
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

15

 Approaches to realize Canonical Form of Boolean

Expression by using Reversible COG Gates

Shefali Mamataj
Assistant Professor

Department of ECE

Murshidabad College of Engineering & Technology

Biswajit Das
Assistant Professor
 Department. of CSE

Murshidabad College of Engineering & Technology

ABSTRACT

 Nowadays, reversible logic is one of the most important issue

which has emerged as a promising technology having its

applications in low power CMOS, quantum computing,

nanotechnology and optical computing. Reversible logic

circuits give less power dissipation as well as distinct output

that is assigned for each distinct input. The classical set of

gates such as the NAND, AND, NOR, OR, XOR and XNOR

are not reversible. Reversible circuits are like the

conventional logic circuits except that they are built from

reversible gates. In reversible gates, there is a unique, one-to-

one mapping between the inputs and outputs, which differ

from the conventional logic. One of the most important

factors for the acceptance of reversible logic lies in the fact

that it can give a logic design methodology to design ultra-low

power application beyond KTln2 limit for those emerging

nanotechnologies in which the energy dissipated due to

information destruction will be a significant factor of the

overall heat dissipation. In this paper represents the

approaches to realize the Canonical Form of Boolean

Expression (CFOBE) by using reversible COG gates . For

this, two methods are proposed and a comparison is also made

between these two methods in terms of the number of

reversible gates, constant input, garbage output and total

logical calculation.

General Terms

Architecture, Logic Design, Reversible Logic.

Keywords

Reversible Logic, Reversible Gate, Boolean algebra,

Canonical Boolean Expression, Garbage Output, Constant

Inputs.

1. INTRODUCTION
 The conventional logic gates dissipate a considerable amount

of energy due to the lost of information bits during logic

operations. According to Launder’s principle, the loss of one

bit of information dissipates kTln2 joules of energy where k is

the Boltzmann’s constant and T is the absolute temperature at

which the operation is performed [1]. Later Bennett, in 1973,

showed that in order to avoid kTln2 joules of energy

dissipation in a circuit it must be built from reversible circuits

[3]. Younis and Knight [12] showed that some reversible

circuits can be made asymptotically energy-lossless if their

delay is allowed to be arbitrarily large. According to Frank

[2], reversible logic can recover a fraction of energy that can

reach up to 100%. A reversible gate has the same number of

inputs and outputs, inputs and outputs are related as one-to-

one mapping [4]. A number of reversible gates have been

designed till date. Some important basic reversible logic gates

are Feynman gate [5] which is the only 2X2 reversible gate. T

Toffoli gate [6], Fredkin gate [7], Peres gate [8] are 3X3

reversible gates all of which can be used to realize important

combinational functions (See Figure 1).

 (a)

 (b)

 (c)

 (d)

Fig 1: (a) Feynman gate, (b) Toffoli gate, (c) Fredkin gate

and (d) Peres gate

A reversible logic circuit should have the following features

[13]: Use minimum number of reversible gates,

Use minimum number of garbage outputs, Use minimum

constant inputs.

2. REVERSIBLE LOGIC

2.1 Definitions
Some of the basic Definitions [9] related to Reversible Logic

are
2.1.1ReversibleLogicFunction
A reversible logic function is defined as a function for which

each input vector maps to a unique output vector. From the

given outputs, it is always possible to determine back its input

in case of reversible function, because there is a one-to-one

relationship between input and output states.

2.1.2ReversibleLogicGate
Reversible Gates are circuits in which number of outputs is

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

16

equal to the number of inputs and related to one to one

mapping. For an N X N reversible logic gate the inputs are

denoted by I1 I2 I3 … IN and the outputs are denoted by O1O2

O3…ON.

2.1.3Garbage
This also refers to the number of outputs which are not used in

the synthesis of a given function. In certain cases these

become mandatory to get reversibility. Garbage is the number

of outputs added to make an n-input k-output function ((n; k)

function) reversible.

2.1.4 Constant Inputs
 These are the inputs that provide either a constant 0 or at

constant 1 in order to generate a given logical expression

using the reversible logic gates. The words constant inputs

are used to denote the present value inputs that were added to

an (n; k) function to make it reversible. The following simple

formula shows the relation between the number of garbage

outputs and constant inputs.

Input + constant input = output + garbage

2.1.5QuantumCost
The quantum cost (QC) of any reversible gate(circuit) is the

number of 1×1 or 2×2 reversible gates and quantum logic

gates which is required to realize the circuit.

2.1.6GateCount
This can be defined as the number of gates that are required to

present a reversible logic circuit. .

2.1.7Flexibility
Flexibility can be defined in relation to the gate count, which

signifies the ability of a reversible logic gate to realize more

functions. Higher the flexibility of a gate needs lesser number

of gates to implement a given function that means the gate

count is lesser.

2.1.8TotalLogicalOperation
The total logical operation [10] is measured by counting the

number of AND operations, number of EX-OR operations and

number of OR operations. If α represents the number of EX-

OR operations, β represents the number of AND operations

and δ represents the number of NOT operations

then the total logical operation T is given as sum of EX-OR,

AND and NOT operations required for a specified circuit and

can be expressed in terms of α, ß and δ.

2.2 COG Reversible Gates
A 3X3 reversible gate COG (Controlled Operation Gate) logic

(See Figure 2) already had been proposed [11]. The truth table

for the corresponding gate is shown in Table I also .The closer

look at the truth table reveals that the input pattern

corresponding to a specific output pattern can be uniquely

determined and thereby maintaining that there is a one-to-one

correspondence between the input vector and the output

vector. In this gate the input vector is given by 𝐼𝑉= (A, 𝐵, C)

and the corresponding output vector is 𝑂𝑉= (𝑃, 𝑄, 𝑅)

Fig 2: COG reversible gate

TABLE I. Truth table of COG gate

Inputs Outputs

A B C P Q R

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 1 0

1 0 1 1 0 1

1 1 0 1 0 0

1 1 1 1 1 1

3. REALIZATION OF THE CLASSICAL

OPERATION
 Implementation of the conventional digital gates can be

possible by using the COG reversible gate. Implementation of

the AND, NOT, NAND, NOR, EXOR, EXNOR, OR and

COPYING operations are possible (See Figure 3a to 3f). By

making the inputs A=A, B=0 and C=B of COG gate AND,

NOT & COPYING operation are found from the output

lines(See figure 3a). In this way all the above specified

operation can be get by setting the input values as per the

requirement.

Fig 3a: .Implementation of AND, NOT & COPYING gate

by COG Reversible gates

Fig 3b: Implementation of OR & COPYING gate by COG

Reversible gates

Fig 3c: Implementation of NOR & COPYING gate by

COG Reversible gates

Fig 3d: Implementation of NAND, NOT & COPYING gate

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

17

by COG Reversible gates

Fig 3e: Implementation of EXNOR & COPYING gate by

COG Reversible gates

Fig 3f: Implementation of EXOR & COPYING gate by

COG Reversible gates

4. CANONICAL FORM OF BOOLEAN

EXPRESSIONS (CFOBE)
There are an infinite number of expressions for every Boolean

function. A Boolean expression in canonical form is unique.

We know there are two canonical forms SOP and POS. Both

define a unique way to represent a Boolean function. So

in Boolean algebra, any Boolean function can be put into

the canonical disjunctive normal form (CDNF) or minterm

canonical form and its dual canonical conjunctive normal

form (CCNF) or maxterm canonical form. Minterms are

called products because they are the logical AND of a set of

variables, and maxterms are called sums because they are

the logical OR of a set of variables shown in Table II for three

variables. These concepts are dual because of their

complementary-symmetry relationship as expressed by De

Morgan's laws. There are 2n minterms of n variables, since a

variable in the minterm expression can be in either its direct

or its complemented form—two choices per n variables. A

given minterm n gives a true value (i.e., 1) for just one

combination of the input variables. For example, minterm

5(m5), a b' c, is true only when a and c both are true and b is

false—the input arrangement where a = 1, b = 0, c = 1 results

in 1.Now a three variable function for full adder sum can be

expressed as Sum= (ABC) if the variables are A, B and C.

So the equivalent Canonical SOP form of this function can be

written as F(sum)=m(1,2,4,7) and its equivalent canonical

POS form can be written as F(sum)= π M(0,3,5,6).These

types of expressions are known as CFOBE .So from these

CFOBE, the pattern can be easily known as per the

requirements. For three variables X, Y and Z the minterms

and maxterms combinations are shown in Table II.

TABLE II. Minterms and Maxterms for three variables

Variables Minterms Maxterms

X Y Z Term Designat

ion

Term Desig

nation

0 0 0 X’. Y’. Z’ m0 X+Y+Z M0

0 0 1 X’. Y’. Z m1 X+Y+Z’ M1

0 1 0 X’. Y. Z’ m2 X+Y’+Z M2

0 1 1 X’. Y. Z m3 X+Y’+Z’ M3

1 0 0 X. Y’. Z’ m4 X’+X+Z M4

1 0 1 X. Y’. Z m5 X’+Y+Z’ M5

1 1 0 X. Y. Z’ m6 X’+Y’+Z M6

1 1 1 X. Y. Z m7 X’+Y’+Z’ M7

5. DESIGN OF COMBINATIONAL

CIRCUIT
 Many combinational circuits can be designed by using the

reversible COG gates; one of these circuits is multiplexer.

Different types of multiplexers can be designed such as 2X1

MUX, 4X1 MUX, 8X1 MUX and 16X1 MUX (See Figure 4a,

4b, 4c and 4d).Generally multiplexer is used for multiplexing

one channel out of many channels. .

Fig 4a: 2 to 1 reversible Multiplexer

Fig 4b: 4 to 1 reversible Multiplexer

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

18

Fig 4c: 8 to 1 reversible multiplexer

Fig 4d: 16 to 1 reversible Multiplexer

6. DESIGN APPROACHES TO REALIZE

CFOBE
It is possible to realize the CFOBE by using reversible COG

gates. Two methods of design approaches have been followed

here for the realization of three variables CFOBE and four

variables CFOBE.

6.1 Realization of 3 variables CFOBE
Realization of the three variables SOP form of CFOBE is

done by using COG reversible gates in two ways. So a three

variables SOP form of CFOBE, F(X, Y, Z) =m (2, 3, 5, 7) is

assumed as an example to be implemented.

6.1.1 Method 1
In this method l, the SOP form of CFOBE, F(X, Y, Z) =m

(2,3,5,7) has been realized by using 8X1 MUX of COG

reversible gates (See Figure 5). Here the selection lines S2, S1

and S0 are replaced by X, Y and Z respectively. Depending

upon the value of X, Y and Z, the value of F(X,Y,Z) at the

output line shown in Table IV. To realize the above said

CFOBE seven COG gates and two constant inputs are

required. The input lines I2, I3, I5, I7 of MUX are connected

with Logic High (1) and I0, I1, I4, I6 input lines of MUX are

connected with Low Logic(0). So whenever X=0,Y=1 &

Z=0,the input line I2 is selected. And as I2 is connected with

Logic High, the output value F(X, Y, Z) is 1(Logic

High).Similarly the input lines I3, I5 & I7 are selected for

XYZ=011, XYZ=101 & XYZ=111 respectively and the

output F(X,Y, Z) is bounded to reach at 1(Logic High) for

these specified input patterns of X, Y & Z. But the input lines

I0, I1, I4 & I6 are selected for XYZ=000, XYZ=001, XYZ=100

& XYZ=110 respectively. As because of the I0, I1, I4, I6 input

lines of MUX are connected with Low Logic (0), the output

value F(X, Y, Z) will be Low Logic (0). From the Table III

the pattern of F(X, Y, Z) can be seen and it can be said that

the output is High Logic (1) for the minterms m2, m3, m5 &

m7.Hence CFOBE in SOP form for the output F(X, Y, Z) can

be drawn from the Table III which is F(X, Y, Z) =m (2, 3, 5,

7) .Therefore the specified requirement can be made possible

to fulfill in view of designing aspects by following the

method1 . There are ten (10) garbage outputs in this

method.

Fig 5: Realization of 3 variables expression by 8 to 1

reversible Multiplexer of COG gates

6.1.2 Method 2
In this method 2, the canonical SOP form of CFOBE,

F(X,Y,Z)=m(2,3,5,7) has been realized here by using 4X1

MUX of COG gates (See figure 6).Here the selection lines S1

and S0 are replaced by Y and Z respectively. And another

MSB variable X is used as input line. Depending upon the

value of Y, Z and the input line X the value of F(X,Y,Z) can

be achieved at the output line shown in Table IV. To realize

the CFOBE in this method we need 3 COG gates and two

constant inputs. The connection of the input lines of the MUX

can be determined shown in Table III. The input line I0 is

connected with Low Logic (0), I1 is connected with X, I2 is

connected with X’ and I3 is connected with High Logic(1).

When X=0/1 & YZ=00, I0 input line is selected .Now as I0 is

connected to Low Logic (0),the output F(X,Y,Z) is followed

by Low Logic(0). Then X=0/1 & YZ=01choose the I1 input

line. Since I1 is connected with X, the output value F(X,Y,Z)

will depend on the value of X. F(X,Y,Z)=0 when X=0 and

F(X,Y,Z)=1 when X=1. Again for X=0/1 & YZ=10 select the

I2 input lines. And as I2 connected with the complement of X,

the output F(X,Y,Z)=1 when X=0 and F(X,Y,Z)=0 when X=1.

When X=0/1 & YZ=11, I3 input line is selected .Now as I3 is

connected to High Logic (1),only the true value (logical 1)is

transmitted to the output F(X,Y,Z) whatever may be the value

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

19

of X. So finally it can be noticed that the output value

F(X,Y,Z) is 1(High Logic) for the minterms m2,m3,m5 & m7

.In total five garbage outputs are produced in this method.

TABLE III. Determination rule for MUX inputs

MSB variable Input lines

I0 I1 I2 I3

X’ 0 1 2 3

X 4 5 6 7

Values for input

lines

0

(Low

Logic)

X X’ 1

(High

Logic)

Fig 6: Realization of 3 variables expression by 4 to 1

reversible Multiplexer of COG gates

TABLE IV. Truth table for 3 variables expression

F(X,Y,Z)=m(2,3,5,7)

Inputs Outputs

X Y Z F(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

From the truth table IV, it is observed that both the methods

(method1 and method2) of 3 variables SOP form of CFOBE

implementation are suitable for achieving the fruitful results.

And the value of F(X,Y,Z) are high for the minterms

m2,m3,m5 and m7 only and for rest of the minterms the value

of F(X,Y,Z) are low.

6.2 Realization of 4 variables CFOBE
An example of four variables SOP form CFOBE,F(W,X,Y,Z)

=m (0,1,3,4,8,9,15) is also considered for the realization

.Again both the methods are followed here for this four

variables SOP form CFOBE.

6.2.1 Method 1
In this method the four variables SOP form of CFOBE

F(W,X,Y,Z) =m (0,1,3,4,8,9,15) has been realized by using

16X1 MUX of COG gates(See figure 7).Here the selection

lines S3, S2, S1 and S0 are replaced by W,X,Y and Z

respectively. Depending on the value of W, X, Y and Z the

value of F(W,X,Y,Z) will be transmitted at the output line

shown in Table V. To realize the CFOBE seven COG gates

and two constant inputs are needed. The same rule like 3

variable implementation is followed here. The input lines I0 ,

I1 , I3, I4 I8 ,I9, I15 of MUX are connected with Logic High (1)

and I2 ,I5, I6, I7 I10 ,I11, I12, I13 I14 input lines of MUX are

connected with Low Logic(0). In total nineteen (19) garbage

outputs are produced in this method of realization.

Fig 7: Realization of 4 variables expression by 16 to 1

reversible multiplexer

6.2.2 Method 2
In this method the SOP form of CFOBE, F(W,X,Y,Z) =m

(0,1,3,4,8,9,15) has been realized by using 8X1 MUX (See

figure 8) by following the same rule as followed by 3

variables CFOBE implementation in method 2. Here the

selection lines S2, S1 and S0 are replaced by the lower

significant variables X, Y and Z respectively. And MSB

variable W is used for setting the input lines. Depending on

the value of X, Y, Z and the input line W the value of F

(W,X,Y,Z) is achieved at the output line shown in Table V.

To realize the above said CFOBE in this method seven COG

gates and two constant inputs are required. The input lines I0

I1 are connected with High Logic(1),I2 I5 I6 are connected with

Low Logic(0) ,I3 I4 are connected with W’ and I7 is connected

with W. Ten (10) garbage outputs are produced in this

method.

In similar way n variables SOP form of CFOBE can be

implemented with the help of COG reversible gates by

following the above mentioned two methods.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

20

For both the cases in method-1, all the variables of the given

SOP form of CFOBE are used as the selection lines of the

MUX and the input lines of MUX, specified by the minterms

of the given CFOBE are connected with High Logic (1) and

the rest of the input lines of the MUX are connected with Low

Logic (0).In this method (2nX1) MUX is required for the

implementation where n is the number of variables required to

express the SOP form of CFOBE..

But in method 2, all the variables except the MSB one of the

given SOP form of CFOBE are used as the selection lines of

the MUX and the input lines of MUX are connected as per the

requirement specified by the minterms of the given SOP form

of CFOBE. The input lines may be connected with High

Logic (1), Low Logic (0), MSB variable or with the

complemented form of MSB variable that have to be

determined .Here (2 n-1X1) MUX is required for realization.

Fig 8: Realization of 4 variables expression by 8 to 1

reversible Multiplexer

TABLE V. Truth table for 4 variables expression

F (W,X, Y, Z) =m (0,1,3,4,8, 9,15)

Inputs Outputs

W X Y Z F(X,Y,Z)

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Again from the truth table V , both the cases (method 1 and

method2) of 4 variables SOP form of CFOBE

implementation are suitable for the fruitful results. And the

value of F(W,X,Y,Z) are high for the minterms

m0,m1,m3,m4,m8,m9,m15 only and for rest of the minterms the

value of F(W,X,Y,Z) are low.

7. COMPARISON RESULTS
A comparison is made between two proposed methods for

both the three variables SOP form of CFOBE and the four

variables SOP form of CFOBE shown in Table VI in terms of

number of gates, garbage output, constant input and total

logical calculation.

7. CONCLUSION
Two methods of implementation for both the three variables

SOP form of CFOBE and the four variables SOP form of

CFOBE have been followed and also compared shown in

Table VI, in terms of number of gates, garbage output,

constant input and total logical calculation. The general

expression for the number of gates, garbage output, constant

input and total logical calculation for n variables SOP form of

CFOBE has also been derived for both the methods. Now

because of their complementary-symmetry relationship

between canonical SOP form and canonical POS form, the

canonical POS form of Boolean expression by using these two

methods can also be realized. It is concluded that the method

2 for canonical SOP form of CFOBE is more efficient with

respect to method 1. It is also seen from the comparison Table

V that in method2, less number of gates are required with

respect to method 1. Also in terms of garbage output and total

logical calculation method 2 is more suitable than method1.

Implementation of the different type of applications like half

adder circuit, full adder circuit, half subtractor circuit, full

subtractor circuit, comparator and many more circuits can be

possible by using these two methods. These two methods can

also be efficiently used in the designing of ROM, PLA

without minimizing the minterm functions. As a future work

there is a vast application of these proposed design methods.

Implementation of these design methods using quantum dot

cellular automata and also the testing of its functionality by

simulation for checking the correctness of these design

methods can be treated as the possible future work.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.2, April 2014

21

ACKNOWLEDGMENTS
The authors wish to thank ECE Department and CSE

Department of Murshidabad College of Engineering and

Technology, Berhampore for supporting this work.

.

TABLE VI. Comparative results for method 1 and method 2.

Name of the

Proposed

circuits

Method 1 Method 2

No. of

COG

Gates

No. of

Garbage

output

No. of

Constant

Input

Total logical

calculation

No. of

COG

Gates

No. of

Garbage

output

No. of

Constan

t Input

Total logical

calculation

3 variables

CFOBE

7

10

2

14 α+14ß+14 δ

3

5

2

6 α+6ß+6 δ

4 variables

CFOBE

15

19

2

30 α+30ß+30 δ

7

10

2

14 α+14ß+14 δ

n variables

CFOBE

(2n-1) (2n+n-1) 2 (2n-1) (2

α+2ß+2 δ)

(2n-1-1) (2n -1+n-1) 2 (2n-1-1) (2α+2ß+2 δ)

8. REFERENCES
[1] Rolf Launder, Irreversibility and Heat Generation in the

Computing Process",IBM Journal of Research and

Development, vol. 5, pp. 183-191, 1961.

[2] M. P. Frank. Introduction to reversible computing:

motivation, progress, and challenges. In Proceedings of

the 2nd Conference on Computing Frontiers, pages 385-

390, Ischia, Italy, 4-6 May2005.

[3] Charles.H.Bennett, Logical Reversibility of computation,

IBM Journal of Research and Development, vol. 17, no.

6, pp. 525-532, 1973.

[4] Md Selim Al Mamun, Indrani Mandal and Md

Hasanuzzaman. "Design of Universal Shift Register

Using Reversible Logic." (2012).

[5] Richard P.Feynman, "Quantum mechanical computers,"

Foundations of Physics, vol. 16, no. 6, pp 507-531, 1986.

[6] Tommaso Toffoli, "Reversible Computing," Automata,

Languages and Programming, 7th Colloquium of Lecture

Notes in Computer Science, vol. 85, pp. 632-644, 1980.

[7] Edward Fredkin and Tommaso Toffoli, "Conservative

Logic," International Journal of Theoretical Physics, vol.

21, pp. 219-253, 1982

[8] A. Peres, "Reversible Logic and Quantum Computers,"

Physical Review A, vol. 32, pp. 3266-3276, 1985

[9] Rakshith Saligram and Rakshith T R “Novel Code

Converter employing Reversible Logic” Intl. Journal of

Computer Applications, Vol 52, No. 18, Aug 2012.

[10] Md. Saiful Islam et.al” Synthesis of fault tolerant

Reversible logic” IEEE 2009.

[11] Shefali Mamataj, Biswajit Das, Anurima Rahaman “An

Ease implementation of 4-bit Arithmetic Circuit for 8

Operation by using a new reversible COG gate”

International Journal of Advanced Research in Electrical

, Electronics and Instrumentation Engineering Vol. 3,

Issue 1, January 2014.

[12] S.Younis and T. Knight, “Asymptotically Zero Energy

Split-Level Charge Recovery Logic, “Workshop on

Low Power Design, June1994

[13] Perkowski, M. and P. Kerntopf, Reversible Logic.

Invited tutorial“ Proc. EURO-MICRO, Warsaw, Poland

,Sept 2001.

IJCATM : www.ijcaonline.org

