A New Iterative Scheme for Non-expansive and Monotone Lipschitz Continuous Mappings

Renu Chugh Department of Mathematics, Maharshi Dayanand University, Rohtak (India)- 124001.

ABSTRACT

The aim of paper is to prove a weak convergenceresult for finding a common of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for a monotone, Lipschitz continuous mapping. Using an example in C++, validity of the result will be proved. Also, we shall find a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of a monotone, Lipschitz continuous mapping.

KeyWords

Fixed Points, Hilbert Spaces, Monotone Mappings, Nonexpansive Mappings, Variational Inequalities.2000 Mathematics Subject Classification: Primary 47H05, 47J05, 47J25

1. INTRODUCTION

Let H be a real Hilbert space with inner product $\langle .,. \rangle$ and norm $\|.\|$, respectively. Let C be a closed convex subset of H. The variational inequality problem is to find u \in C such that < Au, v - u $> \ge 0$, $\forall v \in C$.

The set of solutions of variational inequality problem VI(C, A) is denoted by Ω . The variational inequality problem has been extensively studied in literature, see, for example,[1, 2, 5, 10] and references therein.

Definitions. Let A: $C \rightarrow H$ be a mapping of C into H. A is called monotone if

< Au - Av, $u - v \ge 0$ \forall $u, v \in C$.

A is called α -inverse-strongly-monotone [1, 5, 9] if there exists a positive real number α such that

 $< Au - Av, u - v > \ge \alpha \|Au - Av\|^2 \quad \forall u, v \in C.$

It is easy to see that an α -inverse-strongly mapping A is monotone and Lipschitz continuous but converse is not true. A mapping S : C \rightarrow C is called non-expansive [10-11] if

$$\left\| Su - Sv \right\| \le \left\| u - v \right\| \qquad \forall \ u, v \in C.$$

We denote by F(S) the set of fixed points of S. A mapping S : $C \rightarrow C$ is called Lipschitz continuous if there exists a real number L > 0 such that $||Su - Sv|| \le L ||u - v|| \quad \forall u, v \in C$.

Takahashi and Toyoda [12] introduced the following iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality problem for an α -inverse-strongly-monotone mapping in a real Hilbert space.

Theorem 1.1. [12] Let C be a closed convex subset of a real Hilbert space H. Let A be an α -inverse-strongly-monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) \cap VI(C, A) $\neq \varphi$. Let $\{x_n\}$ be a sequence generated by $x_0 = x \in C$, $x_{n+1} = \alpha_n x_n + (1-\alpha_n)S$

Rekha Rani Department of Mathematics, Maharshi Dayanand University, Rohtak (India)- 124001.

P_C(x_n - λ_nAx_n), (1.1) for every n = 0,1,2,...... where {λ_n} ⊂ [a,b] for some a,b ∈ (0, 2α) and {α_n} ⊂ [c,d] for some c,d ∈ (0,1). Then, the sequence {x_n} converges weakly to some point z ∈ F(S) ∩ VI(C,A), where, z = lim_{n→∞} P_{F(S)∩VI(C, A)}x_n. Further liduka and Takahashi [4], introduced an iterative scheme to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Hilbert space.

Theorem 1.2. [4] Let C be a closed convex subset of a real Hilbert space H. Let A be an α -inverse-strongly-monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) \cap VI(C,A) $\neq \varphi$. Suppose $x_1 = x \in C$ and let $\{x_n\}$ be a sequence generated by

$$\mathbf{x}_{n+1} = \mathbf{P}_{\mathbf{C}}(\alpha_{n}\mathbf{x} + (1 - \alpha_{n})\mathbf{S}\mathbf{P}_{\mathbf{C}}(\mathbf{x}_{n} - \lambda_{n}\mathbf{A}\mathbf{x}_{n})), \qquad (1.2)$$

for every $n = 1, 2, \dots$ where $\{\alpha_n\}$ is a sequence in [0, 1) and $\{\lambda_n\}$ is a sequence in [0, 2 α]. If $\{\alpha_n\}$ and $\{\lambda_n\}$ are chosen so that $\{\lambda_n\} \subset [a,b]$ for some a, b with $0 < a < b < 2\alpha$,

$$\lim_{n\to\infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty \quad , \quad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty \quad ,$$
$$\sum_{n=1}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty \, .$$

Then $\{x_n\}$ converges strongly to $P_{F(S)\cap VI(C, A)}x$.

Motivated by above results, we shall prove the weak convergence theorem for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality problem for a monotone and Lipschitz continuous mapping in a real Hilbert space. Also we shall give a numerical example to show the existence of solution. Further, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of a monotone and Lipschitz continuous mapping.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product <.,.> and norm $\|\!|.\|$. Let C be a closed convex subset of H. We shall write $x_n \rightharpoonup x$ to indicate that the sequence $\{x_n\}$ converges weakly to x. $x_n \rightarrow x$ implies that $\{x_n\}$ converges strongly to x. It is well known that for any x ε H, there exists a unique nearest point in C, such that

 $\| u - P_C x \| = \inf\{ \| u - y \| : y \in C \}$

 P_C is called the metric projection of H onto C.

P_C is characterized by the properties:

P_Cx ∈ C,

 $< x - P_C x, y - P_C x \ge 0$, for all $x \in H, y \in C$,

$$\begin{split} \|x - y\|^2 \geq & \|x - P_C x\|^2 + \|y - P_C x\|^2, \text{for all } x \in H, \ y \in C. \\ \text{The metric projection } P_C \text{ of } H \text{ onto } C \text{ satisfies} \end{split}$$

$$< x - y, P_C x - P_C y \ge || P_C x - P_C y ||^2$$
, for every $x, y \in H$

Let A be a monotone mapping of C into H. In the context of the variational inequality problem, it is easy to see that $u \in \Omega$ $\iff u = P_C (u - \lambda Au)$, for any λ

It is known that H satisfies the Opial condition [7] that is, for any sequence $\{x_n\}$ with $x_n \rightarrow x$, the inequality, $\lim_{n \rightarrow \infty} inf || x_n - x || < \lim_{n \rightarrow \infty} inf || x_n - y ||$ holds for every $y \in H$ with $y \neq x$. We also know that, if $\{x_n\}$ is sequence of H with $x_n \rightarrow x$ and $|| x_n || \rightarrow || x ||$, then there holds that $x_n \rightarrow x$.

A set valued mapping $T : H \to 2^{H}$ is called monotone if for all x,y \in H, f \in Tx and g \in Ty imply < x - y, f $- g \ge 0$. A monotone mapping T: $H \to 2^{H}$ is maximal if its graph G(T) is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for (x, f) \in H× H, < x - y, f $- g \ge 0$ for every (y, g) \in G(T) implies f \in Tx.

Let A : C \to H be a monotone, k – Lipschitz continuous mapping and N_Cv be the normal cone to C at v \in C, that is N_Cv = {w \in H : < v - u, w > \geq 0, \forall u \in C}

Define, Tv =
$$\begin{cases} Av + N_c v, & \text{if } v \in C \\ \phi, & \text{if } v \notin C \end{cases}$$

Then, T is maximal monotone [8-9] and 0 ϵ Tv if and only if v ϵ VI(C,A).

Now we give some lemmas, which will be used in the proof of result.

Lemma 2.1 [6] Let C be a closed convex subset of a real Hilbert space H. Let S be a nonexpansive mapping of C into itself such that $F(S) \neq \varphi$. Then $F(S) = F(P_CS)$.

Lemma 2.2. [12] Let H be a real Hilbert space and let D be a non empty closed convex subset of H. Let $\{x_n\}$ be a sequence in H. Suppose that, for all $u \in D$,

$$||x_{n+1} - u|| \le ||x_n - u||,$$

for every $n=0,1,2,\ldots$. Then, the sequence $\{P_Dx_n\}$ converges strongly to some $z\in D.$

Lemma 2.3. [3] Let H be a real Hilbert space, C be a nonempty closed convex subset of H and T: $C \rightarrow H$ be a nonexpansive mapping. Then, the mapping I - T is demiclosed on C, where I is the identity mapping; that is, $x_n \rightarrow x$ in E and $(I - T) x_n \rightarrow y$ imply that $x \in C$ and (I - T) x = y.

3. MAIN RESULT

Now, we prove a weak convergence theorem for a nonexpansive mapping and a monotone mapping.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone k-Lipschitz continuous mapping of C into H and let S be a nonexpansive mapping of C into itself such that $F(S) \cap VI(C,A) \neq \varphi$. Let $\{x_n\}$ be sequence generated by $x_0 = x \in C$,

 $\begin{array}{ll} x_{n+1} = P_C(\alpha_n x_n + (1 - \alpha_n) SP_C(x_n - \lambda_n A x_n)), & (3.1.1) \\ \text{for every } n = 0, 1, 2, \ldots & \text{where } \{\lambda_n\} \subset [a,b] \text{ for some } a, b \in (0, 2\alpha) \text{ and } \{\alpha_n\} \subset [c,d] \text{ for some } c, d \in (0,1). \text{ If } \{\alpha_n\} \text{ and } \{\lambda_n\} \\ \text{satisfy the following conditions:} \end{array}$

$$\lim_{n\to\infty} \alpha_n = 0, \lim_{n\to\infty} \lambda_n = 0, \sum_{n=1}^{\infty} \left| \lambda_{n+1} - \lambda_n \right| < \infty \text{, then, the}$$

sequence $\{x_n\}$ converges weakly to some point $z \in F(S) \cap VI(C,A)$, where, $z = lim_{n \to \infty} P_{F(S) \cap VI(C,A)} x_n$.

Proof. Let
$$y_n = P_C(x_n - \lambda_n Ax_n)$$
 for every $n = 0, 1, 2, 3, ...$

Let $u \in F(S) \cap VI(C,A)$.

Now,

$$\begin{split} \|y_{n} - u\|^{2} &\leq \|x_{n} - \lambda_{n} Ax_{n} - u\|^{2} - \|x_{n} - \lambda_{n} Ax_{n} - y_{n}\|^{2} \\ &= \|x_{n} - u\|^{2} + \|\lambda_{n} Ax_{n}\|^{2} - 2\lambda_{n} < x_{n} - u, Ax_{n} > -\|x_{n} - y_{n}\|^{2} - \|\lambda_{n} Ax_{n}\|^{2} + 2\lambda_{n} < x_{n} - y_{n} - x_{n} + u, Ax_{n} > \\ &= \|x_{n} - u\|^{2} - \|x_{n} - y_{n}\|^{2} + 2\lambda_{n} < Ax_{n} , u - y_{n} > \\ &= \|x_{n} - u\|^{2} - \|x_{n} - y_{n}\|^{2} + 2\lambda_{n} < Ax_{n} , u - y_{n} > \\ &= \|x_{n} - u\|^{2} - \|x_{n} - y_{n}\|^{2} + 2\lambda_{n} < Ax_{n} - Au, u - x_{n} > + < Au, u - u > + < Au, u - x_{n} > + < Au, u - u > + < Au, u - x_{n} > + < Au, u - x_{n} > + < Au, u - u > + < Au, u - x_{n} > + < Au, u - x_{n} > + < Au, u - u = Au, u -$$

So, there exists $c = \lim_{n\to\infty} \|x_n - u\|$ and hence the sequences $\{x_n\}, \{y_n\}$ are bounded. From equation (2),

$$\begin{split} & 2(1 - \alpha_n) \, \left\| \, x_n - y_n \, \right\|^2 \leq \left\| \, x_n - u \, \right\|^2 - \left\| \, x_{n+1} - u \, \right\|^2 \\ & \text{Since, } \lim_{n \to \infty} \left\| \, x_n - u \, \right\|^2 = \lim_{n \to \infty} \left\| \, x_{n+1} - u \, \right\|^2 \end{split}$$

So we obtain, $x_n - y_n \rightarrow 0$.

Since A is lipschitz continuous, so $Ax_n - Ay_n \rightarrow 0$.

Now,

$$\begin{split} \left\| \begin{array}{l} y_n - y_{n-1} \end{array} \right\| &\leq \left\| \begin{array}{l} P_C(x_n - \lambda_n A x_n) - P_C(x_{n-1} - \lambda_{n-1} A x_{n-1}) \end{array} \right\| \\ &\leq \left\| (x_n - \lambda_n A x_n) - (x_{n-1} - \lambda_{n-1} A x_{n-1}) \right\| \\ &= \left\| (x_n - x_{n-1}) - (\lambda_n A x_n - \lambda_{n-1} A x_{n-1}) \right\| \\ &= \left\| (x_n - x_{n-1}) - (\lambda_n A x_n - \lambda_n A x_{n-1} + \lambda_n A x_{n-1} - \lambda_{n-1} A x_{n-1}) \right\| \\ &\leq \left\| (x_n - x_{n-1}) \right\| + \lambda_n \right\| \left\| A x_n - A x_{n-1} \right\| + \left\| \lambda_n - \lambda_{n-1} \right\| \left\| A x_{n-1} \right\| \\ &\leq (1 + \lambda_n k) \left\| (x_n - x_{n-1}) \right\| + \left| \lambda_n - \lambda_{n-1} \right| \right\| \left\| A x_{n-1} \right\| \end{split}$$

Using the given conditions, we obtain,

$$\|y_{n} - y_{n-1}\| \le \|(x_{n} - x_{n-1})\|.$$
(3)

Since,

$$\begin{split} \|x_{n+1} - x_n\| &\leq \|x_{n+1} - y_n\| + \|y_n - x_n\| \to 0 \text{ as } n \to \infty, \text{ so } (3) \\ \text{implies,} \\ \|y_n - y_{n-1}\| \to 0 \text{ as } n \to \infty. \end{split}$$

Now, using (4) and given conditions:

$$\begin{split} \left\| x_{n} - P_{C}Sy_{n} \right\| &\leq \left\| x_{n} - P_{C}Sy_{n-1} \right\| + \left\| P_{C}Sy_{n-1} - P_{C}Sy_{n} \right\| \\ &\leq \alpha_{n-1} \left\| x_{n-1} - Sy_{n-1} \right\| + \left\| y_{n-1} - y_{n} \right\| \to 0 \text{ as } n \to \infty. \\ Also, \left\| y_{n} - P_{C}Sy_{n} \right\| &\leq \left\| x_{n} - P_{C}Sy_{n} \right\| + \left\| y_{n} - x_{n} \right\| \to 0 \text{ as } n \to \infty. \\ &\propto. \end{split}$$

As $\{x_n\}$ is bounded, we have that a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ that converges weakly to z. Then, we shall prove that $z \in F(S) \cap VI(C,A)$.

Firstly, we shall show that $z \in VI(C,A)$.

Since $x_n - y_n \rightarrow 0$, we have, $y_n \rightarrow z$. Let

$$Tv = \begin{cases} Av + N_c v, & if v \in C \\ \phi, & if v \notin C \end{cases}$$

Then T is maximal monotone. Let $(v, w) \in G(T)$. Since $w - Av \in N_C v$ and $y_n \in C$, so we get

 $< v - y_{n}, w - Av > \ge 0.$

On the other hand, from $y_n = P_C(x_n - \lambda_n A x_n)$, we have that

$$< x_n$$
 - $\lambda_n A x_n$ - $y_n, \; y_n$ - $v > \geq 0$ and hence, $< v$ - y_n , $(y_n$ - $x_n)/\lambda_n + A x_n > \geq 0.$

Therefore, we have

$$< \mathbf{v} - \mathbf{y}_{n_{i}}, \mathbf{w} > \ge < \mathbf{v} - \mathbf{y}_{n_{i}}, \mathbf{A}\mathbf{v} >$$

$$\ge < \mathbf{v} - \mathbf{y}_{n_{i}}, \mathbf{A}\mathbf{v} > - < \mathbf{v} - \mathbf{y}_{n_{i}}, (\mathbf{y}_{n_{i}} - \mathbf{x}_{n_{i}})/\lambda_{n_{i}} + \mathbf{A}\mathbf{x}_{n_{i}} >$$

$$= < \mathbf{v} - \mathbf{y}_{n_{i}}, \mathbf{A}\mathbf{v} - \mathbf{A}\mathbf{x}_{n_{i}} - (\mathbf{y}_{n_{i}} - \mathbf{x}_{n_{i}})/\lambda_{n_{i}} >$$

$$= < \mathbf{v} - \mathbf{y}_{n_{i}}, \mathbf{A}\mathbf{v} - \mathbf{A}\mathbf{y}_{n_{i}} > + < \mathbf{v} - \mathbf{y}_{n_{i}}, \mathbf{A}\mathbf{y}_{n_{i}} - \mathbf{A}\mathbf{x}_{n_{i}} > - < \mathbf{v}$$

$$\mathbf{y}_{n_{i}}, (\mathbf{y}_{n_{i}} - \mathbf{x}_{n_{i}})/\lambda_{n_{i}} >$$

$$\geq < \mathbf{v} - \mathbf{y}_{n_i}, \mathbf{A}\mathbf{y}_{n_i} - \mathbf{A}\mathbf{x}_{n_i} > - < \mathbf{v} - \mathbf{y}_{n_i}, (\mathbf{y}_{n_i} - \mathbf{x}_{n_i})/\lambda_{n_i} >$$

Hence we get, < v - z, $w > \ge 0$, as $i \rightarrow \infty$.

Since T is maximal monotone, we have $z \in T^{-1}0$ and hence $z \in VI(C,A)$.

Next we shall show that $z \in F(P_CS)$.

Since $y_{n_i} \rightarrow z$ and $||y_n - P_C S y_n|| \rightarrow 0$ as $n \rightarrow \infty$, so by demiclosedness of I – S, we get $z \in F(P_C S)$.

By using Lemma 2.1, we obtain $z \in F(S)$.

Let $\{\mathbf{X}_{n_j}\}$ be another subsequence of $\{\mathbf{x}_n\}$, such that $\{\mathbf{X}_{n_j}\}$ $\rightarrow z'$. Then, $z' \in F(S) \cap VI(C,A)$. Let us show that z = z'. Assume that $z \neq z'$. From the Opial condition, we have $\lim_{n\to\infty} \|\mathbf{x}_n - z\|$

$$= \lim_{i \to \infty} \inf \| \mathbf{X}_n - \mathbf{z} \|$$

 $< \lim_{i \to \infty} \inf \| \mathbf{X}_{n_i} - \mathbf{z}' \|$

$$= \lim_{n \to \infty} \|\mathbf{x}_n - \mathbf{z}'\| = \lim_{j \to \infty} \inf \|\mathbf{X}_{n_j} - \mathbf{z}'\| < \lim_{j \to \infty} \inf \|\mathbf{X}_{n_j} - \mathbf{z}'\| < \lim_{j \to \infty} \inf \|\mathbf{X}_{n_j} - \mathbf{z}\|.$$

This is a contradiction. Thus we have z = z'. This implies, $x_n \rightarrow z \in F(S) \cap VI(C,A)$.

Now, put $u_n = P_{F(S) \cap VI(C,A)} x_n$.

We show that $z = \lim_{n \to \infty} u_n$.

From, $u_n = P_{F(S) \cap VI(C,A)}x_n$ and $z \in F(S) \cap VI(C,A)$, we have, < z - u_n , $u_n - x_n > \ge 0$.

By lemma 2.2, $\{u_n\}$ converges strongly to some $z_0 \in F(S) \cap VI(C,A).$

Then, we have, $< z - z_0, z_0 - z > \ge 0$.

And hence $z = z_0$.

Remark. We know that every inverse-strongly-monotone mapping is monotone and Lipschitz continuous, but converse is not true. So our result is the generalization of Theorem 1.1 given by Takahashi and Toyoda [12] and Theorem 1.2 given by Iiduka and Takahashi [4].

4. NUMERICAL EXAMPLE

Now we prove the validity of our main result with the help of a numerical example and a program in C++.

Example 4.1. Let H = R be a real Hilbert space with usual inner product defined on R. Let C = [0, 1] be a closed convex

subset of H. Let $Ax = \frac{x^2}{1+x}$ be a monotone, Lipschitz-

continuous mapping of C into H and let $Sx = \frac{X}{2}$ be a nonexpansive mapping of C into itself. Let $\{\alpha_n\} = \{\lambda_n\} =$

1

 $\frac{1}{n+1}$ be two sequences satisfying the conditions of theorem

3.1.

Now using the iterative scheme (3.1.1), we obtain the following data given in table 4.1. when initial approximation is taken as $x_0 = 0.1$.

Table 4.1			
n	X _{n+1}	Sx _n	$P_C(x_n - \lambda_n A x_n)$
0	0.1	0.05	0.1
1	0.045455	0.045455	0.090909
3	0.022727	0.022727	0.045455
98	2.868585e-31	2.868585e-31	5.73717e-31
99	1.434293e-31	1.434293e-31	2.868585e-31
100	7.171463e-32	7.171463e-32	1.434293e-31
279	9.359196e-86	9.359196e-86	1.871839e-85
280	4.679598e-86	4.679598e-86	9.359196e-86
770	1.463897e-233	1.463897e-233	2.927795e-233
771	7.319487e-234	7.319487e-234	1.463897e-233
1071	4.940656e-324	4.940656e-324	9.881313e-324
1072	0	0	4.940656e-324
1073	0	0	0
1074	0	0	0

Thus we see that the sequence $\{x_n\}$ converges to z = 0, which is a fixed point of S as well as a solution of variational inequality problem.

5. APPLICATION

Theorem: Let H be a real Hilbert space. Let A be a monotone k-Lipschitz continuous mapping of H into itself and let S be a nonexpansive mapping of H into itself such that $F(S) \cap A^{-1}0 \neq \phi$. Let $\{x_n\}$ be a sequence generated by $x_0 = x \in H$ and let

 $\mathbf{x}_{n+1} = \mathbf{P}_{\mathbf{C}}(\alpha_n \mathbf{x}_n + (1 - \alpha_n)\mathbf{S}(\mathbf{x}_n - \lambda_n \mathbf{A}\mathbf{x}_n)),$

for every $n = 0, 1, 2, \dots$ where $\{\lambda_n\} \subset [a,b]$ for some $a, b \in (0, 1/k)$ and $\{\alpha_n\} \subset [c,d]$ for some $c, d \in (0,1)$. Then, the sequence $\{x_n\}$ converges weakly to some point $z \in F(S) \cap A^{-1}$, where, $z = \lim_{n \to \infty} P_{F(S) \cap A^{-1}} x_n$.

Proof. We have $A^{-1}0 = VI(H,A)$ and $P_H = I$. By Theorem 3.1, we obtain the desired result.

Remark. Notice that $F(S) \cap A^{-1}0 \subset VI(F(S),A)$. See Yamada [13] for the case when A is strongly monotone and Lipschitz continuous mapping of H into itself.

6. REFERENCES

- Browder F E and Petryshyn W V (1967) Construction of Fixed Points of non-linear Mapping in Hilbert Spaces J Math Anal Appl 20 197-228.
- [2] Browder F E (1965) Fixed-point Theorems for Noncompact Mappings in Hilbert Space Proc Natl Acad Sci U S A 53 1272-1276.
- [3] Goebel K and Kirk W A (1990) Topics in Metric Fixed Point Theory vol. 28 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK.
- [4] Iiduka H and Takahashi W (2004), Stronge convergence theorems for nonexpansive nonself mappings and inverse

strongly monotone mappings, J convex Anal, vol 11, 69-79.

- [5] Liu F and Nashed M Z (1998) Regularization of Nonlinear III- posed Variational inequalities and convergence rates, Set-valued Anal 6 313-344.
- [6] Matsushita S and Kuroiwa, Approximation of fixed points of nonexpansive nonself mappings, Sci Math Jpn, vol 57(2003), 171-176.
- [7] Opial Z (1967) Weak convergence of the sequence of successive Approximations of Nonexpansive Mappings Bull Am Math Soc 73 591-597.
- [8] Rockafellar R T (1970) On the Maximality of Sums of nonlinear Monotone Operators Trans Amer Math Soc 149 75-88.
- [9] Schu J (1991) Weak and Strong Convergence to fixed points of Asymptotically nonexpansive Mappings Bull Aust Math Soc 43, 153-159.
- [10] Takahashi W (2000) Non-linear functional Analysis Yokohama Publisher, Yokohama Japan.
- [11] Takahashi W, Tamura T (1998) Convergence Theorems for a pair of nonexpansive Mapping J Convex Anal 5 45-56.
- [12] Takahashi W and Toyoda M (2003) Weak Convergence Theorems for Non-expansive Mappings and Monotone Mappings J Optim Theory Appl **118** 417-428.
- [13] Yamda I (2001) The Hybrid Steepest-Descent Method for the Variational Inequality Problem over the Intersection of fixed-point Sets of nonexpansive Mapping, inherently Parallel Algorithms in Feasibility and Optimization and their applications, Edited by D. Butnariu, y. Censor, and S. Reich, kluwer Academic Pulishers, Dordrecht, Holland, 473-504.