
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

18

Fast Computational Mining Technique for XML Query

Answering Support

R.Brindhadevi, M.Tech
.J.Jabez, ME

Department of Information Technology, Professor of Information Technology,
Sathyabama University, TN. IndiaSathyabama University, TN.India

ABSTRACT

The database research field has focused on the Extensible

Mark-up Language (XML) because of its adaptable

progressive nature which can use to represent to huge amount

of data, likewise it doesn't have absolute and fixed schema,

yet having possibly spasmodic and deficient structure. Quite

hard undertaking to concentrate data from semi organized

documents and is set to wind up more challenging as the

measure of computerized data accessible on the Internet

develops. Really, the data set returned as response to a query

may be so enormous it is not possible pass on interpretable

information, as documents are regularly so extensive. A

methodology based on Tree- Based Association Rules

(TARs), which furnish rough, intentionaldata about the

structure and the contents of XML documents both, and

additionally it might be saved in XML format. This mined

information is utilized to give, a brief thought of both the

structure and the content of the XML archive and snappy,

inexact replies to queries at whatever point needed.

Index Terms
Extensible mark-up Language (XML), query answering, data

mining, intentionaldata, Tree-Based Association Rules.

1. INTRODUCTION
Data mining is generally used to concentrate intriguing

learning from a lot of data saved in databases or data

warehouses. This learning could be spoken to in numerous

diverse routes, for example, bunches, choice trees, choice

tenets and so forth. Around them, cooperation standards have

been demonstrated compelling device to finding fascinating

relations in huge measures of data. Throughout the later

years, we have seen the sensational advancement of the

extensible Mark-up Language (XML) as a significant

standard for saving and trading information. The database

research field has focused on XML as an expressive and

adaptable progressive model suitable to speak to immense

measures of data with no total and altered outline, and with a

perhaps unpredictable and inadequate structure. In spite of its

great development in ubiquity, XML is as of now needing

proper systems to recover datasets accessible to easy clients.

The first hails from the custom of information recovery [9],

where most searches are performed on the literary substance

of the archive; this implies that no preference is inferred from

the semantics passed on by the report structure. With respect

to Query-answering, since query dialects for semi organized

data depend on the record structure to pass on its semantics,

in place for query plan to be compelling clients requirement

to know this structure ahead of time, which is regularly not

the situation, actually, it is not required for a XML archive to

have a characterized mapping: half of the reports on the web

don't hold one [5]. The point when clients define questions

without knowing the archive structure, they may neglect to

recover information which was there, however under recover

information which was there, yet under an alternate structure.

This restriction is a critical problem, which finished not

develop in the connection of social database administration

frameworks. Regular, tragic conclusions of this circumstance

are either the information overload problem, where an

excessive amount of data are incorporated in the response in

light of the fact that the set of keywords specified for the

search catches an excess of implications, or the information

deprivation problem, where either the utilization of in fitting

keywords or the wrong definition of the query, avoid the

client from accepting the right reply. As a result, when

entering despite any precedent to the contrary a huge dataset,

picking up some general information about its principle

structural and semantic qualities helps examination on

additional particular portions.

Uncovering repetitive examples inside XML (records)

furnishes fantastic information about the report substance:

Frequent examples are indeed deliberate data about the data

held in the record itself, that is, they define the archive

regarding a set of lands instead of by method of data. Rather

than the point by point and exact data passed on by the data,

this data is halfway and frequently inexact, however

manufactured and concerns both the record structure and its

substance. The thought of mining association rules[1],[2] to

give outlined representations of XML records has been

researched in numerous recommendations either by utilizing

dialects, for example, XQuery, JQuery and so forth., and

systems created in the XML connection or executing diagram

or tree-based calculations. In this paper we present a proposal

for mining and saving Tars (Tree-based Association Rules)

as an intends to speak to deliberate information in local XML.

Instinctively, a TAR speaks to deliberate learning as SB SH,
where SB is the assemblage of tree and SH is head tree of the

principle and SB is a sub tree of SH. The principle SBSH

states that, if the tree SB shows up in a XML report D, it is

likely that the "more extensive", tree SH likewise shows up

in D. Graphically, we render the hubs of the assembly of a

standard by method of black circles and the hubs of the head

by empty circles.

Summarizing, TARs are extracted for two main purposes: 1)

To get a concise idea-the gist-of both the structure and the

content of an XML document, and 2) To use them for
purposeful query answering, that is, allowing the client to

query the extracted TARs rather than the original document

1.1 Goalsand Contributions
In this method for determining intentional knowledge from

XML documents as TARs, and storingthese TARs as an

alternative, synthetic dataset to be queried for furnishing

quick and summarized answers. OurStrategy is described by

the following key aspects:

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

19

1. It works directly on the XML documents, without

converting the data into any intermediate format.

2. It searches for general association rules, without the

need to force what should be heldin the Antecedent and

consequent of the rule.

3. It stores an association rules in xml format.

4.It converts the queries on the original dataset into

queries on the TARs set.

The aim of our proposal is to give an approach to utilize

deliberate information as a substitute of the first ever record

throughout querying and not to enhance the execution time of

the queries over the first XML dataset.

Accordingly, the project contributions are:

An improved version of the TARs extraction algorithm found

in which was based on Path Join. The form utilizes the better

performing CMTreeMiner to mine frequent sub trees from

XMLDocument.Approach validation by means of

experimental results, acknowledgingboth the previous and

the current Algorithm and showing the changes

Automatic user-query change into “equivalent” queries over

the mined deliberate knowledge.

As a formal corroboration of the accuracy of the procedure,

the verification that our intentional-answering Process is

sound and complete up to a Frequency threshold.

1. 2.Structure Of The Paper
Our paper is composed as accompanies. Section 2

characterizes Tree-based Association Rules (Tars) and

presents their utilization, while section 3 presents how these

rules are concentrated from XML archives. Section 4

displays the fundamental fascinating provision of Tars that is

their utilization to furnish intentional replies to questions.

Section 5 depicts a model that actualizes our proposal.

Section 6 reaches the inference and future work.

2. TREE ASSOCIATION RULES

Association rule is a significance of the structure X=>Y,

where the rule body X and head Y are subsets of the situated

I of items (I= I1, I2… In}) inside a set of transactions D and

X∩Y=0 guideline X=>Y states that the transaction T that

hold the things in X are liable to hold likewise the terms in Y.

Association rules are described by two measures: the support,

which measures the rate of transactions in D that hold both

things X and Y (XUY); the confidence, which measures the

rate of transactions in D holding the things X that likewise

hold the things Y (support (XUY) /support(X)). In XML

connection, both Dand I are accumulation of trees. In this

work we expand the idea of association guideline presented

in the setting of socialdatabases to adjust it to thevarious

level nature of XML documents. Emulating the Info set

assemblies, we speak to a XML archive as a tree N, E, r, l, c

where N is the situated of hubs, r N is the base of the tree, E

is the situated of edges, l : NL is the mark capacity which

furnishes a proportional payback of hubs (with L is the area

of all tags) and c : N C { } is the content capacity which

furnishes a proportional payback of nodes(with C the

dominion of all contents). We think about the element-just

Info set content model [14], where XML non-terminal tags

incorporate just different elements and/or attributes, while

the content is restricted to terminal elements. We are

intrigued by discovering connections around sub trees of

XML documents. Therefore, since both text based content of

leaf elements and qualities of attributes pass on "content", we

don't recognize them. As a result, for the purpose of

coherence, we don't report the edge name and the hub sort

mark in the name in the figures. Attributes and elements are

portrayed by empty circles, although the printed content of

elements, or the quality of attributes, is accounted for under

the friendly edge of the elements or attributes.

2.1. Fundamental Concepts

Given two trees T = (NT, ET, rT, lT, cT) and S = (NS, ES, rS,

lS, cS), S is an induced sub tree of T if and only ifthere exists

a mapping : NSNT such that for each node niNS,

lT(ni) = lS(nj) and cT(ni) = cS(nj), where(ni) = nj,induced

subtree of t and rS = rT. Given a tree T = NT, ET, rT, lT, cT

, a subtree of T, t = Nt, Et, rt, lt, ct and a client-fixed

support threshold smin: (i) t is frequent if its support is

greater or at least equal to smin; (ii) t is Maximum if it is

frequent and none of its proper super trees is frequent; (iii) t

is closed if none of its proper a super tree has support greater

than that of t.

A Tree-based Association rule (TAR) is a tuple of the form

Tr = SB, SH, sTr, cTr , where SB = NB, EB, rB, lB,cB

and NH, EH, rH, lH, cH are trees and sTr, and cTr are

real numbers in the interim [0, 1] representing the Support

and confidence of the rule respectively. A TAR describes the

co-event of the two trees SB and SH in an XML document.

For the sake of readability we shall often use the short

notation SBSH; SB is called the body or antecedent of Tr

while SH is the head or consequent of the rule. Besides, SB

is a subtree of SH with an extra property on the node labels;

the set of tags of SB is contained in the set of tags of SH with

the addition of the empty label “ϵ”: SB (NSB) SB

(NSB)  {ϵ}.The empty label is introduced because the

body of a rule may contain nodes with unspecified tags, that

is, blank nodes. In addition:

1) A rooted TAR (RTAR) is a TAR such a SB is rooted

subtree of SH

2) An extended TAR (ETAR) is a TAR such that SB is

an induced subtree of SH.

Fig.1. TARs

(a) An eg of XML document. (b) Tree-Based representation.

(c) Two induced sub trees.(d) A rooted sub tree. Let count(S,

D) indicate the number of occurrencesof a sub tree S in the

tree D and cardinality (D) denote theNumber of nodes of D.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

20

We formally define the support ofA TAR SBSH as count

(SH, D)/cardinality (D) and its confidence as a count (SH,

D)/count (SB, D)

Notice that TARs, in addition to association betweendata

values, also provide information about the structure of

successive parts of XML documents; thus they are more

expressive than traditional association rules which

onlyprovide frequent correlations of even values.

3. TAR EXTRACTION

TAR mining is a methodology made out of two steps:

1) Mining incessant sub trees, that is, sub trees with a support

above a user defined threshold, from the XML document 2)

Computing intriguing rules, that is, rules with a trust above a

client characterized limit, from the continuous sub trees.

Algorithm 1 exhibits our development to a non-specific

regular subtree-mining calculation so as to process intriguing

Tars. The inputs of Algorithm 1 are the XML record D, the

threshold for the support of the incessant sub trees minsupp,

and the threshold for the confident of the rule, minconf.

Algorithm 1 Get Interesting-Rules (D, minsupp, minconf)

1: // frequent sub trees

2: FS = Find Frequent subtrees (D, minsupp)

3: rule Set = 

4: for all s ∈ FS do

5: // rules computed from s

6: tempset = Compute-Rules(s, minconf)

7: // all rules n

8: ruleSet = ruleSet U tempSet

9: end for

10: return ruleSet

Function 1 Compute-Rules(s, minconf)

1: ruleSet = ; blackList = 

2: for all cs, subtrees of s do

3: if cs is not a subtree of any element in blackList then

4: conf = supp(s) / supp (cs)

5: if conf≥minconf then

6: newRule = {cs, s, conf, supp(s)}

7: ruleSet = ruleSet {newRule}

8: else

9: blackList = blackList cs

10: end if

11: end if

12: end for

13: return ruleSet

Algorithm 1 finds regular sub trees and then hands each of

them over to a capacity that registers all the conceivable rules.

Contingent upon the amount of incessant sub trees and their

cardinality, the measure of rules created by a naive Compute

Rules function may be quite high. Given a subtree with n

hubs, we could produce 2n-2 rules, making the algorithm

exponential. This eruption occurs in the relational connection

too, accordingly, based on comparable contemplations, it is

conceivable to state the accompanying property that permits

us to propose the upgraded adaptation of register rules

demonstrated in function 2.

Remark 1. If the confidence of a rule SBSH is below the

established threshold minconf then the confidence ofevery

other rule SBiSHi, such that its body SBi is an induced

subtree of the body SB, is no longer thanminconf. Consider

Fig 2, which shows a frequent sub tree (Figure 2a) and three

possible TARs mined from thetree; all the three rules have

the same support k and confidence to be calculated. Let the

support of the bodytree of rule (1) be s. Since the body trees

of rules (2) and (3) are sub trees of the body tree of rule (1),

theirSupport is at least s, and potentially higher. This means

that the confidences of rules (2) and (3) are equal otherwise

less than the confidence of rule (1).

(a) (1) (2) (3)

Fig.2. Rule examples for Property

1In Function 2 Tars are mined misusing Remark 1

byproducing first the principles with the most noteworthy

number of hubs in the body tree. Think about two principles

Tr1 and Tr2 whose body trees hold one and three nodes

separately; assume both rules have confidence underneath the

settled threshold. In the event that the algorithm recognizes

standard Tr2 first and foremost, all runs whose figures are

prompted subtrees of Tr2 will be disposed of when Tr2 is

eliminated. Thusly, it is more helpful to first produce

principle Tr2 and when all is said in done, to begin the

mining methodology from the principles with a bigger figure.

Utilizing this result, we can bring down the unpredictability

of the calculation, however insufficient to make it perform

superior to exponentially. Then again, perceive that the

procedure of determining Tars from XMLarchives is just

completed intermittently. Since intensional learning speaks to

continuous data, to redesign it, it is attractive to perform such

transform after huge measures of overhauls have been made

on the first archive. In this manner, on account of stable

records (that is, those that are infrequently upgraded) the

calculation must be connected few times or once (for reports

that don't change). When the mining procedure has

completed and continuous Tars have been concentrated, they

are archived in XML format.

This conclusion has been taken to allow the use of the same

language for querying both the original dataset and the mined

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

21

rules. Each rule is saved inside a <rule> element, which

contains three, characteristic for the ID, support and

confidence of a rule. Follows the list of elements, one for

each hub in the rule head. We misuse the fact that the body

of the rule is a subtree of the head, and utilize a Boolean

attribute in each node to indicate if it also belongs to the

body. Every blank node is described by an element <blank>.

At last, the rules in the XML file are sorted on the amount of

hubs of their predecessor; this is an essential characteristic

that is utilized to improve the answering of queries holding a

check operator. One of the (obvious) explanations behind

utilizing TARs rather than the original document is that

handling the archive. To exploit this, we acquaint records on

TARs with further accelerate the right to gain entrance to

mined trees - and all in all of purposeful query answering. As

a rule, path indexes are proposed to rapidly answer queries

that accompany some incessant path pattern, and are

fabricated by indexing just those ways having greatly visit

questions. We begin from an surrogate point of view: we

need to furnish speedy, and frequently inexact, answers

likewise to casual queries.

Given a set R of rules, the index connects, with every path p

available in at least one rule of R, the references to rules that

have p in SH. An index is an XML document containing a set

of trees T1…..Tn such that each node n of each tree Ti

contains a set of references to the rules containing in SH the

path from the root of Ti to n. A TAR-index contains

references both to iTARs, sTARs, and is constructed by Alg2.

Algorithm 2 Create-Index (D)

1: for all Di ∈ D do

2: for all dj ∈ Di with j∈ {2, 3 . . . n} do

3: references (root (d1)) = references (root (d1)) references

(root (dj))

4: sumChildren (d1, dj)

5: end for

6: end for

7: return D

Function 2 sumChildren (T1, T2)

1: for all x ∈ children (root (T2)) do

2: if c ∈ children (root (T1)) | c = x then

3: references (root(c)) = references (root(c)) references

(root(x))

4: c = sumChildren(c, x)

5: else

6: addChild (root (T1), x)

7: end if

8: end for

9: return

4. INTENSIONAL ANSWERS
ITARs (deliberate Tree-based Association Rules) furnish an

approximate intensional perspective of the content of an

XML record, which is when all is said in done more succinct

than the extensional one since it depicts the data in termsOf

its properties, and since just the properties that are checked

by a high number of items are concentrated. A Client query

over the first dataset might be immediately changed into a

query over the concentrated iTARs.

The response will be anintentional, on the grounds that,

instead of giving the set of data fulfilling the query, the

framework will reply with a set of properties that these data

"frequently fulfilled", along with support and confidence.

There are two major advantages:

 i) querying iTARs requires less time than querying the

original XML document;

 ii) Approximate, intensional answers are in some cases more

useful than the extensional ones (see theIntroduction). Not all

queries lend themselves to being transformed into queries on

iTARs; we list three classesof queries that can be

transformed by maintaining the soundness; Additionally, we

describe how such transformationcan be automatically done.

Algorithm 3 Class1-Query (vF ,VW, CONN, vOB)

1: // the intentional query is empty

2: IQ=ϵ

3: if VW ≠ ∅ then

4: // get instance rule for paths with a constraint

5: IQ = IQ • get iTARs (vF, VW, CONN, false)

6: else

7: // structure rule for the path without constraint

8: IQ = IQ • get sTARs (vF)

9: end if

10: // order the results

11: IQ = IQ • “for $r in $Rules/RuleOrder by $r/vF /vOB

return $r”

12: return IQ

Function 3: get iTARs (for, variables, connectives, count)

1: Q = ϵ

2: for all VJ ∈ variables do

3: if count = true then

4: // for count queries match only in antecedent

5: Q=Q•“let $RefI_j:=references A (for, VJ)”

6: else

7: // for queries without include match both in antecedent

and consequent

8: Q=Q • “let $RefI_j:=references (for, VJ)”

9: end if

10: end for

11: Q=Q • “let $Rules: =”

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

22

12: for all vj ∈ variables, j ∈ {1 . . . n} do

13: Q=Q • “ruleset ($RefI_j) connectivej”

14: end for

15: return Q

Function 4: get sTARs (variable)

1: Q=“let $RefS: =references (variable, “”)

let $Rules: = ruleset ($RefS)”

2: return Q

Syntax
for variable in path

[Where condition [(and/or) condition]]

[order by element [asc|desc]] return variable

Class 2: count- queries: Used to number the amount of

elements having a particular content. The query makes a set

holding the elements which fulfil the conditions and then

gives back the number of elements in such set. For instance,

"Recover the amount of occurrences".

This class of queries is revamped utilizing Algorithm 4. The

effect is a query qi that determines the iTARs, which fulfil

the first query conditions, and gives back the support of the

first rule, which has been found, partitioned by its

confidence. Perceive that, since rules are requested as per the

amount of hubs in their precursor, the first rule will be either

the one, which fulfils all, and just the asked for conditions or

its best rough guess (that is, a rule whose antecedent fulfils

all the coveted conditions and holds the minimum number of

nodes).

Algorithm 4 Class2-Query (vF, VW, CONN)

1: // the intensional query is empty

2: IQ =ϵ

3: // get instance rule for path with a constraint

4: IQ = IQ• get iTARs (vF, VW, CONN, true)

5: IQ = IQ • get count ()

6: IQ= IQ • “return $supp div $conf”

7: return IQ

Class 3: top-k queries: Used to select the best k responses

satisfying a counting and amassing condition. The query

counts the occurrences of each dissimilar value of a variable

in a desired set; then orders the variables with respect to their

occurrences and returns the most frequent k. For example,

“"Recover those k most utilized sorts of nation”.

This class of queries is rewritten using Alg 5. The result will

be a query qI that for each distinct value of a variable finds

the comparing sTARs and uses them to compute the number

of occurrences of each value; ranks the values according to

the computed count and returns all the rules associated with

the first k stacked up values.

Function 5: get count ()

1: Q =“let $supp:=$Rules/Rule[1]@support

let $conf: =$Rules/Rule [1] @confidence”

2: return Q

Syntax
let $set: = (class 1 query)

Return count ($set)

Algorithm 5 Class3-Query (vDV, vF, VW, CONN)

1: IQ =ϵ // the intensional query is empty

2: IQ = IQ • get sTARs (vDV)// get instance rules for paths

with a constraint

3: IQ = IQ • “for $v in distinct-values ($Rules/vDV)”

4: IQ = IQ • get iTARs (vF, VW, CONN, true)

5: IQ = IQ • get count ()

6: IQ = IQ • “order by $supp div $conf descending

return $Rules) [position () <=k]”

7: return IQ

Syntax
(for variable in distinct-values (path)

Let $set: = (class 1 query)

Order by count ($set) desc

Return variable) [position () <= k]

Perceive that, in all classes of queries, conditions might be

forced on the descendants of the element that is returned and

not on its ancestors.

That is, a query holding conditions on the contents of an

element should be as portrayed in (where x is the element

returned by the query).

Fig.3 A Graphical Representation

<index>

<antecedent>

<bullet><ref>2</ref><ref>3</ref>

<type> Winchester

<ref>3</ref>

</type></bullet>

</antecedent>

<Consequent>

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

23

<incident>

<ref>1</ref><ref>2</ref>

<ref>3</ref><ref>4</ref>

<type> robbery

<ref>1</ref><ref>4</ref>

</type>

<country> Italy

<ref>4</ref>

</country>

</incident>

</consequent>

</index>

Fig.4 Intentional query answering

5. EXPERIMENTAL RESULTS

5.1. TheTree Ruler Prototype
Tree Ruler is a prototype tool that incorporates all the

functionalities proposed in our methodology. Given an

XMLDocument, the tool is able to extract intentional

knowledge and permits the user to form traditional queries

asWell as queries over the intentional knowledge.

Figure 1 shows the design of the tool. Specially, given the

XML document, it is possible to extract Tree-based rules and

the corresponding indexed.

The user figures XQuery articulations on the data and these

queries are immediately interpreted to be executed on the

deliberate information. The response is given regarding the

set of Tree-based rules which re and so forth the search

criteria. It is com postured by some tabs for performing

distinctive tasks. Specifically, there are three tabs:

Fig. 5: Tree Ruler Architecture

 Get the Gist allows intentional information

extraction from an XML file, given support, confidence and

the files where the extracted TARs and their index are to be

stored.

 Get the Idea allows showing intentional

information as well as the original document, to give users

the possibility to compare the two class of information.

 Get the Answers allows querying anintentional

knowledge and the original XML document. Users have to

compose an extensional query.

6. CONCLUSIONS AND FUTURE WORK
The main objectives we have attained in this work are:

1) Mine all continuous association rules without forcing any

apriority restriction on the structure and the contentof the

rules.

2) Store extracted information in XML format.

3) Use mined knowledge to gain information about the

original datasets.

Casual clients can search the data by a keyword without any

data base knowledge from XML storage media.

We have not examined the updatability of both the document

storing TARs and their index’s an progressing work, we are

studying how to incrementally update mined TARs when the

original XMLDataset change and how to further upgrade our

mining efficient algorithm; additionally, for the moment we

dealwith a (substantial) fragment of XQuery; we would like

to find the exact section of XQuery, which lends itselfto

interpretation into an intentional queries.

7. REFERENCES

[1] Agrawal.R and Srikant.R, “Fast Algorithms for Mining

Association Rules in Large Databases,” 2004, Proc.

20th Int’l Conf. Very Large Data Bases, pp. 478-499.

[2] Baralis.E, Garza.P, Quintarelli, and Tanca.L,

“Answering XML Queries by Means of Data

Summaries,” vol .25, 2007 ACM Trans. Information

Systems, p.no. 3, p. 10.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.4, April 2014

24

[3] Barbosa.D, Mignet.L, and Veltri.P, “Studying the XML

Web: Gathering Statistics from an XML Sample,”

World Wide Web, vol. 8, no. 4, 2005, pp. 413-438.

[4] Braga.D,.Campi.A, Ceri.S, Klemettinen.M, and Lanzi.P,

“Discovering Interesting Information in XML Data with

Association Rules,” 2003,Proc. ACM Symp. Applied

Computing, pp. 450-454.

[5] Chi.Y,Yang.Y, Xia.Y, and Muntz.R.R, “CMTreeMiner:

Mining both Closed and Maximal Frequent Subtrees,”

2004, Proc. Eighth Pacific- Asia Conf. Knowledge

Discovery and Data Mining, pp. 63-73.

[6] Evfimievski.A, Srikant.R, Agrawal.R, and Gehrke.J,

“PrivacyPreserving Mining of Association Rules,”2012,

Proc. Eighth ACM Int’l Conf. Knowledge Discovery

and Data Mining, pp. 217-228.

[7] Gasparini.S and Quintarelli.E, “Intensional Query

Answering to XQuery Expressions,” 2005, Proc. 16th

Int’l Conf. Database and Expert Systems Applications,

pp. 544-553.

[8] Mazuran.M, Quintarelli.E, and Tanca.L, “Mining Tree-

Based Association Rules from XML Documents,”

technical report, 2009, Politecnicodi Milano,

http://home.dei.polimi.it/quintare/Papers/MQT09-

RR.pdf,

[9] Paik.J, Youn.H.Y and Kim.U.M, “A New Method for

Mining Association Rules from a Collection of XML

Documents,”2005, Proc. Int’l Conf. Computational

Science and Its Applications, pp. 936-945.

[10] Termier.A, Rousset.M, and Sebag.M, “Dryade: A New

Approach for Discovering Closed Frequent Trees in

Heterogeneous Tree Databases,”2004, Proc. IEEE

Fourth Int’l Conf. Data Mining, pp. 543-546

[11] World Wide Web Consortium, XML Schema,

http://www.w3c.org/TR/xml

schema,2001.www.w3C.org/xml-info set/, 2001.

[12] W3C XML Schema,2001.

http://www.w3C.org/TR/xmlschema-1/.

[13] W3C. XML information Set, 2001.

http://www.w3C.org/xml-infoset/.

[14] W3C. XQuery 1.0: An xml query language, 2007.

http://www.w3C.org/TR/xquery.

[15] Wang.K. and Liu. Discovering typical structures of

documents: a roadmap approach. In Proc. of the 21st Int.

Conf. on Research.

IJCATM : www.ijcaonline.org

