
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

26

JSH Algorithm: A Password Encryption Technique using

Jumbling-Salting-Hashing

Prathamesh Churi
Shah and Anchor Kutchhi

Engineering College, University
of Mumbai,

Mumbai, India

Medha Kalelkar
Vidyalankar Institute of

Technology, University
of Mumbai,

Mumbai, India

Bhavin Save

Mahatma Gandhi Mission’s
College of Engineering,
University of Mumbai,

Mumbai, India

ABSTRACT

This paper presents a new algorithm for improvising password

encryption using Jumbling-Salting-Hashing technique. One of

the most important password protection issue is to secure

encrypted passwords on server‟s database. In cryptanalysis, a

dictionary attack or brute force attack are the most common

ways of guessing passwords. In order to augment the security

aspect regarding passwords, we are devising JSH algorithm

which will be responsible for preventing dictionary or brute

force attacks on the passwords. In this algorithm, the jumbling

process consists of randomly selecting characters from pre-

defined character set and adding them into the plain password;

salting comprises of prepending a random string and hashing

process is implemented using cryptographic hash function to

obtain a fixed length “fingerprint” which is stored in the

server‟s database. As JSH algorithm deals with

randomization, the password encryption technique forms a

highly secured form of encrypted password which makes it

difficult to decrypt reducing the probability of guessing

password.

General Terms

Security, Authentication, Encryption, Algorithms.

Keywords

JSH, jumbling, salting, hashing, process array.

1. INTRODUCTION
According to Bruce Schneider “Security is a process, not a

product.”[1][7] This famous quote is well echoed by the

phenomenon that although there exist umpteen number of

security techniques today, none of these tools can single-

handedly address all the security goals of an organization.

As password is an authentication technique which provides

the claimant access to system resources, it is an important

aspect of security. Being the simplest form of authentication

technique used, the probability of attacking the password is

considerably high. The most common attack to obtain a

password is by attacking the server‟s database consisting of a

list of passwords. Although password encryption provides

solution to prevent such attacks, “brute force attack” or

“dictionary attack” have proven this password encryption

technique to be futile. To overcome the problem of securing

encrypted password, we are developing JSH technique which

will provide additional security to the stored passwords.

JSH algorithm consists of three techniques namely jumbling,

salting and hashing. In the jumbling part, the password

undergoes “addition”, “selection” and “reverse” processes.

Addition process is responsible for generating a value

required for determining the number of characters to be added

to the password. Selection deals with selecting characters to

be added to the password from predefined character set.

Reverse process is responsible for reversing the output of

selection process on some predefined condition. In salting

part, random salt is added to the jumbled password. Selection

of salt is based on timestamp value which is determined when

the user creates an account. Finally, jumbled and salted

password is given to the hashing procedure where predefined

hashing algorithm such as SHA algorithm is implemented.

Randomized algorithms are particularly useful when attacker

who deliberately tries to perform dictionary or brute-force

attack. It is for this reason that randomness is ubiquitous in

cryptography. At the heart of all cryptographic systems is the

generation of secret, pattern. Each and every stage of JSH

algorithm is randomized, hence we can achieve "Randomness

in Security".

2. RELATED WORK
There are some existing algorithms for encrypting the

password which do not fulfill all the aspects of security.

However dictionary or brute force attacks on server side are

done by performing some permutations within the known

password parameters (such as max length of password) and

are hashed to try and generate the same hash value. [6]

There are some predefined hashing algorithms available today

that do not offer complete security to the passwords. Here are

some hashing algorithms mentioned below:

a. SHA: There are four Secured Hash Algorithms namely

SHA-0, SHA-1, SHA-2, and SHA-3 [5]. Specifically, SHA-1

produces a hash value of 160 bits. A SHA-1 hash value

typically forms a hexadecimal number, 40 digits long. SHA-1

is very similar to SHA-0, but corrects an error in the original

SHA hash specification that led to significant weaknesses.

b. MD5: The MD5 (Message-Digest algorithm) is a widely

used cryptographic hash function. It forms a 128-bit hash

value which is expressed in text format as a 32 digit

hexadecimal number. Due to its effectiveness, MD5 has been

utilized in many cryptographic applications. Also, it is

commonly used to verify data integrity. MD5 is not apt for

applications like SSL certificates or digital signatures. [4]

It can be easily inferred that the simplest way to crack a hash

is to try to guess the password, hash each guess, and checking

if the guess's hash equals the hash being cracked. If the hashes

are found to be equal, the guess is the password which is the

basic principle of dictionary attack. The effectiveness of

dictionary attacks or brute force attacks can be reduced using

hashing and salting techniques like SHA or MD5.

However, along with hashing and salting, JSH algorithm

additionally implements “Jumbling” technique which will

further reduces the probability of guessing password

drastically. Thus, this increase in probability actually refers to

“Randomness in Security”.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

27

The central question regarding to security provided by JSH

algorithm is: “Whether JSH algorithm is more difficult to

crack or not?” The answer to this question can be tabulated

below:

Table 1. Comparison between JSH and other existing

hashing algorithms.

Functions

JSH Algorithm

Existing algorithms

(SHA, MD5)

Decryption

Level

Difficult , due to

addition of

jumbling block

Can be decrypted

using Dictionary

attack

Randomness

More

randomized

Less randomized

Implementation

level

More difficult

due to

randomization

in jumbling

technique,

production of

salting and

hashing

Difficult , due to the

production of hash

value

Cryptographic

processes

involved

Jumbling +

Salting +

Hashing

Salting (Optional) +

hashing

Selection of salt

User‟s sign-up

timestamp value
Any random string

3. OVERVIEW
JSH algorithm consist of three major processes; Jumbling,

Salting, Hashing. Jumbling process includes three sub-

processes viz. addition, selection, and reverse process. The

block diagram of JSH algorithm is given in Fig. 1. The input

to JSH algorithm is plain-text password which is stored in

Process array. The description of three blocks is given below:

3.1 Jumbling Block:
Process array is given to Jumbling block. Jumbling block is

responsible for prepending some characters from character set

and jumbling them with the help mod function. Jumbling

block itself is a combination of three sub-blocks:

Addition sub-block: This block deals with is nothing but

generating principle random value „l‟ and updating the size of

a Process array.

Selection sub-block: This block is about selecting characters

from predefined character set A. The size of character array is

large and the character set for a particular password entry is

different. Selection of characters is based on the random

values which are generated „l‟ times.

Reverse sub-block: This block reverses the entire process

array based on some predefined condition. The predefined

condition is to check the value of „l‟ is even or odd. If the

value of „l‟ is even then we reverse the process array else we

keep it as it is.

 Fig. 1: Password encryption using JSH algorithm

3.2 Salting Block:
The objective of salting block is to add random string along

with jumbled version of password. The criterion of selection

of salt is user‟s sign-up timestamp value. The salt is added in

order to make the password more complicated thereby making

it difficult for the attacker to obtain it.

3.3 Hashing Block:
In hashing, we use predefined hashing algorithms such as

SHA. The alternative to SHA algorithm can also be used

(such as MD5).

4. ALGORITHM
The pseudo code implementation of JSH is given below:

// Random (): It is a predefined method which is responsible

for calling random value from predefined set of objects.

// Process array P []: This array stores the actual plain-text

password along with randomly generated characters. We are

using this array for actual encryption process.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

28

// Salt array S[]: This is use for storing timestamp value

from user. In this case, timestamp value will be nothing but

user‟s sign-up time value.

// input: password in plain-text form.

// output: password in Jumbled, salted and hashed form.

INITIALIZE 'x' to 0;

STORE the length of plain text input password in variable „x‟;

CREATE an Process array P[] such that P[length =x];

STORE each character in an array block;

// P {0, 1, 2... x-1) = {characters in password}

/* implementation of Jumbling Technique */

 function jumbling (P[])

{

// implementation of jumbling technique: Addition Process

A.

Label 1 : CALL Random() function;

 // Random function returns any random value from

predefined set of integers.

 SET 'l' as principle random value;

 If (l >= x)

STORE random number value generated from random()

function;

 Else

 goto Label 1 ;

 break;

 End If

B.

UPDATE an array P[] of size (x + l) as shown :

// this array is referred as "Process array"

--

Process array of size (x + l)

--

C.

DEFINE the set of characters A.

Size (A) = M;

M = any large value;

A = {A....Z, a....z, 0....9, special characters, operators};

//Character set for a particular password entry should be

different;

//implementation of jumbling technique: Selection Process

/* This process is responsible for selecting characters from

given character set. All these symbols later on added with

plain-text password. These process is also randomized */

A.

CALL random () function 'l' times;

// At each iteration, random value is generated which acts as

an index of the character in character set.

/* for Example : character set A ={ %,$,C,7,*,y,W,8,+, |, @ }

 CALL Random()

number generated: 2

hence character selected : C */

B.

FILL the process array with characters as shown:

--

x(password characters) | l (selected characters)

--

C.

STORE the original length of an array (x + l) in variable

„FIX‟

For i= 0 to (x+l-1)

 While (l !=0)

 SET j to 0;

 j= (FIX mod l);

 Create 'temp' variable;

 temp = P [j] ;

 P [j] = P [i];

 P [i] = temp;

//output of above mod function is nothing but index within the

range 0 to (x + l - 1), Hence we must swap output index 0th

position.

 l= l-1;

 End While

End For

// implementation of jumbling technique: Reverse process

A.

If (l mod 2 == 0)

 Reverse the process array; // l is EVEN number

Else

 Do not reverse the process array; // l is ODD number

return (P); // pass the process array to salting function

End If

} // end of jumbling function

/* implementation of Salting Technique */

 function salting(P[])

{

A.

STORE Timestamp value of Sign-up process for each user;

OBTAIN the length of timestamp as „t‟;

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

29

CREATE Salt [size=t] array which stores random salt

characters;

Salt [] = {characters obtained from Timestamp value};

UPDATE an array P of size (x +l + t) as shown:

Process array will become

Process array of size (x + l + t)

B.

FILL the process array with

Jumbled password of size (x + l) | salt characters of size t

return (P); // pass the process array to hashing function

} // end of salting function

/* implementation of Hashing Technique */

 function hashing(P [])

{

A.

Use of predefined SHA algorithm (SHA0, SHA1, SHA2, and

SHA3) can be implemented in Hashing function; [2]

}// end of hashing function

5. LIMITATIONS
JSH algorithm does not completely fulfill the requirements of

all the authentication aspects of security. However, it tries to

improve the difficulty level of decryption of password for any

unauthorized person (or attacker) using the process of

randomization.

Another important issue is to secure random number 'l' on

server side. 'l‟ is the random number generated during

jumbling process which informs about the number of

characters to be added. However, the value of „l‟ must be

stored for future processing of the algorithm (say decryption).

Storing the value of „l‟ might be an issue as the attacker can

try to obtain the value of „l‟.

6. FUTURE SCOPE
The future scope of algorithm includes some modifications

that can be implemented instead of MOD function which is

used in Jumbling step of JSH algorithm.

Alternative hashing technique other than SHA like MD5 or a

self designed hashing technique can also be used. [3], [4]

7. CONCLUSION
The two most common ways of guessing passwords are

dictionary attacks or brute-force attacks. There is no way to

prevent dictionary attacks or brute force attacks. They can be

made less effective, but there isn't a way to prevent them

altogether. JSH technique however reduce the probability of

cracking passwords.

Due to involvement of different randomization processes, JSH

algorithm builds an encrypted version of password which is

almost difficult to decrypt. JSH technique however reduces

the probability of cracking the passwords.

8. ACKNOWLEDGEMENT
The authors wish to thank Prof. Vaishali Ghate, Assistant

Professor of Shah and Anchor Kutchhi Engineering College,

India for her valuable guidance.

9. AUTHORS
First Author – Prathamesh P. Churi is currently pursuing

Master‟s program in Information Technology from Shah and

Anchor Kutchhi Engineering College affiliated to University

of Mumbai, He has completed his Graduate program in

Computer Engineering from Vidyalankar Institute of

Technology affiliated to University of Mumbai, India.

E-mail: prathamesh.churi@gmail.com.

Second Author – Medha D. Kalelkar has completed Graduate

program in Computer Engineering from Vidyalankar Institute

of Technology affiliated to University of Mumbai, India.

E-mail: kalelkar.medha@gmail.com

Third Author – Bhavin D. Save has completed Graduate

program in Computer Engineering from Mahatma Gandhi

Mission‟s College of Engineering affiliated to University of

Mumbai, India

E-mail: bhavinsave@gmail.com

10. REFERENCES
[1] Secure password methods(salting and hashing methods) ,

https://crackstation.net/hashing-security.htm#salt

[2] SHA-1 algorithm implementation details

http://tools.ietf.org/html/rfc3174

[3] MD5 algorithm concept and implemenation,

http://www.ietf.org/rfc/rfc1321.txt

[4] MD5 Algorithm,http://en.wikipedia.org/wiki/MD5

[5] http://en.wikipedia.org/wiki/SHA-1

[6] http://programmers.stackexchange.com/questions/90211/

how-would-i-go-about-changing-encryption-methods-on-

existing-passwords

[7] Applied Cryptography-Protocols, Algorithms and Source

Code in C , John Wiley Publications.

IJCATM : www.ijcaonline.org

