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ABSTRACT 
A numerical study has been conducted for natural convection 

of air in a three dimensional inclined annulus enclosure. This 

study wills exam the effect of fibres filler in composite 

material of inclined enclosure on heat transfer. Two types of 

optimization will be performed in terms of effective thermal 

conductivity: minimization and maximization of thermal 

conductivity. The annulus material is made of Graphite/epoxy 

laminated composite materials. The annulus enclosure is filled 

with porous media between two inclined concentric cylinders 

with 12 fins attached to the inner cylinder. The system is 

under steady state condition and constant walls temperature 

boundary condition. The parameters affected on the system 

are modified Rayleigh number (10 ≤Ra*≤ 500) and the 

annulus inclination angle δ (0o, 30o, 45o, 60o and 90o). For all 

parameters, results showed that the average Nu number 

decrease with the increase of δ for high values of Ra* and 

increases with an increase in modified Rayleigh number but 

for low values of Ra*, the effect of δ on the average Nu will 

be low. The deviation between the average Nu for the 

maximization and minimization of the thermal conductivity is 

equal to 5.1% for horizontal annulus δ=0o and 10% for 

vertical annulus δ=90o. A correlation for the average Nusselt 

number in terms of Ra* and δ, has been developed for the 

outer cold cylinder. 
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1. INTRODUCTION 
Composite materials are used in various designs to improve 

the characteristic of various constructions and reduce their 

weight. Researchers and engineers all over the world studied 

the properties of these materials and the problems of obtaining 

structural elements based upon them. Composite materials 

have been developed for a wide range of industrial 

applications, including piping, pressure vessels, fluid 

reservoirs, aerospace components, and naval structures. 

Composite materials have many favorable properties, 

including high strength to- weight ratios and high corrosion 

resistances. Many studies have investigated the mechanical 

and thermo mechanical properties of composite laminate. 

These materials are used in various designs to improve the 

characteristic of various constructions and reduce their 

weight. The properties of these materials and the problems of 

obtaining structural elements based upon them have been 

studied by researchers and engineers all over the world [1]. 

Any property of a composite which is made of two (or more) 

materials has the value which is the resultant of a few factors. 

Obviously, the most important are the values of a certain 

property of each constituent material. However, one of the 

factors that also influence the resultant value of a property of 

a composite as a whole is its geometrical structure. Such 

resultant properties are commonly called effective properties 

of a composite. Temperature is the most important of all 

environmental factors affecting the behavior of composite 

materials, mainly because composites are rather sensitive to 

temperature and have relatively low effective thermal 

conductivity. For instance, advanced composites for 

engineering applications are characterized with low density 

providing high specific strength and stiffness, low thermal 

conductivity resulting in high heat insulation, and negative 

thermal expansion coefficient allowing us to construct hybrid 

composite elements that do not change their dimensions under 

heating. The fields of composite applications are diversified 

[2].  

[3] Prepared nanocomposites by dispersing three different 

grades of graphite particles, expanded graphite, commercial 

Graphene nanoplates and natural graphite, in a commercial 

epoxy matrix. The properties of dielectric and thermal 

conductivity and permeability to oxygen of the composites 

were studied and compared to those of the unfilled epoxy 

matrix.  

[4] Presents a theoretical and experimental study on thermal 

conductivities of silica aerogel, xonotlite - type calcium 

silicate and xonotlite–aerogel composite insulation material. 

The thermal conductivities of the insulation material are 

measured from 300 to 970 K and from 0.045 Pa to 

atmospheric pressure.  

 [5] Obtained an analytical solution for two-dimensional 

transient heat conduction in fiber-reinforced multilayer 

cylindrical composites. Separation of variables method is 

employed to develop the transient temperature fields. The 

effect of the fibers’ angle on the transient heat conduction 

behaviors is investigated.  

[6] Developed a sandwich construction as a thermal 

management system, to have both superior thermal 

conductivity and structural integrity. The sandwich 

construction consists of a carbon foam core and unidirectional 

graphite/epoxy composite face sheets. An emphasis was put 

on enhancing the thermal conductivity of each phase of 

sandwich construction as well as interface between the 

phases.  Property variation and anisotropy were observed with 

the highly conductive graphitic carbon foam. Co-curing of the 

composite face sheets with the carbon foam core was 

demonstrated to minimize the thickness of the adhesive layer 

between the face sheets and the core to produce the best 
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construction of those tested. Comparison made with an 

adhesively bonded specimen shows that the co-curing is a 

more efficient method to enhance the through-thickness 

conductivity.  

[7] The radiative properties and heat transfer in fiber-loaded 

silica aerogel composites were investigated. The randomly 

parameterized 2-D fiber distribution was generated to 

simulate a very realistic material structure. The finite volume 

method was used to solve a two flux radiation model and the 

steady-state energy equation to calculate the effective thermal 

conductivity of the composite.  

[8] Studies the thermal radiative transfer in silica aerogel and 

silica aerogel composite insulation materials (a xonotlite–

aerogel composite and a ceramic fiber–aerogel composite). 

The radiative conductivity of each sample, deduced from the 

overall thermal conductivity measured using the transient hot-

strip (THS) method.  

In the present research the natural convection heat transfer is 

investigated in an inclined annulus used as heat exchanger. 

The material taken for the annulus was based on previous 

experimental work which used graphite/epoxy composite 

material. The ranges of the parameters affected on the study 

are modified Rayleigh number (10 ≤Ra*≤ 500) and the 

annulus inclination angle δ (0, 30, 45, 60 and 90). Two types 

of optimization will be performed in terms of effective 

thermal conductivity: minimization and maximization of 

thermal conductivity. 

2. MATHEMATICAL MODEL 
Fig.1. illustrates the schematic diagram of the geometry and 

the Cartesian coordinate system.  

     

a. Coordinates system 

 

 
 

a. Geometry 

 

Fig.1: Coordinates system and geometry 

 

In order to model the incompressible flow in the porous 

medium, the steady-state equations of the Darcy flow model, 

namely, the mass, the momentum (Darcy), the energy 

conservation laws and the Boussinesq's approximation are 

employed. These equations in vectorial notation are given by 

[9].   

 

3. GOVERNING EQUATIONS 
The supplementary equation applied is: 

                                                                     (3.1) 

             

Where: 

 

  
 

 

  

  
                                                                              (3.2) 

                        

β is the thermal coefficient of the volume expansion, this 

constant is evaluated at T2 which is the temperature at the 

inner surface of the outer cylinder, ρ2 is the density at T2 and ρ 

is the density at T, [10].  

Darcy’s law states that the volume average velocity through 

the porous material is proportional with the pressure gradient 

[11] and it will be used in this study. The governing equations 

are the continuity, momentum, energy and fin equations [12].  

The vorticity vector Ω and a vector potential  with its 

components [13]: 

 

             

                          

Defined by: 

                                                                              (3.3) 
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                                                               (3.5) 
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                                                     (3.6) 

 

4. NON DIMENSIONAL VARIABLES 
The characteristic length used is r2 [10] to convert the 

governing equations to the dimensionless form, the 

dimensionless magnitudes defined as follow [14]: 
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For fins (see Fig. 2)        
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Substitute these dimensionless magnitudes in the governing 

equations and taking curl of the momentum equations to 

eliminate pressure terms, the momentum equations will be: 
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The vector potential equation was obtained in the 

dimensionless form as [14]: 
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And the energy equation will be: 
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And fin equation will be: 

  

  
 

 

 
 

 

 

  

  
 

  

  
                                                     (3.14) 

 

4.1 Dimensionless Hydraulic Boundary 

Conditions 
For the vector potential field, the boundary conditions are 

given as: 

 

 

      

  
                                               at      , l   

   
   

  
                                                  at         

      
   

  
                                                   at  Z=0, L 

 

The boundary conditions for fins are given as: 
 

 

      

  
 

   

  
 

   

  
   

   

On the fin faces which were located on the following planes  

(Fin base)   

At   R = R1          for     = 0, π             

 (Fin tip) 

At    r = r1+Hf     for     = 0, π     

At  S1 and S2  at any  r  and      

Fig. 2: fin boundary conditions 

4.2 Dimensionless Thermal Boundary 

Conditions 
For the temperature field, the dimensionless thermal boundary 

conditions are: 
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The conduction heat transfer can also be affected by the fiber 

orientation. When the axis of the fiber is perpendicular to heat 

flux, the conduction heat transfer would get the minimum 

value. When the axis of the fiber is parallel to heat flux, the 

thermal conductivity would be the largest. 

Graphite fibers and epoxy have conductive heat transfer 

coefficients of 14.74 and 0.19 W/m K, respectively. The 

conductive coefficients of the graphite fibers and the epoxy 

matrix differ greatly. The thermal conductivity of this 

composite laminate parallel to the fibers is much greater than 

that perpendicular to the fibers. Graphite/epoxy composite 

material has a thermal conductivity in parallel direction of 

fibers of 11.1 W/m K and in perpendicular direction of fibers 

of 0.87 W/m K and with volumetric percentage of fibers of 75 

[15].  

5. COMPUTATIONAL TECHNIQUE 
Eq. (7, 8, 9, 13 and 14) were transformed into the finite 

difference equations, where the upwind differential method in 

the left hand side of the energy eq.(13) and the centered – 

space differential method for the other terms were used, and 

solved by using (SOR) method [11]. A computer program was 

built using MATLAB-7 to get the results of the problem.  

The convergence criterion is taken by inequality:  

     
       

         

 

The number of grid points used was 21 grid points in the R – 

direction, 31 in the   – direction and 301 in the Z – direction 

which seems reasonable and will be used in the present study.  

5.1 Calculation of Local and Average Nusselt 
Number 
Local Nusselt number can be obtained as follows [10]: 

   
         

         
                                                                       (5.1) 

The local Nusselt number Nu1 and Nu2 on the inner and the 

outer cylinders are as follow [10]: 
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The average Nusselt number Nuin and Nuout on the inner and 

the outer cylinders are defined as: 
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6. RESULTS AND DISCUSSION 

6.1. Isotherms and Streamlines Field 
The dimensionless temperature distribution and streamlines 

within the enclosure are presented in a contour maps form in 

the (R-ϕ) plane.  

Fig.3 to Fig. 16 show the isotherms and streamlines for the 

two cases of maximum and minimum thermal conductivity of 

the Graphite fibers/epoxy and for different values of Ra and 

annulus inclination angle. In Fig. 3 the symmetry of the 

temperature distribution for horizontal annulus is clear and it 

was observed that for δ=90o in Fig. 4 the effect of the fins will 

be clear and the meanders in temperature distribution will 

occur. The streamlines have high intensity at the boundaries 

and less values in the regions away from the boundary which 

take beans form and expand as δ becomes 90o (vertical 

annulus). Increase Ra* for δ=0o results in a thicker cold layer 

near the bottom wall and a high temperature field near the top 

wall. More heat is transported upward, and a large difference 

of temperature is observed between the upper and lower parts 

of the annulus as shown in  

Fig. 5. The streamlines have high intensity in the boundaries 

and at the bottom and as δ increase to 30o, 45o, 60o and 90o the 

center of the streamlines of negative values expand and fade 

away to the lower region. 
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Fig. 3: Isothermal and streamlines contours for Ra*=10, 

δ=0, k=11.1W/m K 

 

 

 

 

 

 

Fig. 4: Isothermal and streamlines contours for Ra*=10, 

δ=90, k=11.1W/m K 

 

 

 

 

 

 

Fig. 5: Isothermal and streamlines contours for Ra*=500, 

δ=0, k=11.1W/m K 

 

The isotherms in the upper region shift towards the outer 

(cold) cylinder and the cold lower region will dwindle as 

shown in Fig.6 to Fig. 9 and a swell of the isothermal lines 

can observed when Ra* increase which implies a low Nu on 

the inner cylinder and a high Nu on the outer cylinder.  

 

 

 

 

 

 

 

 

 

 

Fig. 6: Isothermal and streamlines contours for Ra*=500, 

δ=30, k=11.1W/m K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Isothermal and streamlines contours for Ra*=500, 

δ=45, k=11.1W/m K 

 

 

 

 

 

 

 

 

 

 

 

       

 Fig. 8: Isothermal and streamlines contours for Ra*=500, 

δ=60, k=11.1W/m K 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Isothermal and streamlines contours for Ra*=500, 

δ=90, k=11.1W/m K 

 

Fig.10 to Fig. 16 show the same behave for isotherms and 

streamlines as previous figures but of course with less heat 

transfer, so for k=0.87 W/m K (perpendicular direction of 

fibers), the region in the bottom is colder than that for the case 

of k=11.1 W/m K (parallel direction of fibers) for the same 

values of Ra* and δ. Since this research was achieved for a 

steady state laminar region, thus the warm region at the top 

end when δ=90  come to be as a concentric circles located at 

the center of the annulus and distributed between the hot and 

cold cylinders Fig. 16.  
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Fig. 10: Isothermal and streamlines contours for              

Ra*=10, δ=0, k=0.87 W/m K                                 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Isothermal and streamlines contours for Ra*=500, 

δ=0, k=0.87 W/m K 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Isothermal and streamlines contours for Ra*=10, 

δ=90, k=0.87 W/m K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Isothermal and streamlines contours for  Ra*=500, 

δ=30, k=0.87 W/m K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Isothermal and streamlines contours for Ra*=500, 

δ=45, k=0.87 W/m K 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Isothermal and streamlines contours for Ra*=500, 

δ=60, k=0.87 W/m K 

 

 

 

 

 

 

 

 

 

Fig. 16: Isothermal and streamlines contours for Ra=*500, 

δ=90, k=0.87 W/m K 

6.2. Average and Local Nusselt Numbers 
Fig.17 and Fig. 18 show the variation in the average Nusselt 

number on the outer cold cylinder with the inclination angle 

for different values of Ra* and for the two cases of 

minimization and maximization of thermal conductivity. It is 

clear that Nu decrease with the increase of δ and increase with 

the increase of Ra*.  The deviation between the average Nu in 

the two cases is clear in Fig.17 and Fig. 18 which is equal to 

5.1% for δ=0o and 10% for δ=90o. For the inner hot cylinder 

the deviation between the two cases is not significant for δ=0o 

but it will be significant only for vertical annulus at Ra* =500 

and equal to 12.8%. 
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Fig.17: Variation of Nu average with the inclination angle on 

the outer cold cylinder for k=0.87 W/m K 

 
 

Fig.18: Variation of Nu average with the inclination angle on 

the outer cold cylinder for k=11.1 W/m K 

  

 

Fig.19: Variation of Nu average with Ra on the outer cold 

cylinder for δ=0o 

 

Fig.20: Variation of Nu average with Ra on the outer cold 

cylinder for δ=90o 

 

Fig.21: Variation of Nu average with Ra on the inner hot 

cylinder for δ=0o 

 
 

Fig.22: Variation of Nu average with Ra on the inner hot 

cylinder for δ=90o 
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Distribution of local Nusselt number along the circumstance 

of the cold and hot cylinders is illustrated in Fig. 23 and Fig. 

24 respectively at three locations; located at the top of the 

cylinder, at the center of the cylinder and the third at the 

bottom of the cylinder. These curves illustrate the cases for 

different values of parameters.  

The local Nusselt number on the cold wall had an increasing 

trend and there were three regions which could be 

distinguished. The first region, where the local Nusselt 

number is relatively constant since the inner boundary layer of 

relative uniform thickness and give a little variation in local 

Nusselt number distribution.  

The second region, where the local Nusselt number loosed the 

uniformity and a large gradient in its distribution could be 

observed and this is because the inner boundary layer got 

thicker in this region since heat removal by fluid decrease as 

the fluid ascend up. 

The third region, where the local Nusselt number approached 

to its maximum values this was due to the formation of plume 

in this region. Formation of the plume occurred where the two 

convective currents coming from the two annulus halves, 

impinging with each other and moving together upward 

without mixing, leaving a relatively stagnant region under 

impinging point. This behavior is roughly similar for most of 

modified Rayleigh number whereas the behavior of the hot 

wall is to decrease. 

 

Fig.23: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10, k=11.1W/m K δ=0o 

 

Fig.24: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10, k=11.1W/m K δ=0o 

 

As shown in Fig. 25 and Fig. 26 respectively, the maximum 

value of the local Nusselt number at vertical position (δ = 90˚) 

of the annulus. At high Ra* in Fig. 27 to Fig. 30 the local 

Nusselt number was high owing to the effect of convection 

mode of heat transfer, at low Ra* the mode of heat transfer is 

conduction and its value increase with the increase of Ra* and 

it is clear that the second region will be vanish or in other 

words the variation trend to be uniform. 

Fig.25: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10, k=11.1W/m K δ=90o 
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Fig.26: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10, k=11.1W/m K δ=90o 

 

 

Fig.27: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500, k=11.1W/m K δ=0o 

 

Fig.28: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500, k=11.1W/m K δ=0o 

 

 

 

 

Fig.29: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500, k=11.1W/m K δ=90o 
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Fig.30: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500, k=11.1W/m K δ=90o 

 

Fig. 31 and Fig. 32 for k=0.87W/m K and δ=0o, there is only 

two regions and the non uniformity of the local Nusselt 

number will be significant. For other values of δ or Ra* the 

behave is the same as the previous figures as shown in Fig. 33 

and Fig. 38 

 

Fig.31: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10, k=0.87 W/m K δ=0o 

 

 

Fig.32: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10, k=0.87 W/m K δ=0o 

 

 
 

 

Fig.33: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=10, k=0.87 W/m K δ=90o 
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Fig.34: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=10, k=0.87 W/m K δ=90o 

 
Fig.35: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500, k=0.87 W/m K δ=0o 

 
 

Fig.36: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500, k=0.87 W/m K δ=0o 

 
Fig.37: Variation of Nu Local in angular direction on the 

cold cylinder for Ra=500, k=0.87 W/m K δ=90o 
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Fig.38: Variation of Nu Local in angular direction on the hot 

cylinder for Ra=500, k=0.87 W/m K δ=90o 

 

Correlations were deduced from the numerical data which are 

given as: 

For k=0.87 W/m K: 

      
            

      
  

For k=11.1 W/m K: 

      
             

    
  

 

7. CONCLUSIONS 
The following major conclusions can be drawn from the 

study:  

1- The deviation between the average Nu for the 

maximization and minimization of the thermal 

conductivity is equal to 5.1% for horizontal annulus 

δ=0o and 10% for vertical annulus δ=90o. For the 

inner hot cylinder the deviation between the two 

cases is not significant for δ=0o but it will be 

significant only for vertical annulus at Ra* =500 and 

equal to 12.8%. 

2- For all parameters, results showed that the average 

Nu number decrease with the increase of δ for high 

values of Ra* and increases with an increase in 

modified Rayleigh number but for low values of 

Ra*, the effect of δ on the average Nu will be low.  

3- Local Nu increases in the angular direction for the 

outer cold cylinder and has a trend to decrease on 

the inner hot cylinder. 

4- The maximum value of the local Nusselt number at 

vertical position (δ = 90˚) of the annulus. 

5- for k=0.87 W/m K (perpendicular direction of 

fibers), the region in the bottom is colder than that 

for the case of k=11.1 W/m K (parallel direction of 

fibers) for the same values of Ra* and δ. 

6- The streamlines have high intensity in the 

boundaries and at the bottom and as δ increase to 

30o, 45o, 60o and 90o the center of the streamlines of 

negative values expand and fade away to the lower 

region 

 

8. NOMENCLATURE 

8.1. Latin Symbols 

Cp Specific heat at constant 

pressure 

kJ/kg °C 

g Acceleration due to m/s2 

Hf Fin length m 

kf Thermal conductivity of the 

fluid 
W/m K 

ks Thermal conductivity of the 

solid 

W/m K 

Keff Effective thermal conductivity 

of the porous media 

W/m K 

 

K  Permeability m2 

l Cylinder length m 

L Dimensionless cylinder length - 

Nu1 Local Nusselt number on the 

inner cylinder 

- 

Nu2 Local Nusselt number on the 

outer cylinder 

- 

Nuin Average Nusselt number on the 

inner cylinder 

- 

Nuout Average Nusselt number on the 

outer cylinder 

- 

p Pressure  N/m2 

R Dimensionless radial coordinate m 

Ra* Modified Rayleigh number - 

S Fin pitch m 

T Temperature  K 

ur,uϕ,uz  velocity component in r,ϕ and z 

- direction 

m/s 

 

 

 

Ur, Uϕ, Uz Dimensionless velocity 

component in R, ϕ and Z 

direction 

- 

Z Dimensionless axial coordinate - 

 

8.2. Greek Symbols 

 Dimensionless temperature - 
φ Volume fraction - 

f Dynamic viscosity of fluid Pa.s 
eff Effective thermal diffusivity m2/s 
m Medium thermal diffusivity m2/s 

 Volumetric thermal expansion 

coefficient 

1/K 

δ Angle of inclination degree 

ψr, ψϕ, ψz          Vector potential component in                          - 

                                R, ϕ and Z – direction 
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