
International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

13

A Framework for Centralized Access Monitoring over

Cloud Architectures

Ajay Prasad
University of Petroleum and Energy Studies

Dehradun, India

Prasun Chakrabarti
Sir Padampat Singhania University

Udaipur, India

ABSTRACT

While we talk about monitoring, the performance and

compliance aspects are only on focus, however, the fine

grained access logs also needs to be maintained if a proper

internal audit is to be realized at organization level. Also, we

do need to maintain long term logs for auditing purposes at

internal auditing. In generic monitoring services provided by

most of the cloud vendors, the case of monitoring users at

organization level is not covered so far. It is also to be

realized that internally cloud users (as an organization) can

delegate the leased resources to its internal employees. In such

cases the auditors would require the usage logs having various

audit parameters. If the logs maintained at user levels can be

verified with the logs maintained at cloud level, then the trust

among the cloud vendors and the user will go up by almost

hundred percent. The setup of a cloud monitor model along

with centralized, verifiable and long term logs can be realized

by a cloud framework presented hereby. The paper discusses

the viability of the proposed framework over popular open

source monitoring tools available and used by many cloud

architectures.

Keywords

Cloud computing, centralized access monitoring, monitoring

framework, CMaaS.

1. INTRODUCTION
Most of the cloud computing frameworks including openstack

[1] and open nebula [2] provides a minimal system of

monitoring. However, in all the cases, the monitoring is

mostly confined to basic parameters like availability,

performance and QoS. The monitoring is not based on end

user usage if the organization has many users. The

organizational users were mostly monitored very closely in

the traditional proprietary network models. Also, with the

advent of cloud computing, most of the organizations are

switching onto cloud. But organizations as users will have

limited control over the usage of respective services and

resources by the end employees. It thus, becomes vital to have

a framework which extends the generic monitoring interfaces

to a more specific and usage based monitoring frameworks. In

other words, we are talking about fine grained access

monitoring support in cloud computing. The Openstack

architecture [1] has a module of Nagios [3] which performs

the tasks of monitoring. Similarly, open nebula architecture

[2] utilizes Ganglia [4] modules for monitoring. Figure 1 a)

and b) depicts the nagios and ganglia architectures

respectively.

Nagios is composed of 3 parts [5] i) scheduler ii) a Gui iii)

plugins. Nagios functions in an agent based client-server

architecture. The client agents are the plugins installed on the

monitored hosts. The plugin send information to server which

displays them in a GUI. The Nagios monitor server can be

integrated or interfaced using the plugin APIs at every host

cluster. The Ganglia comprises of GMOND and GMETAD.

The Ganglia architecture is also similar to Nagios in the way

of client agent-server approach. The Ganglia Monitor daemon

(GMOND) [6] is the data collecting agent that is installed at

every node to be monitored and a centralized server having

Ganglia METAdata daemon (GMETAD) collects the data

from various agents and consolidates them.

In both Nagios and Ganglia the logging metrics can be

defined by the users. However, the metrics that are sent by the

agents can be limited to only the availability, QoS and SLA

parameters of the hosts. The resource access from cloud users

might not be available to the plugins directly. However, a

framework can be constructed which can manage metrics and

add access logs metadata to the metrics or add metrics

received from the servers to the access log metadata. The

Centralized (access) Monitoring as a Service (CMaaS)

framework presented herewith can utilize the popular

monitoring frameworks to have a fine grained access

monitoring over the cloud services.

Fig 1. a) Nagios Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

14

Fig. 1.b) Ganglia Architecture: (courtsey:

https://my.vertica.com/docs/4.1/HTML/Master/12739.htm)

2. CMAAS FRAMEWORK (WITH

NAGIOS)
We propose a framework and first present an overview of the

working of the CMaaS. The figure 2 gives an overviewed idea

about its working. Each host in the cluster will hold the

Nagios plugin. Similarly, on every host access plugin will be

there to capture access data of specific and overall fine

grained services on that host. The infrastructural/QoS specific

logs gathered by the Nagios plugin will be sent to the core

running at monitor server along with the access logs.

More formally the access logs will be sent in an event

oriented fashion whereas the QoS metrics can be sent in a

time step fashion. That is, for an instance, a user logs in and

starts service A the log will be formed then which is based on

the event of access. The availability of that server can be

checked periodically by an agent or plugin and can be logged.

The monitor will consolidate the logs and keep it for

recording.

Fig 3.CMaaS Architecture

The CMaaS model was first introduced in [7] with only an

overviewed idea. One can establish the overview diagram in

[7] with that presented in figure 2. In the figure 2 closer

aspects of Nagios or Ganglia’s roles are depicted. Majorly the

monitor servers at both cloud and organizational boundaries

are to be holding Nagios or Ganglia cores, which will be

continuously listening to the agents or plugins at hosts or

access servers.

The monitors can be configured for either time step or event

step fashion as shown in figure 5. The access logs generated at

the access server at the organization will be rendered in event

step fashion to the monitor server at organization.

Fig 2.CMaaS Overview

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

15

The organizational monitor and the cloud monitor will

synchronize in automated time step fashion or in event

oriented fashion generated by the organizational admin.

Organizational admin can set the metrics at both sites through

the audit dashboard (figure 3). The repository module will be

responsible to compact the logs and secure it as well as

provide synchronization and verify sevices through the audit

dashboard events.

Fig 4. Interface Modules in CMaaS

The framework is designed to integrate with the Nagios.

However, it can very well be set to integrate with other

monitoring frameworks like Ganglia etc. The interface model

is shown in figure 4. The Nagios monitor agent (plugin) will

read from metrics manager module interfaced with the CMaaS

agent to send logs. Similarily, the access agent reads from

metrics manager and interface with CMaaS to send logs. At

the organization site the access server interface with CMaaS

server and both are interfaced with the dashboard, sync and

verify modules. The networking layer for carrying out sync,

verify etc are present as part of cloud sync and organization

sync modules at every host server in hosts cluster as well as

monitor server at organization.

Fig. 5. a) Monitoring Flow at cloud data center core

(Event Step)

Call to various methods while the functioning of the overall

monitoring in CMaaS is shown in figure 5 a) b) and c). The

general methods are:

𝑔𝑒𝑡_𝑓𝑚_𝑁𝑝𝑙𝑢𝑔𝑖𝑛()

𝑔𝑒𝑡_𝑓𝑚_𝐴𝑝𝑙𝑢𝑔𝑖𝑛()

𝑟𝑒𝑐𝑜𝑟𝑑_log⁡()

𝑟𝑒𝑐𝑜𝑟𝑑_log⁡()

𝑔𝑒𝑡_𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑_𝑙𝑜𝑔()

𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑜𝑟𝑔_𝑙𝑜𝑔()

𝑠𝑒𝑛𝑑_𝑟𝑒𝑐𝑜𝑟𝑑_𝑡𝑜_𝑐𝑙𝑜𝑢𝑑()

𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑐𝑙𝑜𝑢𝑑_𝑙𝑜𝑔()

𝑆𝑡𝑜𝑟𝑒_𝑙𝑜𝑔()

Fig. 5. b) Monitoring Flow at cloud data center core (Time

Step)

Fig. 5. c) Time Step Sync and verify for audit (Black

rectangle is the line to mark communication channel)

The exchange of recorded logs will be done in a full SSL

model in the dialogues shown hereby:

For a time period from 𝑖 to 𝑗:

1. At cloud at 𝑡𝑗+1 ∶ 𝐻𝑎𝑠𝑕_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑇𝑝 + 𝐶𝐷
𝑡𝑗
𝑡𝑖

+

 𝐶𝐴
𝑡𝑗
𝑡𝑖

) 𝐶𝑑𝑖𝑔 (digital signature)

2. At organization at 𝑡𝑗+1 ∶ 𝐻𝑎𝑠𝑕_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑇𝑢 +

 𝑈𝐷
𝑡𝑗
𝑡𝑖

+ 𝑈𝐴
𝑡𝑗
𝑡𝑖

)𝑈𝑑𝑖𝑔 (digital signature)

3. At organization at 𝑡𝑗+2 ∶ 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝐶𝑑𝑖𝑔 , 𝑈𝑑𝑖𝑔)

Verification

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

16

Where,

𝑇𝑝 → Task metric at provider.

𝐶𝐷𝑡𝑗 → Data Center monitored log.

𝐶𝐴𝑡𝑖 𝑡𝑜 𝑡𝑗 → Cloud Access monitored logs.

𝑇𝑢 → Task metric at user organization.

𝑈𝐴𝑡𝑖 𝑡𝑜 𝑡𝑗 → Access monitored logs at organization.

𝑈𝐷𝑡𝑖 𝑡𝑜 𝑡𝑗 → Data center monitored logs synched with User

organization.

3. CONCLUSION AND FUTURE WORK
The aspect of having a complete monitoring in cloud

computing services is desirable. However, with the present set

of available monitoring over cloud is not complete in the

sense that it doesn’t support fine grained access monitoring. A

complete framework that can be incorporated with certain

bench mark open source monitoring tools for cloud computing

like, Nagios is presented hereby. The framework can be

adjusted for the other monitoring tools like Ganglia. The

framework can be implemented to have a centralized access

management with fine grained access monitoring on clouds.

The framework is mostly presented through the set of

diagrams. However, we will be shortly coming up with a

prototype which can demonstrate the possibilities and extent

of implement-ability of the above framework.

4. REFERENCES
[1] “OpenStack: An Overview”,

http://www.openstack.org/downloads/openstack-

overview-datasheet.pdf, retrieved Feb 2014.

[2] “OpenNebula2.0 Architecture”,

http://archives.opennebula.org/documentation:archives:re

l2.0:architecture, retrieved march 2014.

[3] “NagiosXI architecture”,

http://www.nagios.com/products/nagiosxi/architecture,

retrieved march 2014

[4] Matthew L. Massie, Brent N. Chun

, David E. Culler “The Ganglia Distributed Monitoring

System: Design, Implementation, and Experience”,

http://ganglia.sourceforge.net/talks/parallel_computing/g

anglia-twocol.pdf, retrieved march 2014.

[5] “Nagios Architecture“,

http://www.onaxer.com/2010/01/24/nagios-architecture/,

retrieved march 2014.

[6] ”Ganglia architecture”,

https://my.vertica.com/docs/4.1/HTML/Master/12739.ht

m, retrieved march 2014.

[7] Ajay Prasad, Prasun Chakrabarty, “Centralized Access

Management and Monitoring as a Service in Cloud

Environments-A Critical Study”, Computer and

Information Science (CIS), Volume 6, No.2, 126-123,

2013.

IJCATM : www.ijcaonline.org

