
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

1

An Agglomerative Clustering Method for Large Data Sets

Omar Kettani, Faycal Ramdani, Benaissa Tadili

LPG Lab.
Scientific Institute

Mohamed V University, Rabat-Morocco

ABSTRACT
In Data Mining, agglomerative clustering algorithms are

widely used because their flexibility and conceptual

simplicity. However, their main drawback is their slowness. In

this paper, a simple agglomerative clustering algorithm with a

low computational complexity, is proposed. This method is

especially convenient for performing clustering on large data

sets, and could also be used as a linear time initialization

method for other clustering algorithms, like the commonly

used k-means algorithm. Experiments conducted on some

standard data sets confirm that the proposed approach is

effective.

General Terms
Clustering, Algorithms.

Keywords
Agglomerative clustering, k-means initialization.

1. INTRODUCTION
Clustering is the process of grouping data into disjoint set

called clusters such that similarities among data members

within the same cluster are maximal while similarities among

data members from different clusters are minimal. The

optimization of this criterion is an NP hard problem in general

Euclidean space d, even when the clustering process deals

with only two clusters [1]. To tackle this problem, numerous

approximation algorithms have been proposed, seeking to find

near optimal clustering solution in reasonable computational

time.

Clustering algorithms could be categorized into two major

categories: partitional clustering, which determines all clusters

at once, by dividing large clusters into small ones, and

agglomerative clustering, which constructs a hierarchy of

clusters by merging small clusters.

Agglomerative clustering process is generally slower than

divisive clustering but allows more flexibility because it

permits the user to supply any arbitrary similarity function

defining what constitutes a similar cluster pair to merge

together.

In this paper, an alternative agglomerative clustering method

(called ACM), characterized by a low computational

complexity, is introduced. This approach is particularly

suitable for clustering massive data sets and has an easy

implementation, without requiring any tuning parameter,

except k, the number of clusters. Furthermore, it could also be

used as a linear time initialization method for other clustering

algorithms, like the k-means algorithm, in order to overcome

one of its main drawbacks: its sensitivity to initial centroids.

In the next section, some related work are briefly discussed.

Then the proposed algorithm and its computational

complexity are described in Section 3. Section 4 applies this

clustering method to some standard data sets and reports its

performance. Finally, conclusion of the paper is summarized

in Section 5.

2. RELATED WORK
There exist several papers dedicated to agglomerative

clustering [2, 3, 4]. Some algorithms [5–7] has attempted to

perform agglomerative clustering on the graph representation

of data like Chameleon [5] or graph degree linkage (GDL)

[8]. Fränti et al. [9] proposed a fast PNN-based clustering

using K-nearest neighbor graph with O(n log n) running time.

Recently, Li et al. proposed a simple and accurate approach to

hierarchical clustering [10], with a time complexity of O (n3),

and a space complexity of O(n2), which is prohibitive when

dealing with large data set. In [11], Chang et al. introduced a

fast agglomerative clustering using information of k-nearest

neighbors with time complexity O (n2). Zhang [12] proposed

an agglomerative clustering based on Maximum Incremental

Path Integral and claimed that extensive experimental

comparisons showed that this algorithm outperforms the state-

of-the-art clustering methods, without specifying its

computational running time. Thus, to the best of our

knowledge, the main limitation of existing agglomerative

clustering methods is their high computational complexity.

Another drawback of many agglomerative clustering

algorithms is their dependence on one ore more tuning

parameters, which are often difficult to determine.

Besides agglomerative clustering, K-means [13] is among the

most commonly used clustering algorithms, because its

conceptual simplicity and its low computational complexity.

However, K-means is sensitive to centroids initialization and

may stuck in local optima.

To overcome this inherent drawback, several initialization

methods for K-means have been developed, some of them are

random methods [14,15], others methods like KKZ [16],

principal components analysis (PCA) based partitioning, and

Var-Part (variance partitioning)[17] are deterministic.

3. THE PROPOSED METHOD
This section firstly introduces ACM and then analyzes the

computational time and space complexity.

 Given a data set X = {X1 , X2 , . . . , Xn } in Rd , i.e., n points

(vectors) each with d attributes, the goal of the clustering is to

divide X into k exhaustive and mutually exclusive clusters C =

{C1 , C2 , . . . , Ck }, such that:

 Ci = X , and Ci ∩ Cj = ∅ for 1 ≤ i , j ≤ k.

 1 ≤ i ≤ k

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

2

 Clustering algorithms usually generate clusters by optimizing

a criterion function. The most commonly used criterion

function is the Sum of Squared Error (SSE) given by:

 k

 SSE = Σ Σ|| Xj -mi ||
2 (1)

 i=1 Xj ∈Ci

where || . || 2 denotes the Euclidean norm and

mi=(1/|Ci|)ΣXj

 Xj ∈Ci

 denotes the centroid of cluster Ci whose cardinality is |Ci |.

The main idea of the proposed ACM method, is to choose k

initial points (randomly or by using an appropriate

initialization procedure) in the input data set X, which

constitute the k initial singleton clusters. Then, the rest of X is

scanned once, the distance between each non assigned point

Xi and the nearest centroid mj is compared with the minimum

of the inter-cluster distances stored in a kxk D matrix. If it is

lower, then Xi is assigned to cluster Cj, else the two clusters

with closest centroids are merged together into one cluster and

a singleton cluster is created with centroid Xi, seeking to

minimize the SSE criterion. Then centroids and D matrix are

updated. This process is repeated until all points in X are

assigned. More details are presented in the following pseudo-

code:

 3.1 Pseudo-code of the proposed method

Input: A data set X whose cardinality is n and an integer k

Output: k cluster Cj

1 for i=1:k do

 Ci Xi

 miXi

 end for

 2 D(d(mi,mj))1 ≤ i ≠ j ≤ k

 muMin(D) and (a,b)Arg(Min(D))
 i,j i,j

 ik+1

 3 while i≤n do

 diMin(d(Xi,mj))

 j

 cArg(Min d(Xi,mj))

 j

 if di<mu then

 Cc CcXi

mc(Ccmc+Xi)/(Cc+1)

 D(c,:)d(mc,mj)) 1 ≤ j ≤ k

 D(:,c)D(c,:)'

else

 Ca CaCb

 ma(Cama+Cbmb)/(Ca+Cb)

 Cb Xi

mb Xi

 D(a,:)d(ma,mj)) 1 ≤ j ≤ k

 D(:,a)D(a,:)'

 D(b,:)d(mb,mj)) 1 ≤ j ≤ k

 D(:,b)D(b,:)'

 end if

 ii+1

 muMin(D) and (a,b)Arg(Min(D))

 h,j h,j

 end while.

3.2 Time and Space Complexities
As shown in pseudo-code, at step 2, O(k2) operations are

required to compute D matrix, and O(k2) space are required to

store D matrix.

At step 3, the while loop is repeated n-k times, and updating D

matrix, require only O(k) operations at each iteration. Thus,

the overall running time complexity of ACM is O(nk) and its

space complexity is O(k2).

4. EXPERIMENTAL RESULTS
To evaluate the proposed algorithm performance, experiments

are done on some data sets from UCI Machine learning

repository [18]. Clustering results of ACM were compared

with those of K-means algorithm (KM) and ACM+KM

which consists to initialize KM using the centroids found by

ACM. Silhouette index [19,20] which measures the cohesion

based on the distance between all the points in the same

cluster and the separation based on the nearest neighbor

distance, was used in these experiments. A bigger average

silhouette value indicates a better clustering result.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

3

In order to obtain reproducible results, the compared methods

are initialized with the same initial points (the first k points Xi

in X) instead of random initialization and using the centroids

found by ACM to initialize ACM+KM method. Average of

computed silhouette values related to these experiments are

reported in table 1 and some clustering results with their

corresponding silhouette plots are shown in Fig. 1 to 4.

Table 1. Average silhouette index values of clustering

results related to the conducted experiments.

Data set X k KM ACM ACM+KM

Iris 3 0.7786 0.7786 0.7786

Ruspini 4 0.6584 0.9086 0.9086

Aggregation 7 0.6543 0.6543 0.6709

Compound 6 0.6105 0.6309 0.6446

R15 15 0.6659 0.9361 0.9361

S1 15 0.7413 0.8761 0.8803

S2 15 0.6638 0.7840 0.8009

S3 15 0.5825 0.3663 0.6378

S4 15 0.5967 0.3886 0.6447

DIM32 16 0.5416 0.9962 0.9962

DIM64 16 0.4991 0.9985 0.9985

DIM128 16 0.3417 0.9991 0.9991

A1 20 0.6175 0.7751 0.7892

D31 31 0.5504 0.9218 0.9222

5. CONCLUSION
In this work, a simple and fast algorithm for agglomerative

clustering was presented. It is easy to implement, without

imposing any tuning parameter, except k, the number of

clusters. Experiments conducted on some standard data sets

demonstrate the effectiveness of the proposed approach and

show that it could also be successfully used as an initialization

method for the k-means algorithm.

Future research direction of this work would be focused on

improving the accuracy of this method by: removing noisy

data using an appropriate outlier detection procedure as a

preprocessing step; starting with a suitable centroid

initialization method; performing multiple random restarts,

combined with a convenient optimization meta-heuristic

procedure; using an appropriate similarity function instead of

Euclidian distance, in order to find arbitrary shaped clusters.

6. ACKNOWLEDGMENTS
The authors sincerely thank the anonymous reviewers for their

helpful comments.

7. REFERENCES
[1] Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. (2009).

"NP-hardness of Euclidean sum-of-squares clustering".

Machine Learning 75: 245–249. doi:10.1007/s10994-

009-5103-0.

[2] Franti, P., Virmajoki, O., Hautamaki, V.: Fast

agglomerative clustering using a k-nearest neighbor

graph. IEEE TPAMI 28(11) (2006) 1875–1881

[3] Cho, M., Lee, J., Lee, K.: Feature correspondence and

deformable object matching via agglomerative

correspondence clustering. In: ICCV. (2009)

[4] Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based

clustering in spatial databases: The algorithm

GDBSCAN and its applications. Data Mining and

Knowledge Discovery 2(2)(1998) 169–194

[5] Karypis, G., Han, E., Kumar, V.: Chameleon:

Hierarchical clustering using dynamic modeling. IEEE

Computer 32(8) (1999) 68–75

[6] Zhao, D., Tang, X.: Cyclizing clusters via zeta function

of a graph. In: NIPS. (2008)

[7] Felzenszwalb, P., Huttenlocher, D.: Efficient graph-

based image segmentation. IJCV 59(2)

[8] Wei Zhang, Xiaogang Wang, Deli Zhao, Xiaoou Tang:

Graph Degree Linkage: Agglomerative Clustering on a

Directed Graph Computer Vision – ECCV 2012

Lecture Notes in Computer Science Volume

7572, 2012, pp 428-441

[9] Pasi Fränti, Olli Virmajoki and Ville Hautamäki:Fast

PNN-based Clustering Using K-nearest Neighbor Graph.

IEEE TRANSACTIONS ON PATTERN ANALYSIS

AND MACHINE INTELLIGENCE,VOL. 28, NO.

11,NOVEMBER 2006

[10] Jianfu LI,, Jianshuang LI, Huaiqing HE:A Simple and

Accurate Approach to Hierarchical Clustering. Journal of

Computational Information Systems 7: 7 (2011) 2577-

2584

[11] Chih-Tang Chang, Jim Z.C. Lai, M.D. Jeng: fast

agglomerative clustering using information of k-nearest

neighbors. Pattern Recognition 43 (2010) 3958–3968

[12] Wei Zhang , Deli Zhao, Xiaogang Wang:Agglomerative

Clustering via Maximum Incremental Path Integral.

Pattern Recognition 46(11) 3056-3065 (2013)

[13] S. Lloyd, “Least Squares Quantization in PCM,” IEEE

Transactions on Information Theory, vol. 28, no. 2, pp.

129–136, 1982.

[14] P. S. Bradley and U. M. Fayyad, “Refining initial points

for K-means clustering”, proceedings of the 15th

International Conference on Machine Learning, (1998)

July 24-27, Morgan Kaufmann, San Francisco, pp. 91-

99.

[15] M. Al-Daoud and S. Roberts. New methods for the

initialisation of clusters. Technical Report 94.34, School

of Computer Studies,University of Leeds, 1994.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

4

[16] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang. A new

initialization technique for generalized Lloyd iteration.

IEEE Signal Processing Letters,1(10):144–146, 1994.

[17] T. Su and J. G. Dy, “In Search of Deterministic Methods

for Initializing K-Means and Gauss (2004) 167–181

[18] Merz C and Murphy P, UCI Repository of Machine

Learning ftp://ftp.ics.uci.edu/pub/machine-Learning-

databases Clustering

datasets:http://cs.joensuu.fi/sipu/datasets/

[19] Kaufmann, L. and Rousseeuw, P.J. (1990) Finding

Groups in Data. Wiley, New York.

[20] http://www.mathworks.com

Fig 1: Clustering results of Ruspini data set using KM (on left) and ACM (on right)

[Type a quote from the document or the

summary of an interesting point. You can

position the text box anywhere in the document.

Use the Text Box Tools tab to change the

formatting of the pull quote text box.]

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

5

Fig 2: Clustering results of Aggregation data set using KM (on left) and ACM (on right)

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

6

Fig 3: Clustering results of S1 data set using KM (on left) and ACM+KM (on right)

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

7

Fig 4: Clustering results of DIM128 data set using KM (on left) and ACM (on right)

IJCATM : www.ijcaonline.org

