
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

34

 Multi-Objective Job Scheduler using Genetic Algorithm

in Grid Computing

Pritibahen Sumanbhai Patel
Asst. Prof., CVR College of Engg.

Vastunagar, Mangalpally
Hyderabad, Andhra Pradesh, India

ABSTRACT
This paper presents multi-objective Job scheduler using

Genetic Algorithm which provides efficient utilization of

resources by completing the different tasks in a minimum

period of time. Grid is a kind of distributed system that

provides the sharing of geographically distributed independent

resources dynamically at runtime depending on their

availability, capability, performance and cost. Scheduling is a

key problem in evolving grid computational systems.

Dealing with the multiple criteria in a heterogeneous and

dynamic environment like Grid is very complex and

computationally hard. There are ample approaches for Job

scheduling like Genetic Algorithm (GA), Simulated

Annealing (SA), Ant Colony optimization (ACO) and Particle

Swarm Optimization (PSO) Algorithm. This paper presents

Genetic algorithm for designing efficient multi-objective job

schedulers by considering multiple parameter like makespan

and flow time to find optimal/nearly optimal schedule. It

searches solution space in parallel and solution can be found

more quickly.

General Terms

Grid computing, Genetic Algorithm, Scheduler.

Keywords

Genetic Algorithm (GA), Scheduler, Makespan, Minimum

completion time, Fitness, Flow Time.

1. INTRODUCTION
The computational grid is dynamic and heterogeneous in

nature. It is focusing on large-scale resource sharing,

innovative applications and high-performance orientation. In

grid resources may vary in performance and capacity. The

resources may leave or join the grid at any time. Hence, the

scheduling is important in the grid. So GAs for designing

efficient multi-objective Grid schedulers when makespan and

flowtime are minimized is discussed. The GA operation is

based on the Darwinian principle of “survival of the fittest”. It

implies that the fitter individuals are more likely to survive

and have a greater chance of passing their good genetic

features to the next generation. In genetic algorithm, each

individual that is a member of the population represents a

potential solution to the problem. GA starts with initial

population of individuals (chromosomes). Each individual is

evaluated using fitness function to produce a value known as

goodness of the solution. Then a new population is generated

by selecting best individuals from the current population and

applying crossover operator to produce new offspring which

would inherit good features of parents. Then each offspring is

mutated in order to prevent GA to be trapped in local optima.

Best individuals among current population and new

population are carried forwarded in the next generation. The

process is repeated until stopping condition met and best

solution in the current generation is returned.

2. LITERATURE SURVEY
The existing approach for grid jobs scheduler implemented

with conventional algorithm techniques which may give

optimal solution but not in reasonable amount of time. The

survey shows several limitations like algorithms are studied

using simulation, mostly static in nature, do not react to

dynamism involved in the grid environment, studied for small

sized problems only. This paper presents implementation of

multi-objective job scheduler which will address all of the

above problems. It is based on Genetic algorithms which

gives optimal/nearly optimal solution quickly.

3. PROPOSED SYSTEM DESIGN
Here multi-objective jobs scheduler using GA is implemented

to find optimal/nearly optimal schedule when makespan and

flow time are minimum, which efficiently utilize the

resources. Proposed multiparameter jobs scheduler using GA

can quickly search solution space in parallel to find

optimal/nearly optimal solution in very less time. It uses

dynamic information received from Grid Information System

to determine optimal/ nearly optimal solution. It can work

with larger sized problems.

4. PROBLEM FORMULATION
Multiparameter jobs scheduler using GA is based on Expected

Time to Compute (ETC) Model. An ETC for any job j on any

resource (machine) r is expected execution time of job j on r if

j is scheduled on r. The problem for grid scheduling consists

of following:

 n – the number of jobs to be schedule at particular

instance of time. Any job has to be processed entirely in

unique resource.

 m – the number of heterogeneous resources(machines)

available in the Grid for an execution of a given set of

jobs

 N = {j1, . . . ,jn} a set of n jobs

 R = {r1, . . . ,rm} set of available m resources.

 The workload Wi of each job i.

 The computing capacity CCr of each resource (in

millions of instruction per second) r.

 The expected time to compute ETC matrix of size n×m

(number of jobs * number of resources). ETC[j][r]

indicate the expected execution time of job j in resource

r.

This paper consideres the scenario in which jobs submitted to

the Grid are independent and are not preemptive.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

35

4.1 Fitness of a Schedule
The first criterion for getting optimal/nearly optimal schedule

is minimizing the makespan and the secondary criterion is to

minimize the flowtime. These two criteria are defined as

follows.

4.1.1 Makespan
The time when latest job finishes. It is calculated as follows:

4.2.2 Flowtime
The sums of finalization time all the jobs. It is calculated as

follows:

In eq.(1) & (2) Fj denotes time when job j finalizes, schedules

denotes the set of all possible schedules and N denotes the set

of all jobs to be scheduled. Makespan is not affected by any

particular execution order of the jobs in a concrete resource.

But to minimize flowtime, the jobs need to be considered in

ascending order of their Expected Time to Compute (ETC). It

should also be noted that makespan and flowtime are

contradictory objectives. Trying to minimize one of them

could not suit the other. In order to express the Eq. (1) in an

easily computable form, makespan is expressed in terms of

the completion time of a resource (machine). Let completion

be a vector of completion times of m resources. The

completion time of machine i is denoted by completion[r] and

it is expressed as a total time needed for the resource r to

finalizing its previously assigned jobs and jobs which are

actually scheduled to this resource. Completion time of

machine i is denoted by completion[r] and it is expressed as a

total time needed for the resource r to finalizing its previously

assigned jobs and jobs which are actually scheduled to this

resource. Computation of ETC and completion time

(completion[r]) for resource r as follows:

 Where,

ETC[r][j]=expected time to compute job j on resource r.

Wj=workload of job j

CCr=computing capacity of resource r.

completion[r]=completion time for resource r.

readyr=time when resource r finishes previously assigned jobs

to it.

The makespan of eq.(1) can be redefined as the maximal

completion time and can be calculated as follows:

The flowtime in eq.(2) can be redefined as follows:

Where,

ft[r]=flowtime for machine r.

Sorted(r)= the set tasks assigned to the machine i sorted in

ascending order by the corresponding ETC values.

These two criteria makespan and flowtime can be integrated

in several ways to establish the desired priority among them.

For optimization two fundamental models are the hierarchical

and the simultaneous approach. In hierarchical approach, the

optimization criteria are sorted by their importance. The

process starts by optimizing most important criterion. When

further improvements are not possible, the second criterion is

optimized while keeping optimized value of first important

criterion unchanged. In grid scheduling, makespan may be

considered as most important criterion and flowtime may be

secondary criterion.

In the simultaneous approach, makespan and flowtime are

minimized simultaneously. This paper uses weighted sum

function since makespan and flowtime are measured in same

time unit. However, the flowtime values are usually higher

magnitude than makespan. For this reason, the value of mean

flowtime is computed. Moreover, both values are weighted in

order to balance their importance. This paper uses

simultaneous approach to compute objective function or

fitness function.

Where γ has been fixed by initial tuning process.

5. OVERALL SYSTEM ARCHITECURE
This section presents a GA based grid multi-objective job

scheduler that maximizes resource utilization by minimizing

makespan and flowtime. It also determines schedules based

on the current resource information. And hence can easily

react to dynamism involved in grid environment. Overall

system architecture shown in figure 1. System is designed in 3

major modules.

5.1 Monitoring & Discovery Service (MDS)

Module
This module discovers the new grid resources and monitors

already discovered resources. When MDS process starts first

time it reads /var/grid resources file to get list of the resources

available initially. It also creates a thread to periodically poll

already discovered resources to get current information about

each of these grid resources. The information includes static

information like processor family/architecture, number of

CPUs/resource, CPU frequency, total RAM, total swap area

etc., and dynamic information such as resource computing

status busy/free, resource up/down status, free RAM, load,

number of free CPUs etc. It also periodically receives

resource information from grid resources. This information is

sent to manager process as well as GA based grid scheduler as

and when needed. GA scheduler uses current resource

information to compute optimal/nearly optimal solution to

assign jobs to resources. It also receives update information

from manager process and updates its data structures

accordingly.

5.1 Manager Module
This module is the central part of implementation. It receives

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

36

Send Node Information

 Resource Description for Job Jn

Update node

information

Get node

information

......

Manager Process

J1 J2 J3 … Jn

submits a job

User1

gsub

delete a job

User2

gdel

query jobs

UserN

gstat

Monitoring and Discovery Service (MDS)

N1 N2 N3 … Nm

.…

Resource Description for Job J3

 Before Scheduling

 After Scheduling

poll node

information

Send node

information

Node M

poll node

information

Send node

information

Node1

Send schedule (Mapping of

Jobs to Nodes)

Send Information about Jobs to be

scheduled

Genetic Algorithm Based Grid Scheduler

J1 J2 J3 … Jn N1 N2 N3 … Nm

(J1,N3) (J2,N5) (J3,Nm) … (Jn,N1)

Genetic Mapping (JOBS↔NODES)

Figure 1: Proposed system design

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

37

commands from users. It implements following functions.

 Command processing & Scheduler invocation

 Job queue management

 Job management

 Job monitoring

The Manager receives command requests (such as submit a

job, query jobs, delete a job) from users as shown in figure 1.

When a user submits a job using gsub command, it sends job

submission request to manager. When manager receives a job

submission request, unique job id is generated for a job and its

description is appended to job queue. If a command request is

to query jobs(gstat), it simply loop through job queue and

send information such as job id, job status, job name, job

executable, assigned resource if it is already scheduled etc. If

command is to delete a job (gdel) and job is scheduled then

job management components forward request to gatekeeper of

the assigned host to clean the job. Once the job is deleted on

the resource, it will be removed from the job queue otherwise

an error is reported. This component periodically checks if

there are unscheduled jobs in the job queue. If there are some

jobs, it connects to GA Grid scheduler, send information

about jobs to GA grid scheduler and wait for optimal/nearly

optimal mapping of jobs to suitable resources from the

scheduler. Once it receives, a optimal/nearly optimal schedule

from scheduler, for each (job, resource) pair in the schedule, it

generates Globus GRAM description for the job. It submits

this GRAM job description to the assigned resource using

Globus command globus-job-submit.. It also periodically

monitors status of the scheduled jobs using Globus command

globus-job-status and updates job information in the job

queues. To delete already scheduled jobs, it uses Globus

command globus-job-clean. The detailed job submission

procedure is shown in figure 2.

5.2 Scheduler Module
This module uses GA to find optimal/nearly optimal solution

by minimizing makespan and flowtime. It receives

information about list of jobs from manager and information

about available resources from MDS server. It then creates

initial population of k schedules using Minimum Completion

Time (MCT) heuristics. It then evaluates the current

population by computing fitness function for each of k. It then

creates a new population by repeating selection, crossover,

and mutation and assignment steps until the size of new

population becomes k. It then evaluates the new population

and carries forward best schedules of the current population as

well as the new population in the next generation in order to

get optimal/nearly optimal solution quickly. The algorithm

evolves generation by generation until termination criteria

met. The scheduler then returns best schedules in current

population. This schedule will then be sent to manager.

Manager submits this job description to the assigned resource.

6. SYSTEM DESIGN
This section presents actual design of Multi-objective Job

scheduler using Genetic Algorithm in grid computing.

6.1 Schedule encoding
This section presents direct representation to encode each

possible schedule in a chromosome. There is an array

chromosome of n(number of jobs) integer to represent a

chromosome(a schedule) as shown in figure 3.

Chromosome[j] represents the resource number where job j is

scheduled.

6.2 Generation of Initial population
In GA, initial population is usually generated randomly. But

Job No:
1

1

2

2

3

3

4

4

5

5

6

6

7

7

Resource

No:
4

4

2

2

6

7

6

6

3

3

5

5

1

1

Figure 3: Encoding of a schedule (a chromosome)

to guide the searching process and to get optimal/nearly

optimal solution in fewer generations with the help of several

problem specific heuristics such as Min-Min, Minimum

Completion Time (MCT) etc. This paper presents use of

MCT heuristics to guide a searching process for finding

optimal/nearly optimal schedule quickly in fewer generations.

In the MCT heuristic, each job is assigned to the resource

where job completes in minimum time. Jobs are considered

for allocation at random.

6.2.1 Compute Fitness function
The scheduler aims to maximize resource utilization by

minimizing makespan and flowtime. Good chromosomes

have higher fitness values. The fitness of each chromosome

(schedule) is computed using eq.(9).

6.2.2 Selection operator
Selection operator is used to select parents to which crossover

operator is applied to produce new offspring. In general,

selection is directly proportional to the fitness of

chromosomes. Several selection methods exist to select

chromosomes for crossover such as linear ranking, roulette

wheel selection etc. Here roulette wheel selection technique is

used to select good schedules to produce new offspring. In

roulette wheel selection method, the probability that a

chromosome selected is directly proportional to its fitness

value. Higher the fitness, higher chances the chromosome will

be selected. In this method, each schedule or chromosome

gets portion on the roulette wheel according to its fitness

value. Chromosomes with higher fitness value get larger slice

on roulette wheel. Selection is done by spinning a roulette

wheel. Since fittest schedule has larger portion on the roulette

wheel, they will have higher chance of being selected.

Circumference of roulette wheel represents the total fitness of

all chromosomes. Pseudo code for roulette wheel selection

method is shown in figure 4. The roulette wheel selection of

among 4 chromosomes is shown in figure 5. Chromosome 3

has higher chance of getting selected as shown in figure 5.

RouletteWheelSelection()

{

 total_fitness=0.0;

 running_sum=0.0;

 for each chromosome k in a current population

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

38

 total_fitness=fitness(k);

 r=select random number r in the range

[0,total_fitness-1];

 for each chromosome k in a current population

 running_sum=running_sum+fitness(k);

 if(running_sum >= r)

 return(k);

}

Figure 4: Pseudo code Roulette Wheel Selection

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

39

Manager Process

Command Processing & Scheduler
Invocation

Send information about jobs to the Grid
Scheduler to get optimal/nearly optimal

JOB↔RESOURCE mapping. For each
(JOB↔RESOURCE) mapping, generate

globusGRAM description for the job

Job status

monitoring

(globus-job-status)

Job submission

To submit a job: globus-job-submit

To delete a job: globus-job-clean

Job Queue

J1 J2 J3 … jn

.....

.

submit a job

User1

gsub

submit a job

User2

gsub

submit a job

UserN

gsub

Resource1

Globus Gatekeeper

Local Scheduler

Nod

e

Nod

e

Nod

e

Nod

e

Local Information

System

ResourceN

Globus Gatekeeper

Local Scheduler

Nod

e

Nod

e

Nod

e

Nod

e

Local Information

System

Grid Information

System(MDS)

Genetic Algorithm Based Scheduler

(J1,N3

)

(J2,N5

)

(J3,N

m)

… (Jn,N1

)

Genetic Mapping

(JOBS↔NODES)

J

1

J

2

… J

n

N

1

N

2

… N

m

N

1

N

2

… N

m

Figure 2: Detail flow diagram for job submission

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

40

7 3 1 4 6 2 5

7 3 1 5 6 2 5

Move mutation

Schedule
(before mutation)

Schedule

(after mutation)

Figure 5: Roulette wheel selection among 4 chromosomes.

6.2.3 Crossover operator
With crossover operator, two selected parent chromosomes

can interchange their genes and produce new offspring

(children). The aim is to obtain better quality solution and

explore a new region of solution space that has not been yet

explored. One may use several different types of crossover

such as one-point crossover, two-point crossover, uniform

crossover etc. Here one-point crossover operator method is

used to produce offspring schedules. In this method, first,

random crossover point between 1 and n(number of jobs) is

selected, and then first parts of two parents are interchanged

to produce two offspring(schedules). Same way, exchanging

second parts of two parents to produce two new offspring

(schedules) which are same as those produced by exchanging

first parts. One point crossover is explained in figure 6.

Figure 6: One-point crossover operation to produce 4

offspring schedules

6.2.4 Mutation operator
Mutation randomly changes gene(s) to different values. It is

used to provide diversification by changing some gene(s)

randomly and thereby prevent GA search process getting

stuck in to local optima. There are several types of mutation

such as move, swap etc., applied to a schedule. Here move

mutation is used to randomly selects a job in a schedule (a

chromosome) and assign it to another machine as shown in

figure 7.

 Figure 7: Mutation operation

6.2.5 Replacement operator
Replacement operator determines which of the chromosomes

(schedules) survives in the next generation. Two kinds of

replacement usually used to carry forwards chromosomes to

next generation (a) Generational replacement (b) Partial

replacement. In a generational replacement, the current

population is entirely replaced by new population while in
partial replacement worst chromosomes in a current

population are replaced by good chromosomes of new

population. This paper presents use of partial replacement

strategy in which k best chromosomes from combined current

and new population are carried forward to the next generation.

First, fitness function is computed for each offspring. Let

CP(t) be the current population in generation t and NP(t) be

new population in generation t, then current population of

next generation t+1 will be

CP(t+1)=k best schedules from (CP(t) U NP(t))

6.2.6 Termination Criteria
Termination criteria could be:

(i) Maximum number of generations or iterations: the

genetic search process is terminated after fixed number of

generation.

(ii) Number of iterations without improvement: the

optimization process is terminated after some fixed number of

iterations without any improvement.

Here (i) termination criterion is used for GA based scheduler

in which search process terminates after 300 generations. If

termination criterion is not satisfied goto step 3 and repeat the

process.

In general, this genetic search process can be summarized as

follows:

GAGridScheduling() {

ENCODING: Represent a schedule(a chromosome) using

array of n(numof jobs) integer chromosome such that

chromosome[i] represents the resource on which job is

scheduled

INITIALIZATION: Generate a initial population CP(t=0) of k

schedules using MCT(Minimum Completion Time) heuristic.

FITNESS: Evaluate schedule in CP(t) using eq. (5)

TERMINATION CRITERIA: Check if termination criteria

satisfied, if „yes‟ return the best solution from current

population CP(t).

NEW POPULATION: Repeat following steps until size of

new population NP(t) becomes k.

 Selection: Select two parents schedules p1 & p2 from CP(t)

using roulette wheel method.

Crossover: With crossover probability pc perform one-point

crossover to produce two new offspring schedules o1 & o2.

 Mutation: With very low mutation probability pm, change the

assignment of randomly chosen job to new grid resources in

each offspring o1 and o2.

Assignment: Place o1 & o2 in NP(t)

NP(t)=NP(t) U{ o1,o2}

FITNESS: Evaluate schedule in NP(t) using eq.(5).

REPLACEMENT:

Offspring1

Parent1:

Parent2: 7 3 1 4 6 2 5

Crosover

point

Exchanging

 first parts

4 2 7 6 3 5 1

Exchanging

 second parts

7 3 1 6 3 5 1

Offspring2

Offspring3

Offspring4

4 2 7 4 6 2 5

1

4 2 7 4 6 2

2

5

7 3 1 6 3 5 1

1

33%

15%

47%

5%

chromosome selection

chromosome1

chromosome2

chromosome3

chromosome4

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

41

Select k best schedules from CP(t) and NP(t) to carry forward

in the next generation. CP(t+1)=k best schedules from (CP(t)

U NP(t))

Increment generation count

 t=t+1

 Goto Step 4

}

7. RESULTS & ANALYSIS
For the experimental purpose consider following problem

instance consisting of 10 grid resources and 20 jobs. List of

grid resources with existing workload is shown in the table-1.

Table-1: List of grid resources with corresponding

computing capacity

Job No Workload

1 126

2 233

3 759

 4 858

5 829

6 255

7 789

8 898

9 547

10 110

11 595

12 394

13 582

14 394

15 908

16 310

17 568

18 530

19 125

20 804

To find out optimal/nearly optimal solution for this problem

instance, GA based multi-objective scheduler with following

parameters is shown:

Number of Generations=300

Size of population=256

Crossover probability(Pc)=0.90

Mutation probability(Pm)=0.0001

got makespan=26.0183 in generation number 189 and then it

retains this value until last generation. So if number of

generations is reduced to less then 189, makespan is 26.6066.

The graph of generation numbers vs makespan for this

problem is shown in figure 8 where Y-axis represents

makespan values and X-axis represents generation number.

Table-2: List of jobs with corresponding workload

Figure 8: Makespan vs. generation numbers

8. CONCLUSION
Genetic Algorithms (GAs) for designing efficient Grid

schedulers when makespan and flowtime parameters are

minimized under simultaneous approaches is shown. The

experimental study reveals the quality of the proposed GA-

based multi-objective schedulers as compared well to the

existing GA-schedulers in the literature. This GA-based

schedulers can be used to design dynamic schedulers. A

dynamic scheduler would run GA in batch mode to schedule

jobs arrived in the system since last activation of the

scheduler.

Resource

No.

Computing

Capacity (MIPS)

Existing

workload

(pending

processing in ms)

1 3380 72.88

2 931 43.44

3 2969 69.92

4 3120 97.47

5 3728 47.61

6 1815 32.22

7 3170 22.67

8 2084 46.86

9 2014 26.48

10 3318 46.09

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

42

9. FUTURE SCOPE
Future work will show GA scheduling based on workflow

scheduling. Workflow management system allows the user to

specify their requirements along with the descriptions of tasks

and their dependencies using the workflow specification. It

will be integrated with various grid middleware such as

UNICORE, LIGEON etc. Study of implementing same

scheduler with different heuristics such as min-min, max-min,

MET etc. Extension of scheduler for multi matches maker

between user‟s requirement and resource characteristics.

10. REFERENCES
[1] Javier Carretero, Fatos Xhafa, Ajith Abraham. Genetic

algorithm based schedulers for grid computing systems.

In International Journal of Innovative Computing,

Information and Control ICIC International °c 2005

ISSN 1349-4198 Volume 3, Number 5, October 2007.

[2] Jing Liu, Li Chen, Yuqing Dun, Lingmin Liu, Ganggang

Dong. The Research of Ant Colony and Genetic

Algorithm in Grid Task Scheduling. In International

Conference on MultiMedia and Information Technology

2008.

[3] S. Prabhu, V.Naveen Kumar. Optimization Based on

Genetic Algorithm in Grid Scheduling. International

Journal of advanced research in technology. IJART, Vol.

1 Issue 1, 2011. ISSN NO: 6602 3127 RR.

[4] Abraham, A. H. Liu, W. Zhang and T. G. Chang, Job

scheduling on computational grids using fuzzy particle

swarm algorithm, Proc. of the 10th International

Conference on Knowledge-Based and Intelligent

Information and Engineering Systems, B. Gabrys et al.

(eds.): Part II, Lecture Notes on Artificial Intelligence

4252, 500507, Springer, 2006.

[5] Jia Yu and Rajkumar Buyya and Kotagiri

Ramamohanarao. Workflow Schdeduling Algorithms

for Grid Computing. Grid Computing and Distributed

Systems (GRIDS) Laboratory Department of Computer

Science and Software Engineering, The University of

Melbourne, Australia.

[6] Guangchang Ye, Ruonan Rao, Minglu Li. A

Multiobjective Resources Scheduling Approach Based

on Genetic Algorithms in Grid Environment. In Fifth

International Conference on Grid and Cooperative

Computing Workshops (GCCW'06) IEEE computer

society.

[7] Taras S. Shapovalov, Alexey G. Tarasov. Genetic

Algorithm Based Parallel Jobs Scheduling. In program

“Research and scientific-pedagogical personnel of

innovative Russia”(project No. 02-740-11-0626) and

Grant of Russian Foundation for Basic Research and Far

eastern branch of Russian academy of sciences No. 10-

III-B- 01I-009.

[8] Wei Sun , Yuanyuan Zhang , Yanwei Wu, and Yasushi

Inoguchi. Practical Task Flow Scheduling for High

Throughput Computational Grid. In International

Conference on Parallel Processing Workshops

(ICPPW'06) 0-7695-2637-3/06, 2006,IEEE computer

society.

[9] A. Abraham, R. Buyya, and B. Nath. Nature‟s heuristics

for scheduling jobs on computational grids. In The 8th

IEEE International Conference on Advanced Computing

and Communications (ADCOM 2000), India, 2000.

[10] Arash Ghorbannia Delavar, Mohsen Nejadkheirallah,

Mehdi Motalleb. A New Scheduling Algorithm for

Dynamic Task and Fault Tolerant in Heterogeneous Grid

Systems Using Genetic Algorithm. In IEEE computer

society 2010.

[11] Dr. K.Vivekanandan, D.Ramyachitra A Study on

Scheduling in Grid Environment Dr. K. Vivekanandan et

al. / International Journal on Computer Science and

Engineering (IJCSE).

[12] Javier Carretero, Fatos Xhafa. Use of Genetic algorithm

for scheduling jobd in large scale grid applications. In

Okio Technologies IR Ekonominis Vystymas

Technological and Economic Development of Economy,

ISSN 1392-8619 Volume XII, Number 1, 2006.

[13] Wael Abdulal, Omar AI Jadaan, Ahmad Jabas, S.

Ramachandram. An Improved Rank-based Genetic

algorithm with limited Iterations for grid Scheduling. In

IEEE symposium on Industrial Electronics and

Applications(ISIEA 2009), Kaula Lumpur, Malaysia,

October 4-6, 2009

[14] Weizhe Zhang, Albert M.K. Cheng, Mingzeng Hu.

Multisite Co-allocation Algorithms for Computational

Grid. In IEEE , 2006

[15] Suchang Guo, Hong-Zhong Huang, Zhonglai Wang, Min

Xie. Grid Service Reliability Modeling and Optimal Task

Scheduling Considering Fault Recovery. In IEEE

Transactions on reliability, VOL.60, NO.1, March 2011.

[16] Vijay Subramani, Rajkumar Kettimuthu, Srividya

Srinivasan, P.Sadayappan. Distributed Job Scheduling on

Computational Grids using Multiple Simultaneous

Requests*

[17] Ajith Abraham, Hongbo Liu, Crina Grosan, Fatos Xhafa.

Nature Inspired Meta-heuristics for Grid Scheduling:

Single and Muti-objecive Optimization Approaches. F.

Xhafa, A. Abraham(Eds.):Meta. For Sched. In Distri.

Comp. Envi.,SCI 146, pp. 247-272, 2008, Springer-

verlag berlin Heidelberg 2008.

[18] Wael Abdulal, S. Ramachandram. Reliability-Aware

Genetic Scheduling Algorithm in Grid Environment. In

IEEE International Conference on Communication

Systems and Network Technologies DOI

10.1109,2011,145.

[19] Carsten Ernemann, Volker Hamscher, Uwe

Schwiegelshohn, Ramin Yahyapour. On Advantages of

Grid Computing for Parallel Job Scheduling, In

Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid

(CCGRID.02).

[20] S. Bhaghavathi Priya, M. Prakash, Dr. K.K.Dhawan.

Fault Tolerance-Genetic Algorithm gor Grid Task

Scheduling using Check Point. In IEEE the sixth

international conference on grid and cooperative

computing(GCC),2007.

[21] J. Monroy, J.A. Becerra, F.Bellas, R.J. Duro. Parallel Job

Scheduling through Evolutionary Based Cognitive

Strategies, In IEEE Congress on Evolutionary

Computation Sheraton Vancouver Wall Centre Hotel,

Vancouver, BC, Canada, July 16-21, 2006.

[22] Hamed Vahdat-Nej ad, Reza Monsefi, Mahmoud

Naghibzadeh. A New Fuzzy Algorithm for Global Job

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

43

Scheduling in Multiclusters and Grid, In IEEE

International Conference on Computational Intelligence

for Measurement Systems and Applications (CIMSA),

Ostuni - Italy, 27-29 June 2007

[23] Pavel Fibich and Ludˇek Matyska and Hana Rudov´a.

Model of Grid Scheduling Problem, American

Association for Artificial Intelligence,2005

[24] Kamaljit Kaur, Amit Chhabra, Gurvinder Singh.

Heuristics Based Genetic Algorithm for Scheduling

Static Tasks in Homogeneous Parallel System, In

International Journal of Computer Science and Security

(IJCSS), Volume (4): Issue (2).

IJCATM : www.ijcaonline.org

