as well as some basic concepts and
terminology to be used throughout the paper. For computing, the
initial point of the intersection curves a technique is based on ex-
tended Newton Method is presented in section 3. Section 4 present
two different techniques for tracing the intersection curves. We ap-
ply the two techniques to four representative examples and report

the results in Section 5. Finally, the conclusions and future work
are discussed in Section 6.

2. OVERVIEW OF THE PROBLEM AND
SOLUTION

Indeed two surfaces of any kind can have one of the following two
relationships with each other

—The two surfaces have no points in common.
—The two surfaces have a set of points in common.

The first relationship indicates that the two surfaces do not inter-
sect. The second relationship is the main interest of this study, be-
cause it implies that the two surfaces actually intersect. If the set
of points of the intersection of the two surfaces is not empty, then
there are two possibilities

—The set contains only one point.
—The set contains more than one point, in which case the intersec-

tion could be either a line (a set of lines), or a smooth patch (a
set of smooth patches).

In fact the generic algorithm for computing the intersection
curve(s), consists of three steps which are:

—Find at least one point on each component of the intersection,
—trace the segments of the intersection curve, and
—collect and convert the segments into a format that is suitable for

further processing (depending on the application).

2.1 Mathematical Formulation of the Problem

Let two surfaces be X(u, v) =

X1(u, v)
X1(u, v)
X1(u, v)

 and

Y (s, t) =

Y1(s, t)
Y2(s, t)
Y3(s, t)


where ,X, Y ∈ C1[0, 1]2. are given, the problem of intersection is
solved by computing the set

M =
{(u, v, s, t) ∈ [0, 1]4 ‖ F (u, v, s, t) = X(u, v)− Y (s, t) = 0} ⇐⇒

F (u(α), v(α), s(α), t(α)) =

X1(u, v)− Y1(s, t)
X2(u, v)− Y2(s, t)
X3(u, v)− Y3(s, t)

 =f1(u, v, s, t)
f2(u, v, s, t)
f3(u, v, s, t)

 =

0
0
0


In the non-degenerate case i.e. the set of intersection points is not
empty, the solution manifold M consists of one or several curves,
each fulfilling the condition

F (u(α), v(α), s(α), t(α)) = 0 (1)

where α is any parameter. It can be interpreted as a pair of two
curves as:

k1(α) =
(
u(α), v(α)

)T ⊆ [0, 1]2 and k2(α) =
(
s(α), t(α)

)T ⊆
[0, 1]2

which represent the path of intersection on each of the surfaces in
the corresponding parameter space.
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2.2 Basic Concepts and Terminology
In this paper we restrict ourselves to parametric surfaces (including
Bézier surface), which are assumed to be differentiable at any point
since the parametric representation is the most used mathematical
representation in industry. The parametric surfaces are described by
a vector-valued function of two variables

S(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
whereu, v ∈ Ω ⊂ R2 (2)

where u and v are the surface parameters. Expression 2 is called
a parameterization of the surface S. At regular points, the partial
derivatives Su(u, v) and Sv(u, v) do not vanish simultaneously.
These partial derivatives define the unit normal vector N to the
surface at S(u0, v0) as

N =
Su × Sv

‖Su × Sv‖
(3)

where × denotes the cross product. A curve in the domain
Ω can be described by means of its parametric representa-
tion {u = u(s), v = v(s)} . This expression defines a three-
dimensional curve C(s) on the surface S given by C(s) =

S
(
u(s), v(s)

)
. Applying the chain rule, the tangent vector C̀(w)

of this curve at a point C(s) becomes

C̀(w) = Su · ù(w) + Sv · v̀(w) (4)

In this work the curve C(w) will usually be parameterized by the
arc-length w . Its geometric interpretation is that a constant step w
traces a constant distance along an arc-length parameterized curve.
Since some industrial operations require an uniform parameteriza-
tion, this property has several practical applications. For example,
in computer controlled milling operations, the curve path followed
by the milling machine must be parameterized such that the cutter
neither speeds up nor slows down along the path. Consequently, the
optimal path is that parameterized by the arc-length.

2.2.1 Bézier Surfaces. The Bézier surfaces are widely used in
CAD applications. Such parametric surfaces are defined by the fol-
lowing expression[22]

S(u, v) =
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v) · Pij

Where Pij are the control points of the surface and
(
Bm

i (u) ,
Bn

j (v)
)

are Bernstein polynomials, defined by

Bm
i (u) =

(
n
i

)
· ui · (1− u)n−i , 0 ≤ u ≤ 1 e.g. u ∈ [0, 1]

where
(
n
i

)
is the binomial coefficient which defined as(

n
i

)
= n!

i!·(n−i)!

Nonetheless, the Bernstein polynomials have, among others, the
following main properties

Bm
i (u)>0, ∀u ∈ [0, 1]

m∑
i=0

Bm
i (u) = 1

The control points are disposed in a rectangular net of n + 1 by
m + 1 point. This way, the position of a surface point in the xyz
space is given by

S(u, v) =

x(u, v)
y(u, v)
z(u, v))


where each coordinate is defined by a polynomial in u and v. The
surface degree (and therefore, the degree of the polynomials that
describe each coordinate) is given by m and n.

3. FINDING A START POINT INCLUSION
3.1 Tracing a Branch of an Intersection Curve

(continuation method)
As mentioned above the calculating surface intersection point
means solving Y (s, t) = X(u, v) for (u, v, s, t) the algorithms
introduced here is a kind of marching method which follows the
different branches of the solution performed within the parameter
space. For each of these methods, it is necessary to obtain appro-
priate start points lying within the solution manifold. The curve
tracing is initiated at these points.

3.2 Extended Newton Method
In this section, some basic definitions and theorems of a method for
determining the roots of an arbitrary system of equation iteratively
are given, where the equations can be nonlinear algebraic or
transcendental. The number of equations of the system can be
greater than, less than or equal to the number of variables. Details
of this method can be found in[6].
Let X = [x1, x2, . . . , xk]T be a k-dimensional col-
umn vector with components x1, x2, . . . , xk in C and
F (X) = [f1(x), f2(x), . . . , fh(x)]T an h-dimensional vec-
tor valued function. To deal with the norm of a vector, we can
choose any one of the norms, for example

‖X‖p = (
∑n

i=1 |xi|
p)

1
p , ∀ 1 ≤ p<∞ and ‖X‖∞ =

max(|x1, . . . , xn|)

We define the Jacobian matrix of f w.r.t. x to be the h × k matrix
as

Jf (x) =
(

∂fi(x)
∂xj

)
i=1...h,j=1...k

When h = k and with the assumption that det(J(x)) 6= 0 for x
in a closed and bounded set S, we will denote the inverse Jacobian
of f at x by J−1f . In this case, Newtons method is a wellknown
iterative method for determining the roots of the equation f(x) = 0
. The iteration can be written in the form

xn+1 = g(xn), where g(xn) = xn − J−1f (xn) · f(xn)

Unfortunately, here h 6= k, the Jacobian matrix of is not a square
matrix. Therefore, it cannot be inverted. Hence, Newtons method
fails to apply to such cases. We extend Newtons method such that
the extended method can be applied to these cases as well. To get
around the problem of a n-square matrix, we will use what we call
the pseudo inverse of the Jacobian matrix.
Definition 1
A pseudo inverse of a matrix A is a matrix A⊥ satisfying

AA⊥A = A, A⊥AA⊥ = A⊥, (A⊥A)? = A⊥A, (AA⊥)? =
AA⊥
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where (.)? denotes the conjugate transpose of the matrix in case of
real coefficient functions, we will use (.)T for (.)?.
Theorem 1
For any matrix A there exists a pseudo inverse matrix A⊥.
Moreover the pseudo inverse is unique.
There are several techniques for obtaining the pseudo inverse of
a numerical matrix, for example Hestenes technique or Grevilles
technique (see[24]). However, those techniques are pure numerical
techniques, i.e., they can only be applied to each individual nu-
merical matrix; and we have to take into the account the problems
of rounding error, word length, precision of arithmetic, and so on.
Moreover, when we use such techniques in our iterative method
for determining the roots of a system of equations, we have to
apply the approximate process for obtaining the pseudo inverse
matrix J⊥ at each iterate

J−(
{
x(0), x(1), . . . , x(n), . . .

}
) =

(
J(x) · JT (x)

)−1 · JT (x)

That means that it is time consuming and has accumulated errors.
To avoid such problems, we try to find a symbolic formula and use
symbolic computation for the method. For example

J+ = JT · (J · JT )−1 or J− = (JT · J)−1 · JT

Lemma 1
For all x, if (J · (x)JT (x)) is nonsingular then J+(x) is the
pseudo inverse of matrix J(x).
Proof Lemma 1
The matrixJ+(x)is defined when (J(x) · JT (x))is nonsingular;
and it is easy to check that J+(x) satisfies the definition 1.
Lemma 2
For all x, if (JT (x) ·J(x)) is nonsingular then J−(x) is the pseudo
inverse of matrix J(x).[13]
Lemma 3
For all x, if both J+(x)and J−(x) exist then they are identical.
Matrix J+(x)or J−(x) is a matrix of order k × h. Hence, we can
define the function g as follows

g(x) = x− J+(x) · f(x) or g(x) = x− J−(x) · f(x)

where g(x) , x are vectors of the same dimension k and f is
defined as equ.1. We find a fixed point of the function g w.r.t. the
initial point x(0) by the following algorithm
Algorithm 1 (Extended Newton Method).

Input: a function F : C4 → C3, an initial point x(0), a measured
value (a tolerance ε) and a maximum number of iterates M .
Output: A starting point.
Method steps

(1) Let initial number of iteration (L = 1) and

F (u(α), v(α), s(α), t(α)) =

X1(u, v)− Y1(s, t)
X2(u, v)− Y2(s, t)
X3(u, v)− Y3(s, t)

 =f1(u, v, s, t)
f2(u, v, s, t)
f3(u, v, s, t)


(2) Compute Jacobian matrix J at x(0) as:

Jf (x(0)) =
(

∂fi(x
(0))

∂xj

)
i=1...3,j=1...4

(3) Evaluate a function F at x(0).
(4) Extract new point via [expr]

xnew = x(0) − pinv(J(x(0)))× F (x(0)).

where (pinv) is pseudo inverse.
(5) Compute t = ‖xnew − x(0)‖.
(6) Do test if t ≤ ε

then Start− point = xnew, exit.
else if t>ε and N ≤M
set x(0) = xnew, L = L+ 1;
goto step 2.
else return (failure non −
convergence try for new initial point).

4. ALGORITHMS FOR TRACING THE
INTERSECTION CURVES

Once the starting point is found, the subsequent points on the in-
tersection curve can be traced along the tangent direction. Suppose
the parametric coordinates of the starting point q are (u0, v0) and
(s0, t0) .The constraint function H(q) is defined by

F (q) =

X1(u0, v0)− Y1(s0, t0)
X2(u0, v0)− Y2(s0, t0)
X3(u0, v0)− Y3(s0, t0)

 (5)

The Jacobian of the constraint function F (q) for a certain configu-
ration q is the 3× 4 matrix as:

Jf (q) =
(

∂fi(q)
∂xj

)
i=1...3,j=1...4

Here, the tangent vector λ to the set defined by H(q) = 0 is
uniquely defined by

Jf (q) · λ = 0 (6)

‖λ‖2 = 1 (normalization). (7)

det

[
Jf (q)
λT

]
>0 (8)

Where Equations 6,7 and 8 were set forth to define a unique tangent
in the Predictor-Corrector method [17]. Combining equation 5 and
equation 6 yields a system of four equations in four variables, such
that the Newton-Raphson iteration method can be used to calculate
the new point x. By setting the new point as the current point, the
tracing is continued until one of three cases occurs

(1) the boundary is reached,
(2) returning to the starting point, or
(3) reaches to the non-convergence point.

The Complete Algorithm

(1) Find an inclusion of one start point of an intersection curve
denote by q.

(2) Solve equation 6 then set it e.
(3) Using relation xnew = q ± (e × d) to compute a new initial

guess point.(where d is the desire distance)
(4) Compute the next point using Extended Newton Methods

where xnew is a new initial guess point.

4



International Journal of Computer Applications (0975 8887)
Volume 92 - No. 5, April 2014

4.1 The Marching Method with Differential Equations
Let F (u, v) and G(s, t) be two surfaces whose unit normal vec-
tors at a point on the intersection curve C(w) between F (u, v) and
G(s, t) are N1 and N2 respectively.

N1 = Fu×Fv
‖Fu×Fv‖ , N2 = Gs×Gt

‖Gs×Gt‖

Once the initial points of the intersection curves are obtained, each
curve C(w) ,parameterized by the arc length w, is traced using
the Marching Method proposed by [9]. The marching direction is
given by the tangent vector of C(w), which is perpendicular to the
normal vector of both surfaces at the given intersection point

C̀= dC
dw

= N1×N2
|N1×N2|

Applying the chain rule, we obtain the unit tangent vector T1(w)
(T2(w) resp.) to the curve C(w) considered as belonging to the
surface F (G resp.) is given by

dC
dw

= du
dw
· Fu + dv

dw
· Fv.

dC
dw

= ds
dw
·Gs + dt

dw
·Gt.

Because T1 and N2 are orthogonal and so are T2 and N1 we have

(
∂F

∂u
·N2

)
·
(

du

dw

)
+

(
∂F

∂v
·N2

)
·
(

dv

dw

)
= 0,(

∂G

∂s
·N1

)
·
(

ds

dw

)
+

(
∂G

∂t
·N1

)
·
(

dt

dw

)
= 0

(9)

On the other hand, since the curve C(w) belongs to both F and G,
we have

E1

(
du

dw

)2

+ 2P1

(
du

dw

)(
dv

dw

)
+Q1

(
dv

dw

)2

= 1,

E2

(
ds

dw

)2

+ 2P2

(
ds

dw

)(
dt

dw

)
+Q2

(
dt

dw

)2

= 1

(10)

where E,P and Q are the coefficients of the First Fundamental Form
of the surface given by:

E1 = Fu · Fu, P1 = Fu · Fv, Q1 = Fv · Fv

E2 = Gs ·Gs, P2 = Gs ·Gt, Q2 = Gt ·Gt

Solving equation 9 and 10 for du
dw
, dv
dw
, ds
dw

and dt
dw

we obtain

du

dw
= ±

(
∂F
∂v ·N2

)√
E1

(
∂F
∂v ·N2

)2 − 2P1

(
∂F
∂v ·N2

) (
∂F
∂u ·N2

)
+Q1

(
∂F
∂u ·N2

)2
dv

dw
= ∓

(
∂F
∂u ·N2

)√
E1

(
∂F
∂v ·N2

)2 − 2P1

(
∂F
∂v ·N2

) (
∂F
∂u ·N2

)
+Q1

(
∂F
∂u ·N2

)2
ds

dw
= ±

(
∂G
∂t ·N1

)√
E2

(
∂G
∂t ·N1

)2 − 2P2

(
∂G
∂t ·N1

) (
∂G
∂s ·N1

)
+Q2

(
∂G
∂s ·N1

)2
dt

dw
= ∓

(
∂G
∂s ·N1

)√
E2

(
∂G
∂t ·N1

)2 − 2P2

(
∂G
∂t ·N1

) (
∂G
∂s ·N1

)
+Q2

(
∂G
∂s ·N1

)2


(11)

which together with an initial point of the intersection
curve(u(0), v(0), s(0), t(0)) = (u0, v0, s0, t0) constitutes an ini-
tial value problem for this system of four explicit first-order ordi-
nary differential equations. The signs± and∓ in 11 mean that there
are two arcs of curve starting at (u0, v0, s0, t0) associated with the

two possible opposite directions of the tangent vectors T1(w) and
T2(w)[17]. Above are the equations from which the points of the
intersection curves may be successively determined using a numer-
ical integration method for the problem of the initial value with the
given system of ordinary differential equations of 11 [5] Hu et al.
did not explain which method was used to integrate the ordinary
differential equations, as a first implementation we decided to use
the 4th order Runge-Kutta Method to accomplish this task. So, the
Marching Algorithm has the following steps:
Step1: Obtaining initial points for the algorithm, which means at
least one point for each intersection curve. This is done using the
procedures presented in the previous sections.
Step2: For each of these points, are obtained the derived equations
of the surface parameters with respect to the arc length of the inter-
section curve using Eq.11.
Step3: Integrate this system of ordinary differential equations using
a numerical method (4th order Runge-Kutta, for instance), provid-
ing this way the next point of the intersection curve.
Steps 2 and 3 are repeated until the traced curve reaches a turning
point or an initial border points (previously determined).

5. SOME ILLUSTRATIVE EXAMPLES
5.1 Example
To illustrate the determination of surfaces intersection using the
continuation method that outlined above. Consider the two surfaces

S1(u, v) =

 u
v

u2 + v2

, S2(s, t) =

 s
t

9− (s2+t2)
5


where the two surfaces are shown in figure 1. Firstly to demon-

Fig. 1. Two parametric surfaces intersecting

strate the use of the Extended Newton Method set the initial
guess is specified as x0 = (1, 1, 1, 1). At the end of the 4th
iteration the starting point on the curve is computed as q =
(1.9365, 1.9365, 1.9365, 1.9365). Secondly using the continua-
tion method the resulting intersection curve in Figure 2. We can
drive 450 points using Continuation method, and we list some of
them as follows.
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Table 1. list some of intersection points for example 5.1
kthPoint Coordinates kthPoint Coordinates

0 (1.9365,1.9365,1.9365,1.9365) 240 (-1.9278,1.9451,-1.9278,1.9451)
4 (1.7811,2.0803,1.7811,2.0803) 276 (-1.9330,1.9400,-1.9330,1.9400)

20 (0.8477,2.6041,0.8477,2.6041) 301 (-1.9347,1.9383,-1.9347,1.9383)
33 (0.1167,2.7361,0.1167,2.7361) 367 (-1.9362,1.9368,-1.9362,1.9368)
42 (0.48420.1249,0.4910,0.1454) 89 (0.3823,0.1552,0.3865,0.1651)
45 (0.4499,0.1324,0.4552,0.1487) 49 (0.4205,0.1410,0.4250,0.1542)

Fig. 2. The result curve of intersection on theu− v space in Ex. 5.1

5.2 Example
Given two Bezier surfaces (S1 and S2) have the control points as:

S1(u, v) =

( 1
7
, 0, 3

5
) ( 3

5
, 1
5
, 3
4
) (1, 0, 7

10
)

( 3
8
, 4
9
, 2
3
) ( 2

3
, 3
4
, 1
3
) ( 6

7
, 3
8
, 5
7
)

( 1
5
, 6
7
, 4
7
) ( 3

4
, 7
8
, 3
4
) ( 7

8
, 7
9
, 5
8
)


and

S2(s, t) =

( 2
7
, 1
7
, 2
5
) ( 3

5
, 1
10
, 2
3
) (1, 0, 4

5
)

( 3
8
, 4
9
, 2
3
) ( 1

3
, 1
2
, 1) ( 5

7
, 3
8
, 2
7
)

( 1
5
, 6
7
, 3
7
) ( 3

4
, 7
8
, 5
8
) ( 7

8
, 4
7
, 1
2
)


The two Bezier surfaces are shown in Figure3. The initial guess

Fig. 3. Two quadratic Bezier surfaces.

is specified as x0 = (0.99940.25010.99940.2502) . At the end
of the four iterations the starting point on the curve is computed

as q = (0.72740.23270.73490.2990). The resulting intersection
curve using the continuation method after compute 200 points at
both sides of start point are shown in Figure4. We list some of

Fig. 4. The result curve of intersection two Bezier surfaces on the u, v

space in Ex. 5.2.

points as follows.

5.3 Example
We will use the two surfaces in example (5.1 ) but here we use the
Marching Method with Differential Equations the result of inter-
section curve compute 100 points and choose d = 0.2 are shown
in figure 5. We list some of points as follows.

Fig. 5. Result curve obtained by using Marching Method Ex.5.3
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Table 2. List some of intersection points for example 5.2
kth point Coordinates kth point Coordinates

0 (0.7274,0.2327,0.7849,0.2990) 57 (0.3939,0.1505,0.3981,0.1613)
5 (0.6506,0.4785,0.7954,0.5829) 64 (0.3862,0.1536,0.3904,0.1637)

15 (0.5868,0.5138,0.7475,0.6408) 77 (0.3827,0.1550,0.3870,0.1649)
25 (0.5839,0.5149,0.7450,0.6428) 80 (0.3825,0.1551,0.3868,0.1650)
33 (0.7031,0.1782,0.7436,0.2362) 81 (0.3825,0.1551,0.3867,0.1650)
78 (-1.3338,2.3919,-1.3338,2.3919) 409 (-1.9364,1.9366,-1.9364,1.9366)
100 (-1.6064,2.2180,-1.6064,2.2180) 420 (-1.9364,1.9366,-1.9364,1.9366)
130 (-1.7882,2.0742,-1.7882,2.0742) 433 (-1.9364,1.9366,-1.9364,1.9366)
200 (-1.9123,1.9604,-1.9123,1.9604) 450 (-1.9365,1.9365,-1.9365,1.9365)

Table 3. List some of intersection points for example 5.3
kth point Coordinates kth point Coordinates

0 (1.9365,1.9365,1.9365,1.9365) 54 (-2.7343,-0.1545,-2.7343, 0.1545)
7 (2.5752,0.9319,2.5752, 0.9319) 60 (-2.5415,1.0202,-2.5415,1.0202)
15 (2.6621,-0.6430,2.662,-0.6430) 67 (-1.7174 ,2.1332 ,-1.7174,2.1332)
23 (1.8658,-2.0047,1.8658,-2.0047) 73 (-0.6501,2.6603,-0.6501,2.6603)
33 (0.0527,-2.7381,0.0527,-2.7381) 80 (0.7345,2.6383,0.7345,2.6383)
37 (-0.7380,-2.6373,-0.7380,-2.6373) 89 (2.1934,1.6399,2.19341.6399)
40 (-1.2936,-2.4139,-1.2936-2.4139) 93 (2.5727,0.9388,2.5727,0.9388)
43 (-1.7873,-2.0750,-1.7873,-2.0750) 97 (2.7341,0.1581,2.7341,0.1581)
50 (-2.5739,-0.9353,-2.5739 ,0.9353) 100 (2.7031,-0.4399 ,2.7031,-0.4399)

5.4 Example
We will use the two surfaces in example (5.2) but here we use the
Marching Method with Differential Equations the results of inter-
section curve are shown in figure 6. We can drive 60 points using

Fig. 6. Result curve obtained by using Marching Method for Bezier sur-
faces.

the Marching Method with Differential Equations, and we list some
of them as follows.

6. CONCLUSION
I presented two different algorithms for computing the intersection
curve between two parametric surfaces. I implemented the meth-
ods using Matlab software and applied them to many test cases
include Bezier surface. The continuation method was able to deal
with all test cases. It may produce subsequent points on the inter-
section curve along the tangent direction but not all the points. We
have noticed using this practical method that the processing time

taking is short which make it relatively fast meanwhile it keeps its
accuracy rate relatively high. After experimenting with Marching
Method with Differential Equations we arrived at the conclusion
this method is very general, it can be applied to any pair of para-
metric surfaces and it has shown a very good performance in the
examples described in this paper but it takes longer time specially
in Bezier surfaces and the accuracy is not very sufficient, so these
methods for Bezier surface have not yet been developed enough to
come up with practical results and warrant further research.
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