
International Journal of Computer Applications (0975 – 8887)  

Volume 92 – No.4, April 2014 

18 

Fast Computational Mining Technique for XML Query 

Answering Support 

 

R.Brindhadevi, M.Tech 
.J.Jabez, ME 

Department of Information Technology, Professor of Information Technology, 
Sathyabama University, TN. IndiaSathyabama University, TN.India 

 

 

ABSTRACT 

The database research field has focused on the Extensible 

Mark-up Language (XML) because of its adaptable 

progressive nature which can use to represent to huge amount 

of data, likewise it doesn't have absolute and fixed schema, 

yet having possibly spasmodic and deficient structure. Quite 

hard undertaking to concentrate data from semi organized 

documents and is set to wind up more challenging as the 

measure of computerized data accessible on the Internet 

develops. Really, the data set returned as response to a query 

may be so enormous it is not possible pass on interpretable 

information, as documents are regularly so extensive. A 

methodology based on Tree- Based Association Rules 

(TARs), which furnish rough, intentionaldata about the 

structure and the contents of XML documents both, and 

additionally it might be saved in XML format. This mined 

information is utilized to give, a brief thought of both the 

structure and the content of the XML archive and snappy, 

inexact replies to queries at whatever point needed. 

Index Terms 
Extensible mark-up Language (XML), query answering, data 

mining, intentionaldata, Tree-Based Association Rules. 

1. INTRODUCTION 
Data mining is generally used to concentrate intriguing 

learning from a lot of data saved in databases or data 

warehouses. This learning could be spoken to in numerous 

diverse routes, for example, bunches, choice trees, choice 

tenets and so forth. Around them, cooperation standards have 

been demonstrated compelling device to finding fascinating 

relations in huge measures of data. Throughout the later 

years, we have seen the sensational advancement of the 

extensible Mark-up Language (XML) as a significant 

standard for saving and trading information. The database 

research field has focused on XML as an expressive and 

adaptable progressive model suitable to speak to immense 

measures of data with no total and altered outline, and with a 

perhaps unpredictable and inadequate structure. In spite of its 

great development in ubiquity, XML is as of now needing 

proper systems to recover datasets accessible to easy clients. 

The first hails from the custom of information recovery [9], 

where most searches are performed on the literary substance 

of the archive; this implies that no preference is inferred from 

the semantics passed on by the report structure. With respect 

to Query-answering, since query dialects for semi organized 

data depend on the record structure to pass on its semantics, 

in place for query plan to be compelling clients requirement 

to know this structure ahead of time, which is regularly not 

the situation, actually, it is not required for a XML archive to 

have a characterized mapping: half of the reports on the web 

don't hold one [5]. The point when clients define questions 

without knowing the archive structure, they may neglect to 

recover information which was there, however under recover 

information which was there, yet under an alternate structure. 

This restriction is a critical problem, which finished not 

develop in the connection of social database administration 

frameworks. Regular, tragic conclusions of this circumstance 

are either the information overload problem, where an 

excessive amount of data are incorporated in the response in 

light of the fact that the set of keywords specified for the 

search catches an excess of implications, or the information 

deprivation problem, where either the utilization of in fitting 

keywords or the wrong definition of the query, avoid the 

client from accepting the right reply. As a result, when 

entering despite any precedent to the contrary a huge dataset, 

picking up some general information about its principle 

structural and semantic qualities helps examination on 

additional particular portions. 

Uncovering repetitive examples inside XML (records) 

furnishes fantastic information about the report substance: 

Frequent examples are indeed deliberate data about the data 

held in the record itself, that is, they define the archive 

regarding a set of lands instead of by method of data. Rather 

than the point by point and exact data passed on by the data, 

this data is halfway and frequently inexact, however 

manufactured and concerns both the record structure and its 

substance. The thought of mining association rules[1],[2] to 

give outlined representations of XML records has been 

researched in numerous recommendations either by utilizing 

dialects, for example, XQuery, JQuery and so forth., and 

systems created in the XML connection or executing diagram 

or tree-based calculations. In this paper we present a proposal 

for mining and saving Tars (Tree-based Association Rules) 

as an intends to speak to deliberate information in local XML. 

Instinctively, a TAR speaks to deliberate learning as SB SH, 
where SB is the assemblage of tree and SH is head tree of the 

principle and SB is a sub tree of SH. The principle SBSH 

states that, if the tree SB shows up in a XML report D, it is 

likely that the "more extensive", tree SH likewise shows up 

in D. Graphically, we render the hubs of the assembly of a 

standard by method of black circles and the hubs of the head 

by empty circles. 

Summarizing, TARs are extracted for two main purposes: 1) 

To get a concise idea-the gist-of both the structure and the 

content of an XML document, and 2) To use them for 
purposeful query answering, that is, allowing the client to 

query the extracted TARs rather than the original document 

1.1 Goalsand Contributions 
In this method for determining intentional knowledge from 

XML documents as TARs, and storingthese TARs as an 

alternative, synthetic dataset to be queried for furnishing  

quick and summarized answers. OurStrategy is described by 

the following key aspects: 
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1. It works directly on the XML documents, without 

converting the data into any intermediate format. 

2.  It searches for general association rules, without the 

need to force what should be heldin the      Antecedent and 

consequent of the rule. 

3.  It stores an association rules in xml format. 

4.It converts the queries on the original dataset into 

queries on the TARs set. 

The aim of our proposal is to give an approach to utilize 

deliberate information as a substitute of the first ever record 

throughout querying and not to enhance the execution time of 

the queries over the first XML dataset. 

Accordingly, the project contributions are: 

An improved version of the TARs extraction algorithm found 

in which was based on Path Join. The form utilizes the better 

performing CMTreeMiner to mine frequent sub trees from   

XMLDocument.Approach validation by means of 

experimental results, acknowledgingboth the previous and 

the current Algorithm and showing the changes 

Automatic user-query change into “equivalent” queries over 

the mined deliberate knowledge. 

As a formal corroboration of the accuracy of the procedure, 

the verification  that our intentional-answering Process is 

sound and complete up to a  Frequency threshold. 

1. 2.Structure Of The Paper 
Our paper is composed as accompanies. Section 2 

characterizes Tree-based Association Rules (Tars) and 

presents their utilization, while section 3 presents how these 

rules are concentrated from XML archives. Section 4 

displays the fundamental fascinating provision of Tars that is 

their utilization to furnish intentional replies to questions. 

Section 5 depicts a model that actualizes our proposal. 

Section 6 reaches the inference and future work. 

2. TREE ASSOCIATION RULES 

Association rule is a significance of the structure X=>Y, 

where the rule body X and head Y are subsets of the situated 

I of items (I= I1, I2… In}) inside a set of transactions D and 

X∩Y=0 guideline X=>Y states that the transaction T that 

hold the things in X are liable to hold likewise the terms in Y. 

Association rules are described by two measures: the support, 

which measures the rate of transactions in D that hold both 

things X and Y (XUY); the confidence, which measures the 

rate of transactions in D holding the things X that likewise 

hold the things Y (support (XUY) /support(X)). In XML 

connection, both Dand I are accumulation of trees. In this 

work we expand the idea of association guideline presented 

in the setting of socialdatabases to adjust it to thevarious 

level nature of XML documents. Emulating the Info set 

assemblies, we speak to a XML archive as a tree N, E, r, l, c 

where N is the situated of hubs, r N is the base of the tree, E 

is the situated of edges, l : NL is the mark capacity which 

furnishes a proportional payback of hubs (with L is the area 

of all tags) and c : N C { } is the content capacity which 

furnishes a proportional payback of nodes(with C the 

dominion of all contents). We think about the element-just 

Info set content model [14], where XML non-terminal tags 

incorporate just different elements and/or attributes, while 

the content is restricted to terminal elements. We are 

intrigued by discovering connections around sub trees of 

XML documents. Therefore, since both text based content of 

leaf elements and qualities of attributes pass on "content", we 

don't recognize them. As a result, for the purpose of 

coherence, we don't report the edge name and the hub sort 

mark in the name in the figures. Attributes and elements are 

portrayed by empty circles, although the printed content of 

elements, or the quality of attributes, is accounted for under 

the friendly edge of the elements or attributes. 

2.1. Fundamental Concepts 

Given two trees T = (NT, ET, rT, lT, cT) and S = (NS, ES, rS, 

lS, cS), S is an induced sub tree of T if and only ifthere exists 

a mapping : NSNT such that for each node niNS, 

lT(ni) = lS(nj) and cT(ni) = cS(nj), where(ni) = nj,induced 

subtree of t and rS = rT. Given a tree T = NT, ET, rT, lT, cT 

, a subtree of T, t = Nt, Et, rt, lt, ct and a client-fixed 

support threshold smin: (i) t is frequent if its support is 

greater or at least equal to smin; (ii) t is Maximum if it is 

frequent and none of its proper super trees is frequent; (iii) t 

is closed if none of its proper a super tree has support greater 

than that of  t. 

A Tree-based Association rule (TAR) is a tuple of the form 

Tr = SB, SH, sTr, cTr , where SB = NB, EB, rB, lB,cB 

and NH, EH, rH, lH, cH are trees and sTr, and cTr are 

real numbers in the interim [0, 1] representing the Support 

and confidence of the rule respectively. A TAR describes the 

co-event of the two trees SB and SH in an XML document. 

For the sake of readability we shall often use the short 

notation SBSH; SB is called the body or antecedent of Tr 

while SH is the head or consequent of the rule. Besides, SB 

is a subtree of SH with an extra property on the node labels; 

the set of tags of SB is contained in the set of tags of SH with 

the addition of the empty label “ϵ”: SB (NSB) SB 

(NSB)  {ϵ}.The empty label is introduced because the 

body of a rule may contain nodes with unspecified tags, that 

is, blank nodes. In addition: 

1) A rooted TAR (RTAR) is a TAR such a SB is rooted 

subtree of SH 

2) An extended TAR (ETAR) is a TAR such that SB is 

an induced subtree of SH. 

 

 

Fig.1. TARs 

(a) An eg of XML document. (b)  Tree-Based representation. 

(c) Two induced sub trees.(d) A rooted sub tree.  Let count(S, 

D) indicate the number of occurrencesof a sub tree S in the 

tree D and cardinality (D) denote theNumber of nodes of D. 
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We formally define the support ofA TAR SBSH as count 

(SH, D)/cardinality (D) and its confidence as a count (SH, 

D)/count (SB, D) 

Notice that TARs, in addition to association betweendata 

values, also provide information about the structure of 

successive parts of XML documents; thus they are more 

expressive than traditional association rules which 

onlyprovide frequent correlations of even values. 

3. TAR EXTRACTION 

TAR mining is a methodology made out of two steps:  

1) Mining incessant sub trees, that is, sub trees with a support 

above a user defined threshold, from the XML document 2) 

Computing intriguing rules, that is, rules with a trust above a 

client characterized limit, from the continuous sub trees. 

Algorithm 1 exhibits our development to a non-specific 

regular subtree-mining calculation so as to process intriguing 

Tars. The inputs of Algorithm 1 are the XML record D, the 

threshold for the support of the incessant sub trees minsupp, 

and the threshold for the confident of the rule, minconf. 

Algorithm 1 Get Interesting-Rules (D, minsupp, minconf)  

1: // frequent sub trees 

2: FS = Find Frequent subtrees (D, minsupp)  

3: rule Set =  

4: for all s ∈ FS do  

5: // rules computed from s  

6: tempset = Compute-Rules(s, minconf)  

7: // all rules n 

8: ruleSet = ruleSet U tempSet   

9: end for 

10: return ruleSet 

Function 1 Compute-Rules(s, minconf) 

1: ruleSet = ; blackList = 

2: for all cs, subtrees of s do 

3: if cs is not a subtree of any element in blackList then 

4: conf = supp(s) / supp (cs) 

5: if conf≥minconf then 

6: newRule = {cs, s, conf, supp(s)} 

7: ruleSet = ruleSet {newRule} 

8: else 

9: blackList = blackList cs 

10: end if 

11: end if 

12: end for 

13: return ruleSet 

Algorithm 1 finds regular sub trees and then hands each of 

them over to a capacity that registers all the conceivable rules. 

Contingent upon the amount of incessant sub trees and their 

cardinality, the measure of rules created by a naive Compute 

Rules function may be quite high. Given a subtree with n 

hubs, we could produce 2n-2 rules, making the algorithm 

exponential. This eruption occurs in the relational connection 

too, accordingly, based on comparable contemplations, it is 

conceivable to state the accompanying property that permits 

us to propose the upgraded adaptation of register rules 

demonstrated in function 2. 

Remark 1. If the confidence of a rule SBSH is below the 

established threshold minconf then the confidence ofevery 

other rule SBiSHi, such that its body SBi is an induced 

subtree of the body SB, is no longer thanminconf. Consider 

Fig 2, which shows a frequent sub tree (Figure 2a) and three 

possible TARs mined from thetree; all the three rules have 

the same support k and confidence to be calculated. Let the 

support of the bodytree of rule (1) be s. Since the body trees 

of rules (2) and (3) are sub trees of the body tree of rule (1), 

theirSupport is at least s, and potentially higher. This means 

that the confidences of rules (2) and (3) are equal otherwise 

less than the confidence of rule (1). 

 

 

(a)              (1)                      (2)                   (3) 

Fig.2. Rule examples for Property 

1In Function 2 Tars are mined misusing Remark 1 

byproducing first the principles with the most noteworthy 

number of hubs in the body tree. Think about two principles 

Tr1 and Tr2 whose body trees hold one and three nodes 

separately; assume both rules have confidence underneath the 

settled threshold. In the event that the algorithm recognizes 

standard Tr2 first and foremost, all runs whose figures are 

prompted subtrees of Tr2 will be disposed of when Tr2 is 

eliminated. Thusly, it is more helpful to first produce 

principle Tr2 and when all is said in done, to begin the 

mining methodology from the principles with a bigger figure. 

Utilizing this result, we can bring down the unpredictability 

of the calculation, however insufficient to make it perform 

superior to exponentially. Then again, perceive that the 

procedure of determining Tars from XMLarchives is just 

completed intermittently. Since intensional learning speaks to 

continuous data, to redesign it, it is attractive to perform such 

transform after huge measures of overhauls have been made 

on the first archive. In this manner, on account of stable 

records (that is, those that are infrequently upgraded) the 

calculation must be connected few times or once (for reports 

that don't change). When the mining procedure has 

completed and continuous Tars have been concentrated, they 

are archived in XML format. 

This conclusion has been taken to allow the use of the same 

language for querying both the original dataset and the mined 
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rules. Each rule is saved inside a <rule> element, which 

contains three, characteristic for the ID, support and 

confidence of a rule. Follows the list of elements, one for 

each hub in the rule head. We misuse the fact that the body 

of the rule is a subtree of the head, and utilize a Boolean 

attribute in each node to indicate if it also belongs to the 

body. Every blank node is described by an element <blank>.  

At last, the rules in the XML file are sorted on the amount of 

hubs of their predecessor; this is an essential characteristic 

that is utilized to improve the answering of queries holding a 

check operator. One of the (obvious) explanations behind 

utilizing TARs rather than the original document is that 

handling the archive. To exploit this, we acquaint records on 

TARs with further accelerate the right to gain entrance to 

mined trees - and all in all of purposeful query answering. As 

a rule, path indexes are proposed to rapidly answer queries 

that accompany some incessant path pattern, and are 

fabricated by indexing just those ways having greatly visit 

questions. We begin from an surrogate point of view: we 

need to furnish speedy, and frequently inexact, answers 

likewise to casual queries. 

Given a set R of rules, the index connects, with every path p 

available in at least one rule of R, the references to rules that 

have p in SH. An index is an XML document containing a set 

of trees T1…..Tn such that each node n of each tree Ti 

contains a set of references to the rules containing in SH the 

path from the root of Ti to n. A TAR-index contains 

references both to iTARs, sTARs, and is constructed by Alg2. 

Algorithm 2 Create-Index (D) 

1: for all Di ∈ D do 

2: for all dj ∈ Di with j∈ {2, 3 . . . n} do 

3: references (root (d1)) = references (root (d1)) references 

(root (dj)) 

4: sumChildren (d1, dj) 

5: end for 

6: end for 

7: return D 

Function 2 sumChildren (T1, T2) 

1: for all x ∈ children (root (T2)) do 

2: if c ∈ children (root (T1)) | c = x then 

3: references (root(c)) = references (root(c)) references 

(root(x)) 

4: c = sumChildren(c, x) 

5: else 

6: addChild (root (T1), x) 

7: end if 

8: end for 

9: return 

 

 

 

 

 

 

 

4. INTENSIONAL ANSWERS 
ITARs (deliberate Tree-based Association Rules) furnish an 

approximate intensional perspective of the content of an 

XML record, which is when all is said in done more succinct 

than the extensional one since it depicts the data in termsOf 

its properties, and since just the properties that are checked 

by a high number of items are concentrated. A Client query 

over the first dataset might be immediately changed into a 

query over the concentrated iTARs.  

The response will be anintentional, on the grounds that, 

instead of giving the set of data fulfilling the query, the 

framework will reply with a set of properties that these data 

"frequently fulfilled", along with support and confidence. 

There are two major advantages: 

 i) querying iTARs requires less time than querying the 

original XML document; 

 ii) Approximate, intensional answers are in some cases more 

useful than the extensional ones (see theIntroduction). Not all 

queries lend themselves to being transformed into queries on 

iTARs; we list three classesof queries that can be 

transformed by maintaining the soundness; Additionally, we 

describe how such transformationcan be automatically done. 

Algorithm 3 Class1-Query (vF ,VW, CONN, vOB)  

1: // the intentional query is empty 

2: IQ=ϵ 

3: if VW ≠ ∅ then 

4: // get instance rule for paths with a constraint 

5: IQ = IQ • get iTARs (vF, VW, CONN, false)  

6: else  

7: // structure rule for the path without constraint  

8: IQ = IQ • get sTARs (vF) 

9: end if  

10: // order the results  

11: IQ = IQ • “for $r in $Rules/RuleOrder by $r/vF /vOB  

return $r”  

12: return IQ  

Function 3: get iTARs (for, variables, connectives, count) 

1: Q = ϵ  

2: for all VJ ∈ variables do  

3: if count = true then  

4: // for count queries match only  in  antecedent 

5: Q=Q•“let $RefI_j:=references A (for, VJ)”  

6: else  

7: // for queries without include match both in antecedent 

and consequent  

8: Q=Q • “let $RefI_j:=references (for, VJ)”  

9: end if  

10: end for  

11: Q=Q • “let $Rules: =”  
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12: for all vj ∈ variables, j ∈ {1 . . . n} do 

13: Q=Q • “ruleset ($RefI_j) connectivej” 

14: end for  

15: return Q 

Function 4: get sTARs (variable)  

1: Q=“let $RefS: =references (variable, “”)  

let $Rules: = ruleset ($RefS)”  

2: return Q  

Syntax  
for variable in path 

[Where condition [(and/or) condition]]  

[order by element [asc|desc]] return variable  

Class 2: count- queries: Used to number the amount of 

elements having a particular content. The query makes a set 

holding the elements which fulfil the conditions and then 

gives back the number of elements in such set. For instance, 

"Recover the amount of occurrences". 

This class of queries is revamped utilizing Algorithm 4. The 

effect is a query qi that determines the iTARs, which fulfil 

the first query conditions, and gives back the support of the 

first rule, which has been found, partitioned by its 

confidence. Perceive that, since rules are requested as per the 

amount of hubs in their precursor, the first rule will be either 

the one, which fulfils all, and just the asked for conditions or 

its best rough guess (that is, a rule whose antecedent fulfils 

all the coveted conditions and holds the minimum number of 

nodes). 

Algorithm 4 Class2-Query (vF, VW, CONN)  

1: // the intensional query is empty 

2: IQ =ϵ  

3: // get instance rule for path with a constraint  

4: IQ = IQ• get iTARs (vF, VW, CONN, true)  

5: IQ = IQ • get count ()  

6: IQ= IQ • “return $supp div $conf”  

7: return IQ  

Class 3: top-k queries: Used to select the best k responses 

satisfying a counting and amassing condition. The query 

counts the occurrences of each dissimilar value of a variable 

in a desired set; then orders the variables with respect to their 

occurrences and returns the most frequent k. For example, 

“"Recover those k most utilized sorts of nation”.  

This class of queries is rewritten using Alg 5. The result will 

be a query qI   that for each distinct value of a variable finds 

the comparing sTARs and uses them to compute the number 

of occurrences of each value; ranks the values according to 

the computed count and returns all the rules associated with 

the first k stacked up values. 

Function 5: get count ()  

1: Q =“let $supp:=$Rules/Rule[1]@support  

let $conf: =$Rules/Rule [1] @confidence”  

2: return Q  

 

Syntax  
let $set: = (class 1 query) 

Return count ($set) 

Algorithm 5 Class3-Query (vDV, vF, VW, CONN)  

1: IQ =ϵ // the intensional query is empty  

2: IQ = IQ • get sTARs (vDV)// get instance rules for paths 

with a constraint  

3: IQ = IQ • “for $v in distinct-values ($Rules/vDV)”  

4: IQ = IQ • get iTARs (vF, VW, CONN, true)  

5: IQ = IQ • get count ()  

6: IQ = IQ • “order by $supp div $conf descending  

return $Rules) [position () <=k]”  

7: return IQ  

Syntax  
(for variable in distinct-values (path)  

Let $set: = (class 1 query) 

Order by count ($set) desc  

Return variable) [position () <= k] 

Perceive that, in all classes of queries, conditions might be 

forced on the descendants of the element that is returned and 

not on its ancestors.  

That is, a query holding conditions on the contents of an 

element should be as portrayed in (where x is the element 

returned by the query). 

 

 

Fig.3 A Graphical Representation 

 
<index> 

<antecedent> 

<bullet><ref>2</ref><ref>3</ref> 

<type> Winchester 

<ref>3</ref> 

</type></bullet> 

</antecedent> 

<Consequent> 
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<incident> 

<ref>1</ref><ref>2</ref> 

<ref>3</ref><ref>4</ref> 

<type> robbery 

<ref>1</ref><ref>4</ref> 

</type> 

<country> Italy 

<ref>4</ref> 

</country> 

</incident> 

</consequent> 

</index> 

 

 

Fig.4 Intentional query answering 

 

5. EXPERIMENTAL RESULTS 

5.1. TheTree Ruler Prototype 
Tree Ruler is a prototype tool that incorporates all the 

functionalities proposed in our methodology. Given an 

XMLDocument, the tool is able to extract intentional 

knowledge and permits the user to form traditional queries 

asWell as queries over the intentional knowledge. 

Figure 1 shows the design of the tool. Specially, given the 

XML document, it is possible to extract Tree-based rules and 

the corresponding indexed. 

The user figures XQuery articulations on the data and these 

queries are immediately interpreted to be executed on the 

deliberate information. The response is given regarding the 

set of Tree-based rules which re and so forth the search 

criteria. It is com postured by some tabs for performing 

distinctive tasks. Specifically, there are three tabs: 

 

 

 

Fig. 5: Tree Ruler Architecture 

 

 Get the Gist allows intentional information 

extraction from an XML file, given support, confidence and 

the files where the extracted TARs and their index are to be 

stored.  

 Get the Idea allows showing intentional 

information as well as the original document, to give users 

the possibility to compare the two class of information.  

 Get the Answers allows querying anintentional 

knowledge and the original XML document. Users have to 

compose an extensional query. 

 

6. CONCLUSIONS AND FUTURE WORK 
The main objectives we have attained in this work are: 

1) Mine all continuous association rules without forcing any 

apriority restriction on the structure and the contentof the 

rules. 

2) Store extracted information in XML format. 

3) Use mined knowledge to gain information about the 

original datasets. 

Casual clients can search the data by a keyword without any 

data base knowledge from XML storage media. 

We have not examined the updatability of both the document 

storing TARs and their index’s an progressing work, we are 

studying how to incrementally update mined TARs when the 

original XMLDataset change and how to further upgrade our 

mining efficient algorithm; additionally, for the moment we 

dealwith a (substantial) fragment of XQuery; we would like 

to find the exact section of XQuery, which lends itselfto 

interpretation into an intentional queries. 
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