
International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.16, April 2014

25

Hybrid (LRU) Page-Replacement Algorithm

ABSTRACT
In this paper, a new page replacement algorithm has been

represented that has a better performance in average than

quondam methods. A major attempt in such an algorithm is to

substitute characteristics of some quondam methods

engrossed by a new idea. The key concept of proposed

scheme is to decrease overall page fault rate for system i.e. to

increase the hit ratio of pages. In brief this paper remonstrate

an advanced version of Least recently used algorithm , which

is referred as Hybrid LRU. The general idea behind Hybrid

LRU is to keep track of the total number of references and

whenever a page is scrawled (modified to) , a modified bit M

will be set for that particular page.

Keywords
Hit ratio, LRU Algorithm, Page Replacement,

HYBRID(LRU) Page replacement algorithm

1. INTRODUCTION
The most important part of the operating system is memory

management. Main memory is divided into fixed size units

called page frames. Each victimized page can be either in

secondary memory or in main memory as page frames. The

virtual address space [3] is divided into fix size blocks called

pages and this division is done by operating system.

A CPU generated address is called logical address or virtual

address, where as memory management unit generated

address is known as physical address. Before using this

logical address, it must be translated to its corresponding

physical address. This address translation has been done

corresponding to every memory reference, so it is important

that it must be fast. A special hardware unit referred to as

Memory Management Unit (MMU), is used for such

translation. MMU uses address mapping information which is

usually located in page tables, to make the translation. If the

given virtual address is not mapped to main memory,

operating system is trapped by the MMU. This trap is called

as page fault which gives an opportunity to the operating

system to bring the desired page from secondary memory to

main memory, and then update the page table

correspondingly. In simple words we can say that-When the

processor need to execute a particular page and main

memory does not contain that page , this situation is

known as PAGE FAULT. As each and every process has its

own virtual address space, the operating system must keep

track of all pages and the location of each page used by each

process. Whenever any page in main memory is referenced or

written to, it is marked accordingly. When a page fault occurs

(known as cache miss), the operating system eliminates some

page to secondary memory to make space for the incoming

page. Whenever a cache miss occurs, the operating system

applies page replacement algorithm to choose a page from

cache for replacement or eviction to make place for the

referenced page. When the selected page is modified while it

is in cache (also called as dirty), it must be again written to the

RAM also known as writeback . If any page will not

modified, no writeback will be need to the RAM, which

results less overhead.

A paging algorithm or page replacement algorithm[4] is

needed to manage paging. A paging algorithm evicts pages

from and to the page table when it becomes full. Many

algorithms has been developed for such a swapping in which

the best-case scenario is to be replaced the page that is not

going to be used for the longest time. Since it is difficult to

predict the future reference, a better way to choose the correct

algorithm is by looking at characteristics of the processes. It is

necessary to influence which page should be replace. Evicting

a page that may be required in close future can degrade the

system performance; because it imposes a reloading time

overhead.

Virtual memory system requires effective page replacement

algorithms in case of a page fault, to decide which pages

should be expelled from memory. Since long many algorithms

have been proposed for page replacement. Each algorithm

tries to reduce the page fault rate while acquiring minimum

overhead.

2. PREVIOUS WORK

2.1 Page Replacement Algorithm
In a computer operating system paging is used for virtual

memory management and page replacement algorithms are

used to decide which memory pages to page out (swap out,

write to disk) when a page of memory requires to be allocated.

Paging encounters when a page fault occurs and a free page

cannot be used to fulfill that allocation, either because there

are no free pages, or because the number of free pages is less

than some brink.

When any page that was hand-picked for eviction from

memory and paged out, is referenced again it has to be rewrite

in memory and this includes waiting for I/O culmination.

There are a variety of page replacement algorithms. Some of

them are described as follows:-

2.1.1 First in, first out (FIFO)
The first-in first-out algorithm[2] is the simplest and oldest

algorithm. The idea behind FIFO is to replace a page that is

the oldest page in main memory from all the pages. „Replace

the page which has been resident from longest period of time.‟

FIFO focuses on the length of a time a page has been in

memory rather than how much the page is being used.

Figure.1 illustrates an example of the FIFO algorithm. Here it

is important to note that since the page table is initially empty;

directly three page faults appear to fill the table and after that,

a page fault occurs only when any required page is not present

in the table at that time and so on.

Pooja Khulbe
 M.Tech CSE

Uttarakhand Technical university
Dehradun, India

Shruti Pant
 M.Tech CSE

 Uttarakhand Technical university
Dehradun, India

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.16, April 2014

26

 Figure.1: FIFO representation for 3 frames

2.1.2 The Optimal Algorithm
Among all page replacement an algorithm, the optimal

algorithm has the best performance i.e. has the lowest page

fault rate of all the algorithms but its implementation is not

realistic till now. In this algorithm, whenever any new page is

requested, if there is any vacant frame, requested page will be

allocate to that free frame. But the main problem is to choose

a frame to be evicted when there is no empty frame. This

algorithm simply replace the page that will not be used for the

longest period of time. So it is difficult to implement because

it requires future knowledge of strings.

.

Fig.2: optimal algorithm representation for 3 frames

However, one of reasons for designing such an algorithm,

while it is not relevant practically, is its utilization as an ideal

reference for assessing and comparing practical(and not

theoretical) algorithms. Fig.2 shows execution of optimal

algorithm by considering a random page invoking sequence.

2.1.3 Least-recently-used (LRU)
This algorithm[2] replaces the page that has not been used for

the longest period of time. In general LRU algorithm[1]

results better than FIFO algorithm. The reason behind this is

that LRU takes into account the patterns of program behavior

by presuming that in most distant past used page is slightest

likely to be used again later. The least-recently-used algorithm

looks backward in the period of time. However,

implementation of the LRU algorithm is now possible but it

imposes large overhead to the system.

Figure.3: LRU representation for 3 frames

3. PRELIMINARIES
A cache is a component that stores data transparently [5] so

that requests for that data can be served faster in future. The

data that is stored within a cache might be values that have
been computed earlier or duplicates of original values that are

stored somewhere else. When requested data already exists in

the cache (cache hit), this request can be completed by

merely reading the cache, which is faster in comparison of

eviction or allocation of pages. Otherwise (cache miss), the

data has to be recomputed or fetched from its original storage

location, which is comparatively slower. Hit Ratio, is the ratio

of the total number of hits to the number of all transactions.

Hit ratio = number_of_requests_that_hit_cache /

total_number_of_requests.

or to represent it as a percentage:

percentage_hit = ratio * 100

for example:

Let us assume that:-

number_of_requests_that_hit_cache = 12

number_of_requests = 100

ratio = number_of_requests_that_hit_cache /

total_number_of_requests

ratio == 0.12

4. PROPOSED ALGORITHM (HYBRID

LRU)
The proposed algorithm is based on LRU and will be referred

to as Hybrid LRU. This algorithm uses an extra feature that is

total number of references for each page which will be

counted on each referred page. And as well as it uses the

concept of modified reference, when a page is modified

(written to), a modified reference is set i.e. M=1 for that page.

Using following steps proposed algorithm can be easily

understood:-

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.16, April 2014

27

Step 1. when a page fault occurs, it will investigate the first

parameter, TNR for all pages. If only one page found with

minimum TNR value, that page will be selected to evict from

memory.

Step 2. Modified reference is contained in each page table

entry, and the algorithm initializes it with zero i.e. M =0, for

all pages. When the contents of any page change, M will be

set, M=1 for that page.

Step 3. If the minimum TNR value is shared between special

fractions of pages and M=0 , treat it same as LRU.

Step 4. if the minimum TNR value is shared between special

fractions of pages and any one of them is modified then

always choose the modified page i.e. the page with M =1

again for replacement.

Step 5. if the minimum TNR value is shared between special

fractions of pages and more than one or all of them are

modified then replace the recently modified page for

replacement. And clear the modified bit for each table entry

i.e. again set M =0 for each page.

Note- whenever an already modified page will be replaced

again, modified bits for each table entry will be set to 0 i.e

M=0.

Step 6. Repeat step 1 to 5 until all pages completes their

traversing.

Note: In order to represent modification bit, we use the

sign when M=1.

Figure.4: H-LRU representation for 3 frames

5. EXPERIMENTAL RESULTS
In order to assess the proposed algorithm (with respect to page

faults and hit ratio) and comparing it with the other

algorithms, they have been simulated using MATLAB. In this

experiment, hit ratio is reasoned as the compare standard. For

this purpose, 20 random sequences with length 20 were

imposed to LRU and HYBRID LRU, as page arousing

sequence. In following experiment four cases for memory

frame number, include 2-frame , 3- frame, 4- frame, 5- frame

were reasoned and outcomes have been reported in Table.1

Based on this table, the bar diagram for these results can be

shown as chart 1.

Table 1. Comparision of hit ratio between lru and hlru

Chart 1: Bar graph representing comparision between

lru and hlru

In the second experiment, again the Hit ratio has been

reasoned as the compare standard. For this purpose, again 20

random sequences with length 20 were imposed to LRU and

HYBRID LRU. For each frame size, the rate of invoking Hit

ratio for HYBRID- LRU is equal to LRU Hit ratio, is

reported. The same is repeated for HYBRID-LRU< LRU and

HYBRID- LRU > LRU. In following experiment four cases

for memory frame number include 2-frame, 3- frame, 4-

frame, 5- frame were reasoned and outcomes have been

reported in Table.2 Based on this table, the bar diagram for

these results can be shown as chart 2.

Table 2. Comparision of success rate between lru and

hlru

H-LRU=LRU

(Equal)

 in(%)
 2 3 4 5
Frame Frame Frame Frame

 25 10 20 35

H-LRU<LRU

(Failure)
 5 20 20 10

H-LRU>LRU

(Success)
70 70 60 55

0

10

20

30

40

50

60

70

2 FRAME3 FRAME4 FRAME5 FRAME

LRU

LRU

 Hit Ratio(%)
 2 3 4 5
Frame Frame Frame Frame

5.75 19.75 37.25 53.75

H-LRU 15 28.25 42.5 57.5

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.16, April 2014

28

Chart 2: Bar graph representing comparisons between lru

and hlru

6. CONCLUSION
Studying the page replacement algorithms has suggested that

the LRU has had the best results among all practical

algorithms, and the upcoming researches have focused on this

algorithm, to meliorate the performance of system and to

diminish the page fault rate. In this paper a page replacement

algorithm based on LRU is represented. This algorithm used a

complementary parameter beside the LRU parameter, to

determining the page i.e. TNR (total no. of references) that

must be replaced with a new one with the concept of modified

reference.

7. REFERENCES
[1] O‟Neil, J. E., O‟Neil, E. P., Weikum, G., "An

Optimality Proof of the LRU-K Page Replacement

Algorithm", Journal of the ACM, Vol. 46, No. 1, pp. 92-

112, January 1999.

[2] Ali Khosrozadeh, Sanaz Pashmforoush, Abolfazl Akbari,

Maryam Bagheri, Neda Beikmahdavi., “Presenting a

Novel Page Replacement Algorithm Based on LRU” ,

Journal of Basic and Applied Scientific Research ,

2(10)10377-10383, 2012.

[3] Kim, K., Park, K., "Least Popularity – Per – Byte

Replacement Algorithm for a Proxy Cache ", IEEE, pp.

780 – 787,2001.

[4] S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy, G

Amjad Khan., “A Throghput Analysis on page

replacement algorithm”,International Journal of
Engineering Research and Applications (IJERA), ISSN:
2248-9622, Vol. 2, Issue 2, pp.126-13, Mar-Apr 2012.

[5] Jaafar Alghazo, Adil Akaaboune, and Nazeih Botros. Sf-

lru cache replacement algorithm. In MTDT, pages 19-24.

IEEE Computer Society, 2004

[6] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H.

Noh, Sang Lyul Min, Yookun Cho, and Chong-Sang

Kim. Lrfu: A spectrum of policies that subsumes the

least recently used and least frequently used policies.

IEEE Trans. Computers, 50(12):1352-1361, 2001.

[7] Andrew S. Tanenbaum. Modern Operating Systems.

Prentice-Hall, 1992

0

10

20

30

40

50

60

70

H-LRU< LRU

H-LRU = LRU

H-LRU > LRU

IJCATM : www.ijcaonline.org

