
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

35

Accuracy, Security, and Architecture

Impacts and Challenges of Mobile and Web

Technologies:Geolocation Field Data Collection in

Washington State Water Resources

Jeremiah D. Miller, Sam
Chung, Teresa Escrig,

Yan Bai,
Institute of Technology

University of Washington,
Tacoma, WA 98402, USA

Barbara Endicott-
Popovsky

Center for Information
Assurance and Cybersecurity

University of Washington,
Seattle, WA 98195, USA

Jan Whittington
Department of Urban Design

and Planning
University of Washington,
Seattle, WA 98195, USA

ABSTRACT

The purpose of this paper is to examine accuracy, security,

and architecture impacts and challenges of mobile and web

technologies through the case study of collecting geolocation

field data in Washington (WA) State water resources.

Effective management of water as a public resource relies on

the capture, storage, and retrieval of accurate geographic

position data. This is also true of a broad range of business

domains beyond water resources, such as earth sciences, city

planning, and navigation to name a few. Application

developers must choose how to capture this information (with

enough accuracy to be useful for its intended application) and

get that data to a place where it can be processed and used. A

traditional monotonic application using a Global Positioning

System (GPS) and a mobile app using a smartphone are

available today. The advent of HTML 5 now allows the

development of a mobile web app, which is not dependent on

any particular smartphone platform. These multiple technical

options lead to two research questions: How does an HTML5

mobile web app solution work in terms of accuracy, security,

and architecture, compared with a GPS-based solution and a

mobile native app solution for collecting geolocation field

data? And second, as HTML5 mobile web apps are a

relatively new technology, what best practices can we uncover

to assist in the process of choosing between an HTML5

mobile web app and a mobile native app, and also what are

the best practices for building a mobile web app that can

operate offline? To answer these questions, we build an

HTML5 mobile web app called „LocationSharpener‟ for

collecting GPS locations leveraging three of the new HTML5

features: IndexedDB, AppCache, and GeoLocation. We use

the mobile web app to collect locations of water resources

facilities like wells and diversions and analyze how accurately

the app collects the geolocation data. We apply threat risk

modeling to the mobile web app to analyze its security and

privacy compared to that of the native mobile app approach.

In addition, by documenting the architecture of the mobile

web app with multiple views, we analyze how HTML5 affects

the architecture and present best practices for building a

mobile web app that can operate online and offline. The

analysis of location accuracy shows the HTML5 mobile web

app approach provides acceptable location accuracy even

when offline. Threat modeling demonstrates that, in contrast

to native mobile apps, mobile web apps offer a clear

advantage to users and developers: an isolated execution

environment makes it more difficult for a malicious mobile

web app to read private data; As an outcome of the

architecture documentation we also propose new best

practices of developing a mobile web app using HTML5: the

developer must consider two subsystems for online and

offline use cases and a sequence of connected, disconnected,

and connected deployment modes. Also, standards-based web

apps are portable across virtually any operating system. This

also eases the burden on developers, since they can write

mobile web app once and deploy anywhere.

General Terms

Mobile Computing, Security

Keywords

Mobile Web App; Native Mobile App; HTML 5; Geolocation

Field Data Collection; Water Resources

1. INTRODUCTION
Each field visit to a water well or river diversion constitutes

an opportunity to update the location data and other attributes

for that station. Physically finding the facilities, determining

the owner, and modeling the hydrologic and environmental

impact of the water extraction all depend on accurate location

data. Water resource agency staff and members of the public

wanting to collect better locations for these facilities typically

use a handheld Global Positioning System (GPS) receiver, or

increasingly, a mobile phone to record the geolocation.

In order to solve the weaknesses of GPS devices for

geolocation data collection, native mobile apps (e.g. using

ArcGIS Mobile) have been developed for directly capturing

this data into a disconnected database for later

synchronization with an enterprise data management system

[5]. However, such native mobile apps are also problematic as

they can be costly to maintain since multiple versions of

mobile apps are required for heterogeneous platforms. Also,

they require a specialized skillset to develop, and must be

installed as platform-specific applications on the client device.

These constraints, along with licensing requirements, place

such solutions out of reach for not only many software

development shops but also many of their customers (e.g. due

to license cost.) Moreover, whenever a mobile app is

downloaded and installed on a mobile platform, it can be a

potential security and privacy threat [8].

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

36

The recent adoption of support for HyperText Markup

Language (HTML) 5 and associated technologies such as

AppCache, IndexedDB, and Geolocation in mobile web

browsers now enables a relatively attractive alternative to

native mobile apps to reduce barriers to collecting

geolocations into enterprise data systems [17]. Neither

location awareness nor offline operation was possible in

HTML4 technology. In a broader sense, we can help to spur a

critical mass of developers to think seriously about how they

can provide useful new web apps that leverage the whole new

range of possibilities introduced by modern smartphones.

We propose a platform-independent mobile web application

that simply runs in an HTML5-capable web browser. In

contrast to solutions like PhoneGap1 and mobl2, no native app

needs to be compiled or installed. We leverage mobile web

browser geolocation support and HTML5 offline features to

simplify the offline collection and subsequent automatic

upload of geolocation for points of interest that might fall

outside cellular data coverage areas. This mobile web app

approach brings two research questions to be answered:

1) How does an HTML5 mobile web app solution work in

terms of accuracy, security, and architecture, compared

with a GPS-based solution and a mobile native app solution

for collecting geolocation field data?

2) What best practices for HTML5 mobile web app

development can we uncover?

For this purpose, we develop an HTML5 mobile web app for

collecting the GPS locations of wells called

„LocationSharpener‟ leveraging three of the new HTML5

features: IndexedDB, AppCache, and GeoLocation. This

LocationSharpener accesses a disconnected copy of features

which is initially loaded from an online data system and then

stored locally on the mobile client. In this case we will

specifically use water resource features in order to

demonstrate the concept, although the solution‟s design is

applicable to many other types of data. During a field visit to

a well, the user brings up a particular record on the now-

offline web app and taps a button to link the device‟s current

location to that record, which is then saved to IndexedDB.

Later when the device gets back online, it will upload the data

through a REpresentational State Transfer (REST)-ful web

service that saves the location to the enterprise database.

By using „LocationSharpener‟, we describe how the HTML5

mobile web app approach affects the ways of collecting

geolocation field data for WA state water resources, compared

to GPS devices. We collect locations of water resources

facilities like wells and water diversions andanalyze how

accurately the mobile web app collects the geolocation data.

We also assess which mobile-based approach is mostsuitable

for future geolocation field data collection between an

HTML5 mobile web app and a native mobile app. Instead of

simply describing platform interoperability, we apply threat

risk modeling to the mobile web app and analyze the security

characteristics of the mobile web app compared to the native

mobile app approach. In addition, we propose new best

practices for developing an HTML5 mobile web app: we first

document the architecture of the „LocationSharpener‟ in

Unified Modeling Language (UML) by using the 5W1H re-

documentation methodology [1]. We analyze the documents

in terms of online and offline use cases and then propose how

we design the architectures of a mobile web app. The analyses

1 PhoneGap, http://phonegap.com/
2mobl, http://www.mobl-lang.org/

of location accuracy and threat modeling demonstrate that the

mobile web app approach provides acceptable location

accuracy even when offline and poses fewer security threats

to users‟ private data, while the architecture documentation

reveals new development guidelines.

The paper is organized as follows. Section 2 introduces

background information of key concepts and technologies.

Section 3 covers previous work, and Section 4 describes the

development of an HTML5 mobile web app: a use case

scenario of a prototype, design, and implementation are

presented. Sections 5, 6, and 7 describe analyses of location

accuracy, threat risk modeling, and architecture. Section 8

describes conclusion and future work.

2. BACKGROUND
2.1 Geolocation Field Data Collection
The staff members of Washington (WA) State Department of

Ecology collect geolocation field data for WA water resources

by bringing GPS devices with them when they visit regulated

sites for other reasons such as inspection or groundwater data

collection [16]. Such visits are also an opportunity to collect

GPS coordinates for these sites, although that can be by itself

the primary purpose of the visit. While personnel increasingly

collect geolocations, social obstacles the inconvenience or

expense associated with using dedicated GPS devices and

transferring the coordinates to a public water resource

database can easily dissuade users: waypoint identifiers that

can be used to distinguish location records are entered into the

devices through interfaces that are not user-friendly. Back in

the office, the collected data are then manually typed into a

database system. In some cases, the GPS devices cannot

collect the geolocation data because of obstructions like trees

blocking the signals. We estimate that 10% of locations

cannot be collected with a GPS device due to this issue. Yet it

is important to collect some location data in order to improve

the data quality in the enterprise database: most of the existing

records have very low accuracy (e.g. 0.25m average error).

This very low accuracy of legacy location data stored in an

enterprise water resource database for small-scale water

supply infrastructure like wells, water meters and river

diversions, leads to both environmental and cultural costs as a

result of the inhibition of effective management of limited

water resources [5, 11, 15].

2.2 HTML5
HTML5 is a collection of draft and final specifications and

technologies enabling the creation of browser-based

applications that do not require special plugins to create a rich

user experience [17]. The emergence of HTML5 provides an

alternative to these traditional approaches for collecting

location data: create a smart phone web app. The recent

adoption of support for HTML5 and associated technology

such as Application Cache (AppCache), IndexedDB, and Geo

Location in mobile web browsers now enables a relatively

attractive alternative to native apps to reduce barriers to

collecting geographic locations for points of interest into

enterprise data systems.

AppCache allows web applications to declare files that should

be cached by the browser to enable the application to load

faster and to even run offline. LocationSharpener uses

AppCache for operating offline. IndexedDB allows for local

indexed storage of structured data from a web app.

IndexedDB is a key-value database that allows the web app

developer to specify indexes for optimized data access.

Database size is typically capped at 5 MB. W3C Geolocation,

associated with HTML5, is a standardized application

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

37

programming interface (API) for accessing geographic

location from JavaScript in a supporting browser on GPS

enabled devices. When JavaScript requests Geolocation, the

browser prompts the user whether they would like to share

their location with this website. The functionality is

contingent upon the user agreeing to share location data with a

particular website. The evolution of mobile web browsers to

support features of HTML5 and related specifications makes

mobile web apps an appealing alternative solution platform

for capturing geolocations in the field and later synchronizing

this data with enterprise data systems.

3. PREVIOUS WORK

3.1 GPS Device
One common solution is to write a Geographic Information

System (GIS) software application to run on a mid- or high-

end GPS device using applications like ArcGIS Mobile.

Another option is to write apps that run on GPS enabled

mobile devices like smartphones. Both solutions require

somewhat specialized skill sets or specialized hardware to

implement, but offer advantages like making enterprise data

available in the field for reference or for disconnected edit.

ESRI, a major vendor of GIS software and GIS software

components, makes a product called ArcGIS Mobile which

provides a range of options for offline data access and field

data capture [5]. ArcGIS Mobile is also customizable to suit

targeted business needs, and some companies specialized in

creating custom solutions around it. Some of these apps even

leverage HTML5, although these still rely on PhoneGap.

In perhaps the most closely related work to our own, the

notion of using an HTML5 web app with offline data storage

and use of Geolocation API was mentioned at a 2011 ESRI

conference by presenter Adam Conner of Geodecisions [4].

However, the demonstrated application appears to have used

geographic location as a parameter for centering the map on

the user‟s current location to show nearby resources (fire

hydrants in this case). By contrast, our solution collects and

stores geolocation as primary data attributes of resources and

utilizes offline data storage as temporary cache until the

resource coordinates can be securely uploaded to cloud-based

enterprise data system. When the user clicks a button, the app

will collect the phone‟s geolocation which will be used to

update the position of a well or river diversion in a cloud-

based enterprise GIS enabled database.

Offline field GPS data collection is relatively common with

native apps, but we were able to find no evidence that the

industry has considered HTML5 web apps for GPS mobile

field data collection yet, offline or otherwise. Companies like

Mobenzi3 and freeance4 make customizable (native app)

solution for GIS field data collection. Smartphone-based

scientific field data collection of GPS and photographic

information in a manner somewhat similar to that proposed

here was explored by others, but it was implemented using a

native app [3]. WebMapSolutions shared extensive customer

feedback from 2011 that showed its clients want an easy way

to collect GPS data in the field [6] but they are focused on

solutions that use a native app (ArcPad, ArcGIS Mobile.)

3.2 Mobile App and Mobile Web App
Most mobile platforms in use today can run browsers capable

of supporting many features of HTML5. Developers may see

that it makes more sense to build an HTML5 web app instead

3 Mobenzi, http://www.mobenzi.com/
4 Freeance, http://www.freeance.com/

of a native app for many scenarios. PhoneGap and mobl are

just two of a large number of solutions to mobile platform

segmentation. These allow developers to write an app once

and deploy it as a native app to all major mobile platforms.

While this solves the issue of developing separate apps for

each platform, it does not address the problem of still having

to install a native app on the device. Speaking about the sub-

optimal state of this solution, one blogger at PhoneGap stated

that one of PhoneGap‟s goals is to cease to exist (in favor of

web apps running in fully-capable mobile web browsers) [12].

With respect to location data, the notion of utilizing client

geographic location to customize web media has been around

for at least a decade and in the last few years HTML5 and

related technologies have significantly extended standards-

based support for a large number of useful features that

promote the web as a first class application platform [13, 14].

4. Mobile Web App Solution Design
We propose a platform-independent mobile web application

that simply runs in an HTML5 capable browser. In contrast to

solutions like PhoneGap and mobl, no native app needs to be

compiled or installed since this just runs in a mobile web

browser. We leverage mobile web browser geolocation

support and HTML5 offline features like AppCache, Geo

Location, and IndexedDB to simplify the offline collection

and automatic upload of geolocation for points of interest that

may fall outside cellular data coverage areas.

For this purpose, we built a cloud-based mobile web app

called „LocationSharpener‟ for accessing a disconnected

dataset of water resource features loaded from an online data

system and then cached locally on the mobile client. The user

of the mobile web app clicks a button to capture and store the

device‟s geolocation along with other updated attributes from

the disconnected dataset, and later securely synchronizes that

data to the online data system on the cloud (via REST-ful web

services) when an internet connection becomes available. The

web app uses HTML5 and JavaScript on the client tier and

Java technologies on the cloud such as Spring Model-View-

Controller (MVC) Framework and REST-ful web services,

and Google App Engine for Java (GAE/J).

4.1 User Scenario
The user is an agency staff person, a well driller, a field

scientist, property owner, or other person who needs to do a

site visit to a well or river diversion and who is interested in

making sure that the public records for that feature are as

accurate as possible. Using an HTML5-capable browser on a

smartphone, the user accesses the LocationSharpener website

via HTTPS. The web browser downloads the files needed to

later run in a disconnected state. Optionally, the user securely

downloads offline records using tabular or map based query to

later access and update from the field.

The user travels to the field location where their smartphone

may not have any data access to the internet, and opens the

LocationSharpener web app in the phone‟s browser (which

loads the app from the previously cached files). The user

selects the record that they want to update, and clicks the

button “Use current location” to attach the phone‟s current

geolocation to that record. The browser prompts the user to

confirm sharing the current location with the web app. If the

user grants permission, the app saves the location data to the

local database. Later, when the phone‟s internet connection is

restored, the app securely uploads the new location to the

online web app (REST-ful web service) which updates the

cloud-based GIS database.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

38

4.2 Design
Figure 1 illustrates the sequential flow of the system to

support the user scenario described in the previous subsection.

The numbered list that follows describes the sequence of

numbered events that are labeled in the figure:

Fig 1: The sequential operation of LocationSharpener’s

primary components

1) While an Internet connection is available, the user

accesses LocationSharpener website from a GPS enabled

mobile device (such as a smartphone) with an HTML5

web browser.

2) A web server on the cloud responds with the various

content files (HTML5, JavaScript, Cascading Style Sheet

(CSS), and supporting images).

3) The client receives the content files and the browser of

the client processes the files.

4) The content files direct the browser to persist files in the

AppCache (part of HTML5) for offline browsing later.

5) A user accesses a page in the web app for choosing

records to download prior to a field visit. The client-side

web app sends REST-ful query to the cloud-based web

server.

6) The web server retrieves the records from the enterprise

relational database and sends the results back to the

client as JavaScript Object Notation (JSON). The client

side web app stores this data in IndexedDB (part of

HTML5).

7) The user goes out into the field to visit the water

resources infrastructure. Since this might be a remote

area without reliable data coverage, the data signal could

be lost.

8) Having arrived at the destination, the user accesses the

client side web app. The browser loads the app from the

AppCache.

9) The user brings up the record for a water well or

diversion, which the client side web app loads from the

local IndexedDB. The user clicks a button “Link to

current location,” and the web app calls the Geolocation

API (an auxiliary feature associated with HTML5).

10) The Geolocation API acquires geographic position

coordinates from the onboard GPS device.

11) The Geolocation API returns location to the client side

web app.

12) The client side web app stores the location and metadata

(such as time collected) back in the IndexedDB.

13) The user leaves the field site and eventually comes back

within range of data connection.

14) The client side web app detects that a connection is

available and uploads the updated location data through

the REST-ful service on the cloud-based web server.

15) The server side web app saves the updated location data

to the enterprise database.

4.3 Implementation
The solution is hosted in Google App Engine at

http://locationsharpener.appspot.com. You can try it yourself

if you have Firefox version 17.0 (recommended) from a

desktop, tablet, or mobile phone. The application uses JSON

over REST-ful services to download data from the cloud. Its

demonstration is shown in Figure 2.

(a) The Initial Screen

(b) Get Current Location

(c) Save Location

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

39

(d) Upload Saved Location

Fig2: Demonstration of LocationSharpener

5. LOCATION ACCURACY ANALYSIS
To get an idea of the accuracy that could be expected from

LocationSharpener, especially when a mobile phone was

outside a service area and hence relying on satellite GPS

without the benefit of Assisted GPS (aGPS), we brought the

mobile phone and a handheld GPS unit into a semi-remote

mountainous region and recorded a point on each device. We

later calculated the distance between the two points in each

pair.

The Android mobile device was an HTC Thunderbolt with

Android 2.3.4 and Mozilla Firefox 17. The control device

was a Garmin Oregon 450 handheld GPS with high-accuracy

GPS. The test was performed at 35 locations in and around

Mount Rainier National Park, Washington, U.S.A. Typical

sites had view of the sky but not the horizons. Weather was

overcast and raining. The error was calculated as the distance

between the control point recorded by the consumer-grade

GPS unit and the test point recorded by the smart phone.

Average error was 23.3 meters with standard deviation 17.2

meters. This level of location accuracy is a dramatic

improvement over the existing database locations in

Washington State‟s well database, where typical error is about

500 meters. Our results show approximately 20 times

improvement in accuracy over legacy data, even without

cellular service. Table 1 shows our discoveries.

Table 1. A Summary of Accuracy Analysis

 GPS

Devices

Mobile

App

Mobile

Web App

Platform Independence No No Yes

Disconnected/Offline

State

Yes Yes Yes with

only

HTML5

Used for the WA State

Geolocation DB

Yes No No

Location Accuracy (error

ratio, compared to the

WA State Geolocation

DB)

Low

(500

meters)

Not

Tested

Higher

(23.3

meters)

6. THREAT MODEL ANALYSIS
We constructed a threat model of the LocationSharpener using

the Microsoft Security Development Lifecycle (SDL) Threat

Modeling Tool [9]. We used this tool to create a diagram of

the system (see Figure 3), and then used it to analyze the

model for security threats. The tool lists security threats by

threat categories, which are Spoofing, Tampering,

Repudiation, Information disclosure, Denial of service, and

Elevation of privilege - collectively abbreviated STRIDE. An

example of a threat identified by the tool is tampering with the

HTTP request from the user to the web server. A partial

mitigation for this is to use strong encryption via HTTPS

(where HTTP messages are sent over Secure Socket Layer

(SSL), which encrypts the messages.)

The Threat Modeling Tool provides fields for the developer to

document the impact of each threat type and how the threat is

mitigated by the system. The tool provides contextual

information for the threat types and suggestions for

mitigation, making it a helpful tool for systematically

analyzing and mitigating the security threats to a system.

Aside from this conventional threat model which identifies

threats to the application and its components, we constructed

another threat model that specifically looks at threats to user

privacy from an HTML5 app (Figure3a) as compared to a

native app (Figure 3b). Browsers provide a “sandbox,” or

special, restricted execution environment, in which JavaScript

code is run. One function of the sandbox is to prevent web

sites from accessing private resources (e.g. user‟s personal

data) without permission. (A threat model that specifically

addresses the security threats that arise from the new features

of HTML5 is outside the scope of this paper.)

a) Mobile Web App

b) Mobile App

Fig 3: Threat modeling of a Mobile Web App and a

Mobile App

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

40

The degree to which web apps are sandboxed by browsers is

one of the traits that distinguish our mobile web app solution

from a native app. The extent to which a web app can interact

with the device is far more limited than a native app. The

decreased access of a web app to personal data compared with

a native app, which is summarized in Table 2, is one

important factor for users to prefer a web app rather than a

native app [7].

Table 2. A Summary of Threat Risk Modeling Analysis

 GPS

Devices

Mobile

App

Mobile

Web App

The number of trust

boundaries

0 2 + n 2

Vulnerabilities Very

Low

High Low

n: the number of mobile apps

Beside sandboxing, it is a necessary constraint that a web app

running in a browser must have less than or equal access to

private data on the device as a native app, since the web

browser itself is merely a native app. The user privacy threat

model helps us enumerate the additional threats posed by a

native app versus an HTML5 web app. Each application

programming interface (API) to a module on the device, such

as GPS, provides information flows across a trust boundary

(shown in the diagrams as red dashed curves.) Each method

exposed by the API is one type of information flow. An

HTML5 mobile web app accesses far fewer APIs than native

apps, and fewer methods per API. For example, in the case of

GPS, there is only one method for HTML5 versus 27 methods

in the Android „LocationManager‟ class that is exposed to

native apps.

7. ARCHITECTURE ANALYSIS
By using architecture modeling for the development of the

mobile web app for offline or online data collection, we

discover guidelines for prospective developers of mobile apps

Fig 4: UML Deployment Diagram at t

(a) t=0: Mobile HTML5 Web browser requests content from the cloud for the first time

(b) t=1: Browser stores downloaded resources locally.

(C) t=2: Browser stores downloaded resources locally

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

41

to use when they are considering whether to use a browser

based HTML5 app. We created a visual model by using a

software architecture documentation methodology - 5W1H

Re-Doc [1]. 5W1H Re-Doc is a methodology that guides a

software architect to document architecture in terms of 4+1

view model [10]. LocationSharpener is represented as a series

of views, each view highlighting a different perspective of the

software system - such as use case, logical design, message

exchange process, component, and deployment views. For

example, we created a series of three UML deployment

diagrams rather than the traditional single deployment

diagram that was sued for a web application using HMTL4.

Our diagrams, shown in Figure 4, show three deployment

modes at the following times, which were not necessary in a

mobile app:

 At t=0 (Figure 4a), the cloud portion of the app has been

deployed to the Google cloud, Google App Engine.

Before visiting the website for the first time, the client

(HTML5 web browser on a mobile device) does not have

the client side files deployed to it yet.

 At t=1 (Figure 4b), when the user accesses the website

and grants permission for the site to store offline files,

the files are downloaded to the client and stored in the

AppCache. The offline web app is now “deployed” to

the client.

 At t=2 (Figure 4c), when the user goes offline, we

display a diagram showing the app deployed to the client

and the cloud but without the connection between the

two. The client app can run independently of the cloud

in offline mode. When the connection is later restored,

Figure 5 (t=1) again illustrates the state of the system.

The client can go online and offline indefinitely, cycling

between Figures 5 and 6 (t=1 and t=2.)

By creating this 4+1 view architectural model of our HTML5

web app, we learned that the ability of HTML5 websites to

run in a disconnected mode via AppCache has some special

implications for the software architecture. AppCache is a new

feature in HTML5 that lets a web site declares a set of files

that should be downloaded by the web browser and saved on

the client's machine. Subsequently, when one of these files is

needed, the browser accesses the local copy rather than

downloading it again from the web server. This can be done to

speed up performance, reduce network traffic, or (in our case)

to allow certain functionality from the website to be used

when the browser is not connected to the Internet. Because of

that, the Mobile Web App developers need to consider two

subsystem – online and offline subsystems – at the beginning

of designing the app, which is shown in Figure 5.

Table 3 shows comparisons of GPS devices, mobile app, and

mobile web app solutions for collecting geolocation field data

in terms of the distributed computing paradigm, the cases of

deployment modes, and the minimal number of subsystems.

Table 3.A Summary of Architecture Analysis

 GPS

Devices

Mobile

App

Mobile

Web App

Distributed

Geolocation

Application

No No Yes

The cases of

deployment modes

1 1 3

The minimal

number of

subsystems

1 1 2

8. CONCLUSION AND FUTURE WORK
A mobile web app using HTML5 technology brings several

benefits to mobile users and developers. First of all, through

the demonstration of the mobile web app

„LocationSharpener‟, we showed how we leveraged the new

HTML5 features such as IndexedDB, AppCache, and

GeoLocation to simplify the offline collection and automatic

upload of geolocation for points of interest that may fall

outside cellular data coverage areas. These features allow a

mobile web app to be a distributed client/server system that

works in a disconnected state. IndexedDB worked without

errors although testing the data integrity or validity of the

feature was not within the scope of our tests. It recorded and

reported back the data consistently without corruption, error,

or software exception. AppCache generally worked, but the

offline files seemed to be retained by the browser even after

we changed the browser‟s site settings to disallow saving

offline content for our site. We re-loaded the page, cleared

the browser‟s site settings, updated the server-side files,

reloaded the page again, and this time confirmed that we

would allow the site to store offline content. The Geolocation

API consistently allowed our web app to obtain location data

Fig 5: UML Use Case Diagram showing two subsystems – online and offline.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.13, April 2014

42

from the phone after the browser prompted the user to confirm

that they wished to share their location with our site.

Secondly, the analysis of location accuracy showed the

HTML5 mobile web app approach provides acceptable

location accuracy even when offline. We collected locations

of water resources facilities like wells and water diversions

and analyzed how accurately the mobile web app collects the

geolocation data. Out test results showed that the level of

location accuracy was a dramatic improvement over the

existing locations in Washington State‟s well database. The

HTML5 mobile web app demonstrates that we can employ the

concept of a smart phone‟s BYOD (Bring Your Own Device).

The cost of specialized data collection devices can be saved

and persons such as property owners, drillers, scientists, and

the general public can be empowered to collect geolocations.

Thirdly, in contrast to native mobile apps, mobile web apps

offer two clear advantages to users and developers in terms of

higher platform independence and lower vulnerability: one

code base allows us to deploy our platform-dependent mobile

app onto multiple mobile platforms equipped with a HTML5

compliant web browser, which shows the concepts of “Write

Once Run Anywhere” [2]. Also, we conducted threat risk

modeling and analysis and visualized the trust boundaries

comparing a mobile native app and a mobile web app. The

HTML5 mobile web app has far fewer trust boundaries to be

secured.

Lastly, in the process of building this mobile web app for

offline or online data collection, we gained some experiences

that we can pass along to other mobile app developers to help

them make an informed decision of how to design a mobile

web app. The documented software architectures in 4+1

views show that the mobile web app developers need to

consider two subsystems in terms of online and offline in the

use case view. For each subsystem of a mobile web app, the

mobile web app developer needs to design and implement

class hierarchies, message exchanges, and physical

components. Also, the developer must be aware of the

deployed subsystems having connected, disconnected, and

connected communication sequences over time. Those

practices have not been required for developing native mobile

or mobile web apps without using HTML5.

9. REFERENCES
[1] Sam Chung, Daehee Won, Seung-Ho Baeg, Sangdeok

Park, Service-Oriented Reverse Reengineering: 5W1H

Model-Driven Re-Documentation and Candidate

Services Identification, In Proceedings of IEEE

International Conference on Service-Oriented Computing

and Applications (SOCA‟09) December 14-15, 2009,

Taipei, Taiwan.

[2] ComputerWeekly.com. 2013, Write once, run anywhere?

http://www.computerweekly.com/feature/Write-once-

run-anywhere, Accessed on March, 29, 2013.

[3] Luis Corral, Alberto Sillitti, Giancarlo Succi, Alessandro

Garibbo, and Paolo Ramella, 2011, “Evolution of mobile

software development from platform-specific to web-

based multiplatform paradigm,” Proceedings of the 10th

SIGPLAN symposium on New ideas, new paradigms,

and reflections on programming and software (Onward!

2011), October 22 - 27, 2011, Portland, OR, USA, Pages

181-183.

[4] ESRI, 2011, Dev Meet Up – Philadelphia, PA.

http://blogs.esri.com/esri/arcgis/2011/06/05/dev-meet-

up-philadelphia-pa/. Accessed on March 27, 2013.

[5] ESRI, 2013, ArcGIS for Smartphones and Tablets,

http://www.esri.com/software/arcgis/smartphones/demos

.html, Accessed on March 5, 2013.

[6] ZefHemel and EelcoVisser, 2011, “Declaratively

programming the mobile web with Mobl,” Proceedings

of the 2011 ACM international conference on Object

oriented programming systems languages and

applications (OOPSLA 2011[, October 22-27, 2011,

Portland, Oregon, USA.

[7] Jan Lauren Boyles, Aaron Smith, and Mary Madden,

2012, Privacy and data management on mobile devices,

Pew Internet & American Life Project, September 5,

2012, http://pewinternet.org/Reports/2012/Mobile-

Privacy.aspx, accessed on November 25, 2012.

[8] Qing Li and Greg Clark, 2013, Mobile Security: A Look

Ahead, IEEE Security & Privacy, January/February

2013, Volume 11, Issue 1, pp. 78-81.

[9] Steve Lipner, 2004, The trustworthy computing security

development lifecycle, Computer Security Applications

Conference, 2004. 20th Annual, vol., no., pp. 2- 13, 6-10

Dec. 2004.

[10] Philippe B. Kruchten, 1995, The 4+1 View Model of

architecture, Software, IEEE, vol.12, no.6, pp.42-50,

November, 1995.

[11] Oregon Water & Monitoring Well Data Standard Draft 1,

http://apps.wrd.state.or.us/apps/gw/owmwds_well_query

/docs/ORWaterWellDataExchangeStandard_v1Draft.doc

, Accessed on March 5, 2013.

[12] PhoneGap, 2013, PhoneGap Beliefs, Goals, and

Philosophy. http://phonegap.com/2012/05/09/phonegap-

beliefs-goals-and-philosophy/. Accessed on March 27,

2013.

[13] Antero Taivalsaari, TommiMikkonen, Dan Ingalls, and

Krzysztof Palacz, 2008, Web Browser as an Application

Platform," the proceedings of the 34th Euromicro

Conference Software Engineering and Advanced

Applications (SEAA‟08), 2008 , Pages: 293 – 302.

[14] Antero Taivalsaari, TommiMikkonen, MattiAnttonen,

and ArtoSalminen, 2011, The Death of Binary Software:

End User Software Moves to the Web, 2011 Ninth

International Conference on Creating, Connecting and

Collaborating through Computing, 2011 , Pages: 17 – 23.

[15] Kerry Taylor, 2006, The semantics of water, In

Proceedings of the Second Australasian Workshop on

Advances in Ontologies - Volume 72 (AOW '06),

Mehmet A. Orgun and Thomas Meyer (Eds.), Vol. 72.

Australian Computer Society, Inc., Darlinghurst,

Australia, Australia, 3-3.

[16] Washington Department of Ecology Water Resources

Web Map, 2012,

http://www.ecy.wa.gov/programs/wr/info/webmap.html.

Last accessed 10/20/2012.

[17] W3C, 2011, HTML5 differences from HTML4,

http://www.w3.org/TR/2011/WD-html5-diff-20110405/,

accessed on March 27, 2013.

IJCATM : www.ijcaonline.org

http://www.w3.org/TR/2011/WD-html5-diff-20110405/

