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ABSTRACT 
In Data Mining, agglomerative clustering algorithms are 

widely used because their flexibility and conceptual 

simplicity. However, their main drawback is their slowness. In 

this paper, a simple agglomerative clustering algorithm with a 

low computational complexity, is proposed. This method is  

especially convenient for performing clustering on large data 

sets, and could also be used as a linear time initialization 

method for other clustering algorithms, like the commonly 

used k-means algorithm. Experiments conducted on some 

standard data sets confirm that the proposed approach is 

effective.   
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1. INTRODUCTION 
Clustering is the process of grouping data into disjoint set 

called clusters such that similarities among data members 

within the same cluster are maximal while similarities among 

data members from different clusters are minimal. The 

optimization of this criterion is an NP hard problem in general 

Euclidean space d, even when the clustering process deals 

with only two clusters [1]. To tackle this problem, numerous 

approximation algorithms have been proposed, seeking to find 

near optimal clustering solution in reasonable computational 

time.  

Clustering algorithms could be categorized into two major 

categories: partitional clustering, which determines all clusters 

at once, by dividing large clusters into small ones, and 

agglomerative clustering, which constructs a hierarchy of 

clusters by merging small clusters.  

Agglomerative clustering process is generally slower than 

divisive clustering but allows more flexibility because it 

permits the user to supply any arbitrary similarity function 

defining what constitutes a similar cluster pair to merge 

together.  

In this paper, an alternative agglomerative clustering method 

(called ACM), characterized by a low computational 

complexity, is introduced. This approach is particularly 

suitable for clustering massive data sets and has an easy  

implementation, without requiring any tuning parameter, 

except k, the number of clusters. Furthermore, it could also be 

used as a linear time initialization method for other clustering 

algorithms, like the k-means algorithm, in order to overcome 

one of its main drawbacks: its sensitivity to initial centroids. 

In the next section, some related work are briefly discussed. 

Then the proposed algorithm and its computational 

complexity are described in Section 3. Section 4 applies this 

clustering method to some standard data sets and reports its 

performance. Finally, conclusion of the paper is summarized 

in Section 5.  

2.  RELATED WORK 
There exist several papers dedicated to agglomerative 

clustering [2, 3, 4]. Some algorithms [5–7] has attempted to 

perform agglomerative clustering on the graph representation 

of data like Chameleon [5] or graph degree linkage (GDL) 

[8]. Fränti et al. [9] proposed a fast PNN-based clustering 

using K-nearest neighbor graph with O(n log n) running time. 

Recently, Li et al. proposed a simple and accurate approach to 

hierarchical clustering [10], with a time complexity of  O (n3), 

and a space complexity of O(n2), which is prohibitive  when 

dealing with  large data set. In  [11], Chang et al. introduced a 

fast agglomerative clustering using information of k-nearest 

neighbors with time complexity O (n2). Zhang [12] proposed 

an agglomerative clustering based on Maximum Incremental 

Path Integral and claimed that extensive experimental 

comparisons showed that this algorithm outperforms the state-

of-the-art clustering methods, without specifying its 

computational running time. Thus, to the best of our 

knowledge, the main limitation of existing agglomerative 

clustering methods is their high computational complexity.  

Another drawback of many agglomerative clustering 

algorithms is their dependence on one ore more tuning 

parameters, which are often difficult to determine. 

Besides agglomerative clustering, K-means [13] is among the 

most commonly used clustering algorithms, because its 

conceptual simplicity and its low computational complexity. 

However, K-means is sensitive to centroids initialization and 

may stuck in local optima. 

To overcome this inherent drawback, several initialization 

methods for K-means have been developed, some of them are 

random methods [14,15], others methods like KKZ [16], 

principal components analysis (PCA) based partitioning, and 

Var-Part (variance partitioning)[17] are deterministic. 

3. THE PROPOSED METHOD 
This section firstly introduces ACM and then analyzes the 

computational time and space complexity. 

         Given a data set X = {X1 , X2 , . . . , Xn } in Rd , i.e., n points 

(vectors) each with d attributes, the goal of the clustering is to 

divide X into k exhaustive and mutually exclusive clusters C = 

{C1 , C2 , . . . , Ck }, such that: 

         Ci = X , and  Ci ∩ Cj = ∅  for 1 ≤ i , j ≤ k.  

        1 ≤ i ≤ k 
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        Clustering algorithms usually generate clusters by optimizing 

a criterion function. The most commonly used criterion 

function is the Sum of Squared Error (SSE) given by: 

                       k 

           SSE = Σ   Σ|| Xj -mi ||
2   (1)  

                     i=1 Xj ∈Ci  

where || . || 2 denotes the Euclidean norm  and 

mi=(1/|Ci|)ΣXj                                                                                               

  Xj ∈Ci   

        denotes the centroid of cluster Ci  whose cardinality is |Ci |. 

The main idea of  the proposed ACM method, is to choose k 

initial points (randomly or by using an appropriate 

initialization procedure) in the input data set X, which 

constitute the k initial singleton clusters. Then, the rest of X is 

scanned once, the distance between each non assigned point 

Xi and the nearest centroid mj is compared with the minimum 

of the inter-cluster distances stored in a kxk D matrix. If it is 

lower, then Xi is assigned to cluster Cj, else the two clusters 

with closest centroids are merged together into one cluster and 

a singleton cluster is created with centroid Xi, seeking to 

minimize the SSE criterion. Then centroids and D matrix are 

updated. This process is repeated until all points in X are 

assigned. More details are presented in the following pseudo-

code: 

   3.1 Pseudo-code of  the proposed method 

Input: A data set X whose cardinality is n and an integer k 

Output: k cluster Cj  

 

1 for i=1:k do 

       Ci Xi  

        miXi 

 end for 

 2 D(d(mi,mj))1 ≤ i ≠ j ≤ k 

  muMin(D)  and (a,b)Arg(Min(D))                          
 i,j                                       i,j 

  ik+1 

 3 while i≤n do 

 diMin(d(Xi,mj))  

                               j 

                    cArg(Min d(Xi,mj)) 

                                     j 

                   if di<mu then 

                            Cc CcXi

mc(Ccmc+Xi)/(Cc+1) 

                                    D(c,:)d(mc,mj)) 1 ≤ j ≤ k 

                                    D(:,c)D(c,:)' 

else 

    Ca CaCb 

                     ma(Cama+Cbmb)/(Ca+Cb) 

     Cb Xi

mb Xi 

                                D(a,:)d(ma,mj)) 1 ≤ j ≤ k 

                                       D(:,a)D(a,:)' 

                                       D(b,:)d(mb,mj)) 1 ≤ j ≤ k 

                                       D(:,b)D(b,:)' 

                  end if 

 ii+1 

                   muMin(D)  and (a,b)Arg(Min(D)) 

                                 h,j                                     h,j 

  end while. 

 

3.2 Time and Space Complexities 
As shown in pseudo-code, at step 2, O(k2) operations are 

required to compute D matrix, and O(k2) space are required to 

store D matrix. 

At step 3, the while loop is repeated n-k times, and updating D 

matrix, require only O(k) operations at each iteration. Thus, 

the overall running time complexity of ACM is O(nk) and its 

space complexity  is  O(k2). 

4. EXPERIMENTAL RESULTS 
To evaluate the proposed algorithm performance, experiments 

are done on some data sets from UCI Machine learning 

repository [18]. Clustering results of ACM were compared 

with those of K-means  algorithm (KM) and ACM+KM 

which consists to initialize KM using the centroids found by 

ACM. Silhouette index [19,20] which measures the cohesion 

based on the distance between all the points in the same 

cluster and the separation based on the nearest neighbor 

distance, was used in these experiments. A bigger average 

silhouette value indicates a better clustering result.  
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In order to obtain reproducible results, the compared methods 

are initialized with the same initial points (the first k points Xi 

in X) instead of random initialization and using the centroids 

found by ACM to initialize ACM+KM method. Average of 

computed silhouette values related to these experiments are 

reported in table 1 and some clustering results with their 

corresponding silhouette plots are shown in Fig. 1 to 4. 

Table 1. Average silhouette index values of clustering 

results related to the conducted experiments. 

Data set X k KM ACM  ACM+KM 

Iris 3 0.7786 0.7786 0.7786 

Ruspini  4 0.6584 0.9086 0.9086 

Aggregation  7 0.6543 0.6543 0.6709 

Compound  6 0.6105 0.6309 0.6446 

R15 15 0.6659 0.9361 0.9361 

S1 15  0.7413 0.8761 0.8803 

S2 15 0.6638 0.7840 0.8009 

S3 15 0.5825  0.3663 0.6378 

S4 15 0.5967  0.3886 0.6447 

DIM32 16 0.5416 0.9962 0.9962 

DIM64 16 0.4991 0.9985 0.9985 

DIM128 16 0.3417 0.9991 0.9991 

A1 20  0.6175 0.7751 0.7892 

D31 31 0.5504 0.9218 0.9222 

 

5. CONCLUSION 
In this work, a simple and fast algorithm for agglomerative 

clustering was presented. It is easy to implement, without 

imposing any tuning parameter, except k, the number of 

clusters. Experiments conducted on some standard data sets 

demonstrate the effectiveness of the proposed approach and 

show that it could also be successfully used as an initialization 

method for the k-means algorithm. 

Future research direction of this work would be focused on 

improving the accuracy of this method by: removing noisy 

data using an appropriate outlier detection procedure as a 

preprocessing step; starting with a suitable centroid 

initialization method; performing multiple random restarts, 

combined with a convenient optimization meta-heuristic 

procedure; using an appropriate similarity function instead of 

Euclidian distance, in order to find arbitrary shaped clusters. 
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Fig 1: Clustering results of Ruspini data set using KM (on left) and ACM (on right) 
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Fig 2: Clustering results of Aggregation data set using KM (on left) and ACM (on right) 
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Fig 3: Clustering results of S1 data set using KM (on left) and ACM+KM (on right) 
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Fig 4: Clustering results of DIM128 data set using KM (on left) and ACM (on right) 
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