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ABSTRACT 

In this paper, a realistic replenishment model with multiple 

warehouses (one is primary warehouse (PW) from where the 

items are sold and others are secondary warehouses (SWs) 

where the items are stored) is developed with fuzzy lead-time 

under the assumption that the capacities of the warehouses are 

finite. Inflation and time value of money are taken into 

account. The items of secondary warehouses are transported 

to the primary warehouse in continuous release pattern and 

associated transportation cost is proportional to the distance 

from PW to SWs. The holding cost of items in SWs has 

reverse effect with distance. Here, the demand of items is a 

deterministic function of selling price and the displayed 

inventory. Deterioration rates of the items are constant and 

different in different warehouses. The replenishment rate is 

infinite and the problem is constructed with shortages, which 

are the mixture of back orders and lost sales. The backlogged 

demand is assumed to be a function of currently backlogged 

amount. When an item is out of stock, the loyal and captive 

customers will wait until the outstanding orders arrive and are 

served. To compensate the inconvenience of backordering and 

to secure orders, the supplier may offer a price discount on the 

stock out item. There are three scenarios depending upon the 

time when the new order is placed for the next cycle. The 

problem is illustrated with the help of numerical examples. 

Keywords 
Inventory, Multi-warehouses, Deterioration, Fuzzy lead-time, 

Back order, Lost sale, Backorder discount, Inflation, Time 

value of money. 

1. INTRODUCTION 
In important markets like super market, corporation market, 

municipality market etc., the space for a showroom is limited. 

When an attractive price discount for balk purchase is 

available or the cost of procuring goods is higher than the 

inventory related other costs or the demand of items is very 

high, management then decides to purchase a large amount of 

items at a time. These large numbers of items may not be 

accommodated in the existing showroom (viz., the Primary 

Warehouse, PW) due to limited capacity. To store the excess 

items, one or more additional warehouses (viz., the Secondary 

Warehouses, SWs) are hired. These secondary warehouses 

may be located near PW or a little / far away from it. The 

items are stored first in PW and only excess stocks are stored 

in SW. The actual service to the customer is done at PW only. 

The items of SWs are transferred to PW in a continuous/bulk 

release pattern to meet up the demand at PW until the stock 

levels in SWs are emptied and lastly the items of PW are 

released. There are several related papers presented in this 

area such as Hartley [1], Sarma[2], Goswami and 

Chaudhuri[3], Pakkala Achary[4,5], Bhunia and Maiti[6] and 

others.  

Many supermarket/corporation market managers have 

observed that for certain items, displayed stock level (DSL) 

has a positive impact on the demand rate. A large amount of 

stock generates high rate of consumption and consumption 

rate goes down when the stock level is low. Hence, it is  

concluded that there is a functional relationship between the 

demand of an item and its displayed stock level in a 

showroom / shop. This relationship was first considered by 

Levin et. al.[7] and then by Silver and Peterson[8], Backer 

and Urban[9], Mandal and Phauzdar[10], Datta and Pal[11,12] 

etc. According to real life situation, the demand rate is not 

only dependent on the stock level, it also depends on the 

selling price and it has a reverse effect.  

A stock out occurs in the business of all types of items. 

During the stock out period, either all the demand is 

backordered, in which all customers wait until their demand is 

satisfied; or all the demand is lost. However, in many real 

inventory systems, demand can be captive partially. For 

customers whose needs are not urgent at that time can wait to 

be satisfied, while others who cannot wait will balk away to 

some other sources. The cost for a lost sale ranges from profit 

loss on the sale to some unspecifiable loss of good will. In 

order to compensate customers for the inconvenience of 

waiting, the idleness of equipment, or even lost production 

during the stock out period, the supplier may offer a variable 

price discount (Pan et. al [14,15]) on the stock out item 

depending on the seriousness of the back order condition. 

From financial standpoint, an inventory represents a capital 

investment and must compete with other assets within the 

firm’s limited capital funds. Most of the classical inventory 

models did not take into account the effects of inflation and 

time value of money. This has happened mostly because of 

the belief that inflation and time value of money will not 

influence the cost and price components i.e., the inventory 

control policy to any significant degree. But, during last few 

decades, due to high inflation and consequent sharp decline in 

the purchasing power of money in the developing countries 

like Brazil, Argentina, India, Bangladesh etc., the financial 

situation has been completely changed and so it is not possible 

to ignore the effect of inflation and time value of money any 

further. Following Buzacott [16] and Misra [17], several 

researchers (Ray and Chaudhuri [18], Sarkar et.al [19] etc.) 

have extended their approaches to different inventory models 

by considering the time value of money, different inflation 
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rates for the internal and external costs, finite replenishment, 

shortages, etc. 

In this paper, we consider one Primary Warehouse (PW), m 

secondary warehouses (viz., SW1, SW2, …..,SWm) and N 

items. The warehouses SW1, SW2, …..,SWm contains 

N1,N2,...,Nm items respectively such that N1 + N2 + ... + Nm = 

N. Items are sold from PW which is located at main market 

and shortages are allowed at this shop. Due to large stock and 

insufficient space of existing PW, excess items are stored in m 

secondary warehouses (viz., SW1, SW2, …..,SWm) of finite 

capacity which are far away from PW. Here all the 

warehouses are of rental basis but rent of PW is greater than 

the rent of the secondary warehouses as they (SW’s) are in far 

away from market place. Deterioration rate of an item is taken 

to be different in different warehouses. The stocks of SW’s 

are transferred to PW under continuous release pattern and the 

associated transportation cost is directly varies with the 

distance from PW to SWs but the holding cost of an item in 

SWs has reverse effect with distance. In realistic retail 

situations, some customers wait for backlogged items in 

stock-out period and hence lost sale occurs. The backlogged 

demand is assumed to be a function of currently backlogged 

amount. Here, the problem is developed with fuzzy lead-time 

under inflation and time value of money. The fuzzy parameter 

is transformed into a crisp number by Graded Mean 

Integration Value(GMIV) method (Chen et. al.[13],). There 

are three scenarios in each cycle depending upon the time 

when new order is placed: 

 

Scenario-I: New order is placed at the time before exhaustion 

of the inventory level of SWj. 

Scenario-II: New order is placed at the time when inventory 

level of SWj reaches zero. 

Scenario-III: New order is placed when inventory level is 

only at PW. 

Numerical examples are used to illustrate each scenario via 

genetic algorithm.  Block diagram of the model is given 

below: 

 

2. ASSUMPTIONS AND NOTATIONS 
 

The inventory model with fuzzy lead-time is developed under 

the following assumptions and notations: 
 

Assumptions: 
 

(i) Rate of replenishment is infinite and the replenishment size 

is finite. 

(ii) The inventory-planning horizon is infinite and the 

inventory system involves n items. 

(iii) Shortages are allowed in PW and backlogged them fully. 

(iv) There is no quantity discount. 

(v) The units will be sold from primary warehouse (PW) and 

the space in PW will be immediately filled up by shifting 

same  

      amount from secondary warehouses (SW’s) to PW. 

(vi) Time tag between selling from PW and filling up its space 

by new units from SW’s is negligible. 

(vii) Wavy bar ‘~’represents the fuzzification of the 

parameter.  

Notations: 

For i-th items (i=1,2,…,N) and j-th secondary warehouse 

(j=1,2,…,m) 

(i) iS    = Total stock of the system at t=0. 

(ii) iw   = Inventory of i-th item at PW. 

(iii) 
'
iw   = On hand inventory of the system for i-th 

item when the new order is placed for the next 

cycle. 

(iv) iR   =Shortage amount for i-th item. 

(v)  i1t   = Time when new order is placed for the next 

consignment. 

(vi) i2t  = Time when inventory level of SWj is zero. 

(vii) i3t  =Time when inventory level of PW is zero i.e., 

when shortage begins. 

(viii) i4t  = Total time period for the cycle. 

(ix) 
P
1iC = The inventory carrying cost per unit per unit 

time in PW. 

(x) 
jd   = Distance of SWj from PW. 

(xi) 
Swj
1iC = 

P
1iC - c' dj =The inventory carrying cost 

per unit per unit time in SWj. 

(xii) iC2 = Shortage cost per unit per unit time. 

(xiii) i3C = Replenishment cost per cycle. 

(xiv) iL   = Imprecise lead-time for the i-th item, 

where i 1i 2i 3iL = ( L ,L ,L )  is parabolic or 

triangular fuzzy number. 

(xv) 1 ( )iq t = Inventory level of secondary 

warehouses (SWj) at any time t. 

(xvi) 2 ( )iq t = Inventory level of primary warehouse 

(PW) at any time t. 

(xvii) )t(qp)q,p(f iiiiiii  , where 

qi(t) is the inventory level at any time t. 

(xviii) 1iθ =Constant deterioration rate for i-th item in 

PW. 
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(xix) 2iθ =Constant deterioration rate for i-th item in 

SWj. 

(xx) 1' '' '''K
pi pi pi pi iiC C C S C L    , 

Purchasing cost per unit quantity depends upon 

the initial stock level iS  and lead-time iL  (

0K,K,C,C,C 21
'''

pi
''
pi

'
pi  ). 

(xxi) ip    = 
'. piK C , selling price per unit quantity in 

stock-in period. 

(xxii)  diπ  = Backorder price discount offered by the 

supplier per unit which is variable and lies between 

0 and ( ip - piC ).  

(xxiii) 
'

ip    = ip - diπ , Selling price per unit quantity 

in stock-out period. 

(xxiv) 
' ''

ci ci ci RPi iT T T S d  , transportation cost 

for transporting RPiS units from SWj to PW (

0k,T,T ''
ci

'
ci  ) where 

'
ciT  is the fixed 

transportation cost and 
''

ciT is the transportation 

cost per unit per unit distance. 

(xxv) R = Difference between inflation rate and discount 

rate. 

(xxvi)  PWC  =   Total capacity of PW. 

(xxvii) CjSW =   Capacity of j-th secondary warehouse. 

 

3. MATHEMATICAL FORMULATION 
 

Pictorial representation of the scenarios is depicted as below: 

 

Fig-1: inventory situation in scenario-I 

             

 
        Fig-2: Inventory situation in scenario-II                                        

Fig-3: Inventory situation in scenario-III  

 

Formulation of scenario-I 

The deferential equation describing the inventory level 

1iq (t)  (i=1,2,….,n) of the system is 

                                 

1i
1i 1i i 2i i 2

dq (t)
- θ (t) - D - θ w , 0

dt
iq t t  

     (1) 

with boundary conditions: 

1i

'
1

2

4

0

0

i

i i

i i

i

i i

q (t) S w at t

w w at t t

at t t

R at t t



  

 

 

  

                                                                           

(2)  

The deferential equation describing the inventory level 

2iq (t)  (i=1,2,….,n) of the system is 

           










iiii

iiii

tttD

tttD

432i

322i22i

,)q(

),q(

dt

dq





                                             (3) 

where 
0

i 0δ ( 0)
di





   and boundary conditions are: 

        

2 2

3

4

0

i i i

i

i i

q (t) w at t t

at t t

R at t t

 

 

  

                                                                           

(4) 
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where     

















0,)0,(

0,),(

,),(

ii

iiii

iiii

i

qpf

wqqpf

wqwpf

D                                                             

(5) 

Using (2), the solution of the differential equation (1) is given 

by 

   1i 2( )
1i 2i i

1i

1
q (t) ( , ) w 1

θ
it t

i if p w e
 

  

                                                       (6) 

Using (4), the solution of the differential equation (3) is given 

by 

 

 

i i i i 2i 3i

i 2i

i 3i

(α - β p ) (γ +θ ) (t -t)
2i 3iγ + θ

2 δ (t -t)i
3 4

i

e -1 , t t

( ) D
e -1 ,

δ

i

i i

t

q t
t t t

  


 
 


                                                                                               (7) 

Using (2) and (4), equations (5) and (6) give  

  1 2
2

1

1
( , ) 1i it

i i i i i i
i

S w f p w w e



   

  1 2
2

1

1
( ) 1i it

i i i i i i i
i

w p w e
   


     

                       (8) 

  1 2 1( )'
2

1

1
( , ) 1i i it t

i i i i i i
i

w w f p w w e





   

 

    

  1 2 1( )
2

1

1
( ) 1i i it t

i i i i i i i
i

w p w e
   




     

                                                                                                     

(9) 

 3i 1iδ( t - t )i
i i

D
R = 1- (1-δL ) e

δ
                                                                                                                                                    

(10) 

'

1
1

1 1 2( ) ( , )

i i

i i

S w

i
i

i i i i i i
w w

dq
t

q t f p q w 






 

2 1 1
'

1 2 1 1

1
log i i i i i i i i i

i i i i i i i i i i

α β p (γ θ )w S

θ α β p (γ θ )w w

 

 

    


    

                                

(11) 

1
2

1 1 20
( ) ( , )

i iS w

i
i

i i i i i i

dq
t

q t f p q w 




 

2 1 1

1 2

1
log

( )

i i i i i i i i i

i i i i i i i

α β p (γ θ )w S

θ α β p γ θ w

     


  

                                

(12) 

2
3 2

2 20
( ) ( , )

iw

i
i i

i i i i

dq
t t

q t f p q
 



2

2

( )1
log i i i i i i

i i i i i

α β p γ θ w

θ α β p

  


 
                                                      

(13) 

 

Hi

Swj
C = Present value of holding cost for the i-th item in the 

j-th Secondary Warehouse (SWj) 

          

2
swj

11i

0

C ( )
it

Rt
iq t e dt                                                                                                         

                                       (14) 

  1 21i 2 2

Swj

2
1i 1

C 1 1
( ) ( ) (1 )

θ

i i i i
t Rt Rt

i i i i i i
i

α β p γ w e e e
R R






  
       

 
 

Hi

PC   = Present value of holding cost for the i-th item in the 

Primary Warehouse (PW) 

         

2 3

2

P
1i 2

0

C ( )
i i

i

t t
Rt Rt

i i

t

w e dt q t e dt 
 
  
 
 
                                                                       

            

 i 2i 3i i 2i 3i2i i 2i 2i
1i

(γ +θ )t -(γ +θ +R)t-Rt -(γ +θ +R)tP i i i i
2

i 2i i 2i

w α -β p
= C [ (1-e )+ e e -e

R (γ +θ ) +R (γ +θ )

          

                                     

3i 2i-Rt -Rti i i

i 2i

α -β p
- (e -e ) ]

R (γ +θ )
                                                                                                                    

(15) 

DiC  = Present value of the cost for the total deteriorated i-th 

item during )t,0( i3  
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2 2 3

2

1 1 2 2 2

0 0

( ) ( )
i i i

i

t t t
Rt Rt Rt

i i i i i i i

t

p q t e dt w e dt q t e dt    
 
   
 
 
  

  

        
Hi Hi

1i1i

Swj P
i 2i i 2i

Swj P

p C p C
=

CC

 
                                                                                                                                                    

(16) 

 

RPiS  = Total units of i-th item transferred from jSW ’s to 

PW 

         

2it

i i 1i 1i

0

= (S -w )- θ q (t) dt

1i1iθ t
i i i i i i i i 2i

1i

1
= (S -w )- {α -β p +(γ +θ ) w }{ (e -1)-t }

θ

                                         (17)      

SiC
~

  = Present value of Shortage cost during )t,t( i4i3

4i

3i

t
-Rt

2i 2i

t

= -C q (t) e dt  

       

  1i i 3i 1i 3i 3i1i-Rt +δ (t -t ) -Rt -Rt-Rt2i i 2i i
i i i

i i i

C D C D
= 1-(R+δ ) L e -e - (1-R L )e - e

(R+δ )δ R δ
    

 

                             

(18) 

 

Pci
 = Present value of total purchasing cost for the i-th item 

during 4(0, )it  

      1(1 ) iRt
pi i i iC S R R L e


                                                                                                                                                    

(19) 

iP
~

  = Selling price for the i-th item   =  Pi4 C
~

K                                                                                                                                        

(20) 

piS = Present value of total sales for the i-th item during 

4(0, )it  

      

3i

4i

t
-R t-Rt

i i i i

0

= p D e dt + p R e


 

      

2 3

1

2

2

0

( ) { ( )} (1 )
          

i i

i

i

t t
RtRt Rt

i i i i i i i i i i i i i i i

t

p p w e dt p p q t e dt p R RL e     

 

                                                    (21) 

j
iTC  Transportation cost for transporting RPiS  units 

from SWj to PW  

           

 

3i 3i2i 2i 2i

i 2i 3i 2i 2i 3i 1i

-Rt -Rt-Rt -Rt -Rti i i i
i i i i i i i i

(γ +θ )(t -t )-Rt -Rt -Rti i i i i
i i i

i 2i i 2i

p p p γ
= (α -β p +γ w ) (1-e ) + (α -β p ) (e -e )- (e -e )

R R R

p γ (α -β p )
+ e -e +p R (1-RL )e

(γ +θ )(γ +θ +R)


 

' '' , 1,2,.....,i RPi j iTC S d TC j m  

                                                                                                

(22) 

where  '
iTC Fixed transportation cost for the i-th item  

and      ''
iTC  Transportation cost per unit per unit 

distance. 
 

The profit  function for the i-th item is given by      

        PROFi = Average profit for the i-th item during 4(0, )it  

                    = (

3S
Swj jP

pi ci di Hi Si i iHiP C C C C C TC       

) / it4                                                           (23) 
  

Total profit for N-items is  

                   PROF = 

1

N

i

i

PROF


                                                                                                                                                    

(24) 

 

Our problem is to    Maximize   PROF 

                     Subject to,   

1

N

i i

i

a w OW


                                                                                                                             

(25) 

                   jii

N

1Ni

i RW)wS(a

j

1j


 

,        

j=1,2,3,…..,m   with  N0=0. 

                    and     NN........NNN m321 

.  

4. GRADED MEAN INTEGRATION 

VALUE (GMIV) OF A FUZZY NUMBER   
Let A be a fuzzy number with membership 

function 
A

(x)  as given below:       

                  

A

0 x a

L(x) a x b

(x) 1 b x c

R(x) c x d

0 d x

  


 


   
  


  

  

where L(x) is strictly increasing within [a,b], R(x) 

is strictly monotonic decreasing within [c,d]. Then 
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according to Chen and Hsien (1999), GMIV of 

A is denoted by P( A ) and defined as: 

P( A ) = 
1

1 1

0

1

0

x{w L (x) (1 w) R (x)}dx

xdx

  



  =    

1

1 1

0

2 x{w L (x) (1 w)R (x)}dx    

Where w [0,1] a pre-assigned parameter is 

called degree of optimism.  w=1 represents an 

optimistic viewpoint, w=0 represents a pessimistic 

viewpoint and w=0.5 reflects a moderately 

optimistic DM’s view point. Using this rule 

GMIV of different type of fuzzy number is 

obtained and present in Table-1.  

Table-1: GMIV formula for different fuzzy 

numbers with degree of optimism w 

 Triangular fuzzy number(TFN) 

(a,b,c) 

Trapezoidal fuzzy number(TrFN) 

(a,b,c,d) 

[wa+2b+(1-w)c]/3 [w(a+2b)+(1-w)(d+2c)]/3 

 5. GENETIC ALGORITHM 
A genetic algorithm is a heuristic search process for 

optimization that resembles natural selection. Gas was first 

proposed by J. Holland. It has been applied successfully in 

different areas (Davis[20]). As the name suggests, GA 

originated from the analogy of biological evolution. GAs 

considers a population is a set of feasible solutions of a 

problem. A member of the population is called a genotype, a 

chromosome, a string or a permutation. A genetic algorithm 

contains three operators-reproduction, crossover and 

mutation. Initially, a population is selected and by means of 

above operators, the better of the population will remain, 

because of the survival of the fittest. The GAs procedure is 

shown below: 

 

            begin 

            t←0 

            initialize Population(t) 

            evaluate Population(t) 

            while (not terminate-condition) 

            { 

             t←t+1 

             select Population(t) from Population(t-1) 

             after (crossover and mutate) Population(t) 

             evaluate Population(t) 

             } 

             Print Optimum Result 

             end. 

 

 

 

Implementing GA 

It is generally accepted that a GA to solve a decision-making 

problem must have five basic components: 

(i) values for the parameters (population size, probabilities of 

applying genetic operators, etc.) 

(ii) a genetic representation for potential solutions, 

(iii) a way to create an initial population of solutions, 

(iv) an evaluation function (i.e., the environment), rating 

solutions in terms of their "fitness", and 

(v) genetic operators that after the genetic composition of 

parents during reproduction. 

We discuss these components for the system developed for 

the present model in the following sections. 

Parameters: 

Firstly, we set the different parameters on which this GA 

depends. These are the number of generations  (MAXGEN),  

population size (POPSIZE), probability of crossover 

(PXOVER), probability of mutation (PMU). There is no clear 

indication as to how large a population should be. If the 

population is to large, there may be difficulty in storing the 

data, but if the population is too small, there may not be 

enough string for good crossovers. In our experiment, a 

population consists of 50 members i.e., 

POPSIZE = 50. In this case, PXOVER=0.2, PMU=0.2, 

MAXGEN=5000. 

Chromosome representation: 

An important issue in applying a GA is to design an 

appropriate chromosome representation of solutions of the 

problem together with genetic operators. Traditional binary 

vectors used to represent the chromosome are not effective in 

many highly non-linear physical problems. Since the proposed 

problem is highly non-linear, hence to overcome the 

difficulty, a real number representation is used. In this 

representation, each chromosome Vi consists of the genes  

'j j
j

iw iS iw
G ,G Gand   where these genes respectively 

denote decision variables wi , Si and  wi' i.e., 

'j j
j

i iw iS iw
V = {G ,G ,G , j=1,2,3,4} , i= 1 to 

POPSIZE. 

Initial population: 

To initialize the population, we first determine the 

independent and dependent variables and then their 

boundaries. For each chromosome Vi, the gene Giwj which is 

independent, is randomly generated between its boundaries 

(LBK, UBK) where LBK and UBK are the lower and upper 

bounds of the decision variable and after that other genes are 

also generated randomly betweens its boundaries until it is 

feasible by the following algorithm. 

j

j j

j j

iw
j

1
iS iw

j

2
iS iw

j

OW
Step-I: G =Rand (0, ), j=1 to 4

a

RW
Step-II: G =Rand (G , ), j=1,2

a

RW
G =Rand (G , ), j=3,4

a
and
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j j

j

'
j

iw iS

iw
iw

i

Rand (G ,G ), j=1 to 4 for scenario-I
Step-III: G =

Rand (0,G ), j=1 to 4 for scenario-III

Step-IV: If all constraints are not satisfied by V then go tostep-I





 

Evaluation: 

Evaluation function plays the same role in GA as that which 

the environment plays in natural evaluation. To this problem, 

the evaluation function is EVAL (Vi)= objective function 

value. 

 

Selection: 

Before selection process, all chromosomes VI are arranged in 

descending order according to eval(Vi). After that the roulette 

wheel selection process is applied on it POPSIZE times. Each 

time we select a single chromosome for the new population in 

the following way: 

(a) Calculate the fitness value eval(Vi) for each chromosome 

Vi 

(b) Find Total fitness of the population   𝑒𝑣𝑎𝑙(𝑉𝐼)
𝑝𝑜𝑝𝑠𝑖𝑧𝑒
𝑖=1  

(c) Calculate the probality of selection, pI= eval(vi)/F for each 

chromosome Vi 

(d) Calculate the cumulative probability qi for each 

chromosome Vi : 𝑞𝑖 =  𝑃𝑗
𝑗
𝑖=1  

(e) Generate a random real number r in (0,1). 

(f) If r< qi then the first chromosome is Vi otherwise select the 

i -th chromosome Vi  (2≤i≤POPSIZE) such that qi-1≤i≤qi. 

(g) Repeat steps (e)and (f) POPSIZE times and obtain 

POPSIZE copies of chromosomes. 

By this process, better chromosomes may be selected several 

times depending upon the generated random numbers. 

 

Crossover operations: 

The exploration and exploitation of the solution space is made 

possible by exchanging genetic information of the current 

chromosomes. Crossover operates on two parrent solutions at 

a time and generate ofspring solutions by recombining both 

parent solution features. After selection of chromosomes for 

new population, the crossover operation is applied. Here, the 

whole arithmetic crossover operation is used. It is done in the 

following way: 

(a) Firstly, we generate a random real number, r in (0,1). 

(b) Secondly, we select two chromosomes VK and Vi 

randomly among population for crossover if r < PXOVR. 

(c) Then two offsprings ' Vk and 'Vi are produced as follows: 

Vk'= c *Vk + (1- c) *Vi 

                                                                                                  

Vi'= c *Vi + (1- c) *Vk where c ∈ [0,1]. 

(d) Repeat the steps (a), (b) and (c) POPSIZE / 2 times. 

In this problem crossovers are performed only on the gene 

which corresponds the variable wi for i=1 to 4 and other genes 

are genereted randomly betwwen its boundaries. If new 

chromosome satifies all the contraints then OK otherwise the 

previous values of the genes of the respective chromosomes 

are retained. 
 

Mutation operation: 

Mutation operation is used to prevent the search process from 

converging to local optima rapidly. Unlike crossover, it is 

applied to a single chromosome Vi . Here, the mutation 

operation is defind as follows: 

(a) Firstly, we generate a random real number r in (0,1). 

(b) Secondly, we select a chromosome Vi randomly from 

population if r < PMU. 

(c) Thirdly, we select one gene 
jiwG among Giwk , k= 1 to 4, 

of the selected chromosome Vi randomly. 

(d) Then the new gene 𝐺𝑖𝑤𝑗
𝑚𝑢𝑖  of 

jiwG due to mutation is 

produced in the following way: 𝐺𝑖𝑤𝑗
𝑚𝑢𝑖 =Rand (LBK,UBK) 

 (e) Repeat the steps (a), (b), (c) and (d) POPSIZE times. 

In this problem mutation is performed only on the gene which 

corresponds the variable wi for a randomly selected i among 0 

and 4 and other corresponding genes are genereted randomly 

betwwen its boundaries. If new chromosome satisfies all the 

constraints then OK otherwise the previous values of the 

genes of the respective chromosomes are retained. 
 

Termination: 

If number of iteration is less than or equal to MAXGEN then 

the process is going on, otherwise it terminates. 
 

6.   NUMERICAL ILLUSTRATION 
For numerical illustration, only four items and two rented 

warehouses are considered here. The non-linear programming 

problem (25) is solved by GA for the following numerical 

data shown in Tables-2a , 2b and the optimal results are 

shown in Table-3 and Table-4, profit values are shown for 

different values of y (degree of optimism). 
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Table-2b: Parametric values 
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Table-3: Optimal Result for y=0.5 

 Scenario-I Scenario-II Scenario-III 

PROF 98845.31 90626.43 81107.82 

S1 225.14 95.36 89.78 

S2 59.80 149.84 317.70 

S3 74.93 45.99 27.75 

S4 121.67 41.77 70.79 

W1 2.00 35.87 6.67 

W2 14.99 3.55 44.22 

W3 11.87 24.13 1.07 

W4 39.21 9.64 20.89 

W1' 36.36 35.87 0.55 

W2' 33.82 3.55 38.29 

W3' 25.37 24.13 0.35 

W4' 52.16 9.64 14.02 

t11 2.1802 0.6267 1.0548 

t12 0.0.2917 1.6767 2.6407 

t13 0.5405 0.2308 0.3187 

t14 0.6948 0.3648 0.6144 

t21 2.5823 0.6267 0.9813 

t22 0.5035 1.6767 2.5833 

t23 0.6882 0.2308 0.3067 

t24 0.8249 0.3648 0.5389 

t31 2.6058 1.0333 1.0615 

t32 0.6780 1.7181 3.0433 

t33 0.8210 0.4967 0.3191 

t34 1.2475 0.4766 0.7744 

 

 

Table-4: Effect on profit for different values of y 

Scenario Y=0.0 Y=0.25 Y=0.5 Y=0.75 Y=1.0 

I 98716.62 98787.01 98845.31 98903.55 98961.79 

II 90516.89 90571.66 90626.43 90681.14 90735.90 

III 81014.16 81060.82 81107.81 81154.16 81200.63 

7.   DISCUSSION 

For the input data’s (given in Table-2a and -2b), optimal 

results in Table-3 for particular value of y = 0.5 shows that the 

maximum profit value occurs corresponding to Scenario-I. 

The optimal results in Table-4 shows that the profit value 

increases as the value of y increases and for all these values of 

y, Scenario-I gives the better result than other scenarios. 

8. CONCLUSION 
In this paper, we consider one Primary Warehouse, m 

secondary warehouses and N items. The warehouses SW1, 

SW2, ..,SWm contains N1,N2,...,Nm items respectively such 

that N1 + N2 + ... + Nm =N. Items are sold from PW which is 

located at the market place and shortages are allowed at this 

shop. Due to large stock and insufficient space of existing 

PW, excess items are stored in m secondarywarehouses (viz., 

SW1, SW2, …..,SWm) of finite capacity which are little away 

from PW. Here all the warehouses are of rental basis but rent 

of PW is greater than the rent of the secondary warehouses as 

they (SWs) are in little away from market place. Deterioration 

rate of an item is taken to be different in different warehouses. 

As the demand of an item is stock dependent, attempt is made 

to keep the showroom (PW) full bringing the items from SWs 

at the earliest though the rent at SWs are less than that at PW. 

Hence the stocks of SWs are transferred to PW under 

continuous release pattern and the associated transportation 

cost is directly varies with the distance from PW to SWs but 

the holding cost of an item in SWs has reverse effect with 

distance.. The backlogged demand is assumed to be a function 

of currently backlogged amount. Here, the problem is 

developed with fuzzy lead-time under inflation and time value 

of money. The fuzzy parameter is transformed into a crisp 

number by Graded Mean Integration Value (GMIV) method. 

There are three scenarios in each cycle depending upon the 

time when new order is placed. The present analysis can be 

applied for seasonable / fashionable goods which are 

marketed for a fixed time period. A soft computing method 

i.e., genetic algorithm for inventory control problems have 

been developed in most general way and this can be used to 

solve other single-objective inventory models in different 

environments.  
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