
International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

21

Cost-based Job Grouping and Scheduling Algorithm for

Grid Computing Environments

Sonal Yadav
M.Tech (CSE)

Sharda University

Greater Noida, India

Amit Agarwal, Ph.D

Associate Professor
University of Petroleum &

Energy Studies, India

Ravi Rastogi, Ph.D
Associate Professor
Sharda University

Greater Noida, India

ABSTRACT

The integration of remote and diverse resources and the

increasing computational needs of Grand challenges problems

combined with faster growth of the internet and

communication technologies leads to the development of

global computational grids. Grid computing is a prevailing

technology, which unites underutilized resources in order to

support sharing of resources and services distributed across

numerous administrative region. An efficient and effective

scheduling system is essentially required in order to achieve

the promising capacity of grids. The main goal of scheduling

is to maximize the resource utilization and minimize

processing time and cost of the jobs. In this research, the

objective is to prioritize the jobs based on execution cost and

then allocate over the resources with minimum cost by

merging it with conventional job grouping strategy to provide

solution for better and more efficient job scheduling which is

beneficial to both user and resource broker. The proposed

scheduling approach in grid computing employs a dynamic

cost-based job scheduling algorithm for making efficient

mapping of job to available resources in grid. It also improves

communication to computation ratio (CCR) and utilization of

available resources by grouping the user jobs before resource

allocation.

General Terms

Algorithm, GridSim.

Keywords

Grid computing, Job Scheduling, Job Grouping.

1. Introduction
The widely growing popularity of the Internet/ Web and the

availability of the powerful computers and high speed

networks as the low cost commodity components are

improving the way we perform computing and use computers

[1]. Regardless of these improvements, there are many

situations where computational resources fail to keep up with

the demands placed on them. A solution for many of these

emerging problems is Grid computing [1]. Grid computing

has emerged as an evolutionary computing from the existing

distributed computing systems for delivering information,

resources and services to the user on demand. Today many

computing resources distributed geographically are idle and

underutilized. The objective of the Grid computing is to group

these resources into a single system. It helps to solve

problems that are too complex in the field of science,

engineering and research. Grids are very large-scale

virtualized, distributed computing systems. They bind

multiple administrative domains and form virtual

organizations. Such organizations can share their resources

collectively to create an even larger grid. The name 'Grid' is

similar with the electricity grid. Users can obtain a resource as

utility such as electricity (on pay per use basis), or in this case

computer processing from a variety of resources to fulfil their

needs [2]. The goal is to provide users with access to the

resources according to their need [2]. In order to achieve the

assured benefits of distributed resources, effective and

efficient scheduling algorithms are required. Task scheduling

is the NP-complete problem in grid computing environment

[11]. In this research work, the user’s jobs are prioritized on

the basis of job profit (job execution cost) in descending

order. In order to gain maximum profit, jobs with higher profit

can be executed on minimum cost based resource. The

resource with minimum cost is selected and the higher priority

jobs are scheduled on it. After prioritization of jobs, the job

grouping strategy is applied. In job grouping strategy, the

scheduling of application with a large number of small

processing requirement (fine grained) job is done and they are

converted to coarse grained jobs. The fine grained jobs are

also known as light weight job that has few lines of code or

very basic arithmetic expressions [5]. The transmission and

processing overhead increased drastically due to sending of

individual jobs. To overcome these scheduling issues, a cost

based dynamic job prioritization and grouping scheduling

strategy is introduced in order to minimize the processing

time and cost and to achieve full utilization of the resources.

This paper is organized as follows. Section 2 is an overview

of related work about job scheduling in Grid environment.

Section 3 presented scheduling architecture and scheduling

activity. Our proposed model and job scheduling algorithm

are presented in Section 4. Section 5 contains simulation

environment, experimental set up and results. Finally, Section

6 and 7 gives conclusion and references.

2. Related Work
There are several algorithms and approaches in the area of job

scheduling in Grid. In [2], Selvarani and Sadhasivam

presented an improved cost based algorithm for task

scheduling in cloud computing. They focused on grouping the

task while scheduling in cloud computing platform, where

resources have different execution costs and computation

performance. Due to job grouping, the communication to

computation ratio (CCR) can be improved by grouping the

user tasks according to a particular cloud resource’s

processing capability. In [3], N.Muthuvelu et. al proposed a

grid job scheduling algorithm based on parameterized job-

grouping strategy, which is adaptive to runtime environment.

An average analysis is implemented by grid resource broker

in order to determine the current status of the grid before

performing the job grouping method.

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

22

 In [4], Amudha and Dhivyaprabha presents a paper in which

Grid scheduler first allocates the high priority jobs to the

resources and then it allocates the low prioritize job so as to

achieve the maximum resource utilization rate, minimize the

makespan and avoid the load balancing level problem.

 In [5], Q. Liu and Y.Liao feels that there is a need to reduce

the communication time, processing time and enhance

resource utilization in case of scheduling the light-weight or

small jobs. The light weight jobs are grouped and then

allocated to resource. This grouping algorithm integrated

Greedy algorithm and FCFS algorithm to improve the

processing of fine-grained jobs. The algorithm considers the

dynamic characteristic of the grid environment. It does not

pay any attention to memory size constraint and pre-

processing time of job grouping is high.

In [6], Keat et al. proposed a scheduling framework for

Bandwidth-Aware Job Grouping Based strategy that groups

the jobs according to MIPS and Bandwidth of the resource,

but the algorithm deals with two deficiencies. First is

grouping strategies does not utilize resource sufficiently, and

second, consideration of bandwidth strategy is not efficient to

transfer the job. T.F.Ang et al. presents Bandwidth-Aware Job

Grouping-Based scheduling strategy, that groups the jobs

according to the MIPS and bandwidth of resources, but

shortcomings of the algorithm is first, the model sends group

jobs to the resource whose network bandwidth has highest

communication or transmission rate, but the algorithm does

not ensure that resource having a sufficient bandwidth will be

able to transfer the group jobs within required time [7].

In [8], Muthuvelu et al. proposed a dynamic job grouping-

based scheduling algorithm that groups the jobs according to

MIPS of the available resources. This model reduces the

processing time and communication time of jobs, but the

algorithm doesn’t take the dynamic resource characteristics

into account. This strategy dynamically assembles the

individual Fine-grained jobs of an application into a group,

and sends these coarse-grained jobs to the Grid resources.

This dynamic grouping strategy based on the processing

requirements of each application, Grid resources availability

and their processing capability and granularity size. In [9]

Rosemarry et al. states that, allocating large number of jobs

to one resource will increase the processing time. So to avoid

this situation during job grouping activity, the total number of

jobs group should be created such that the processing loads

among the selected resource are balance.

 A described model presented by Soni et al. in [10] obtains the

information about resources and job. This information is used

for job grouping and for resource selection. When the jobs are

put into a group according to the selected resources, the

grouped job is dispatched to resources for computation. GBJS

gives better performance than AFJS and DJGBSDA in terms

of processing time. In [13], Soni et al. proposed a Constraint-

Based Job and Resource scheduling in Grid Computing. This

paper focuses on small jobs scheduling in Grid Computing.

Constraint-Based Job and Resource scheduling (CBJRS)

algorithm is proposed which will reduce the processing time,

processing cost and enhance the resource utilization in

comparison to other algorithms.

 In [14], Zheng, G. and Liu proposed A selective algorithm

based on multiple QoS constraints for grid task scheduling

they propose an adaptive selective scheduling algorithm that

based on multiple QoS constraints, and name as M-QoS

selective algorithm. This new algorithm considers multiple

QoS-requiring for the service resources and tasks, and divides

different QoS constraint tasks into multiple groups.

In our proposed algorithm we combine the priority and

grouping strategy in such a way that the jobs are prioritize

according to the cost, then grouped and send to the resource

with minimum cost in order to provide benefit to the user as

well as resource broker. Using job grouping algorithm for

scheduling after prioritization, the processing time and in turn

the cost is reduced over the algorithm without job grouping

and with job grouping (without prioritization) [8].

3. Scheduling Architecture Model

3.1 Scheduling architecture

 Jobs

 Jobs

 Grouped jobs Available resources

Grouped jobs

Fig. 1: Scheduling Architecture

The details of various elements in scheduling architecture are:

User: The user submits the grid application to the resource

broker for processing [15].

Resource Broker: A Resource Broker is a grid portal that

allows trusted users to create and handle computational Grid,

by exploiting a simple and friendly web based GUI.

The resource broker is made up of no. of components:

 A scheduler

 A dispatcher

 Information collector

 Grouping and selection service.

The job scheduler is a service that resides in a user machine.

When the user creates a list of jobs in the user machine, these

jobs are sent to the job scheduler for scheduling [15]. The job

scheduler obtains information of available resources from the

Grid Information Service (GIS).The information collector
collects information from the Grid Information Service (GIS).

It assembles the resource availability and processing

capability to the resource information table. The grouping and

resource selection service is responsible for grouping of job

based on information collected by the information collector

from GIS. The dispatcher acts as a sender that sends grouped

jobs to their respective resources [12].

 User jobs

 User jobs

GROUPING AND

SELECTION

SERVICE

DISPATCHER

INFORMATION

COLLECTOR

RESOURCE

N

RESOURCE 2

RESOURCE 1

GRID

INFORMATION

SERVICES (GIS)

 User jobs

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

23

Grid Information Service (GIS): GIS keeps the information

of all resources that is needed by the broker for scheduling the

jobs in efficient way. Then the resource broker chooses the

best resource for the job to be executed. The information

about the status of resource is updated, after successful

completion of job. This procedure is repeated until all the jobs

are assigned to the resources.

3.2 Scheduling activity

Fig. 2 Scheduling Activity Model

4. Proposed Model
The proposed model consists of two parts:

1) Cost based job prioritization model.

2) Job grouping scheduling model.

4.1 Cost based job prioritization model
1) Scheduler selects the resource with minimum cost

and high priority jobs are scheduled on it.

2) In our work, cost of every individual resource is

different.

The priority level of job is calculated using equation 1.

 Pk = (Lk / Rr,k) * RCr,k (1)

Rr,k : The processing capability of rth resource used by the kth

job.

RCr,k: The cost of the rth individual use of resources by the

kth job.

Lk : Length of the kth job.

Pk : The priority or cost of the kth job.

4.2 Job grouping scheduling model
The job grouping scheduling takes into account:

1) The length of the job (MI).

2) Grouping strategy is based on processing capability

(MIPS) of available resources.

3) Granularity time (GT) defined by user.

Jobs are grouped according to the capability of the selected

resource.

For e.g., the condition for the grouping strategy is that the

total job length should not exceeds the total resource length

[8].

Total_joblength<=Total_resourcelength

Here, Total_joblength is the total length (MI) of the grouped

jobs [8].

 Total_resourcelength = Resource_MIPS* GT

MIPS is the processing capability of the resource calculated

as:

Resource_MIPS = total number of processing elements (PE) *

MIPS (million instruction per second) of PE [8].

The job grouping is done based on a particular granularity

time (GT). Granularity time is a user defined parameter which

is used to measure the total number of jobs that can be

completed within a specified period of time.

Scheduler selects resource

from resource list along

with the resource MIPS and

put it in ascending order.

Scheduler selects fine

grained jobs with the jobs

length.

Input the Granularity time,

G.T.

Compute

Total_Resourcelength=MIPS

*GT

Calculate the level of priority

Pk, of the jobs, put in the list

and sort the list in descending

order

Group the job based on

MI(length) and priority such

that Total_Joblength<=

Total_Resourcelength

Send the grouped jobs to the

resources

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

24

4.3 Proposed algorithm
The scheduler receives the number of tasks to be scheduled on

number of available resource. Grid Information Service (GIS)

registers the information of Grid resource. The job scheduler

requests resources information from GIS. GIS sends the

information of available resources to the scheduler.

4.3.1 Cost Based Job Prioritization Algorithm
1) For all available jobs, calculate their priority according to

equation 1.

2) Calculate the priority of every coming job and put it in the

list.

3) Sort the jobs based on priority in descending order.

4) Allocate high priority jobs to minimum cost resource using

Job grouping scheduling algorithm.

4.3.2 Job Grouping Scheduling Algorithm
1) Initialize Joblist, Resourcelist, Targetlist to zero

2) Input the MIPS of resource.

3) The length (MI) of each job is generated.

4) Sort the resource list in ascending order based on

cost of the resource (low to high).

5) Multiply the MIPS of the jth resource with

granularity time as specified by user to get

TOT_resourcelength.

6) Sort the job list in descending order based on

priority of jobs (high to low)

7) If TOT_resourcelength is less than joblength.

8) The job cannot be allocated to the resource.

9) Input the MIPS of next resource.

10) GOTO step 6

11) If the TOT_resourcelength is greater than Joblength

execute step 11.1 to 12.1 while

11.1) Total length of all jobs is less than or equal to

the TOT_resourcelength.

11.2) Add previous total length and current

Joblength and assign to current

TOT_Joblength.

11.3)Get the length of next job.

12) If the total length exceeds TOT_resourcelength

12.1)Subtract the length of job from

TOT_Joblength

13) If the TOT_Joblength is not zero then repeat steps

13.1 to 13.4

13.1) Create a new job group of length equal to

TOT_Joblength

13.2) Allot a unique ID to the newly created job

group.

13.3) Insert the job group into a new job group list.

13.4) Insert the allocated resource ID into the

Targetlist of each grouped job.

14) Repeat the above until all the jobs in the list are

grouped into job-groups.

15) When all the jobs are grouped and assigned to a

resource, send all the job groups to their

corresponding resources list of grouped jobs.

16) After the execution of the job-groups by the

assigned resources send them back to the Targetlist.

5. Simulation & Experimental Setup

5.1 Grid simulation environment
Grid computing environment is dynamic in nature, so

studying the environment and performing repeated experiment

is a tedious job. To solve the problem, Gridsim simulation

toolkit is used. The Gridsim toolkit [1] provides means for the

modeling and simulation of various Gridsim entities like

resources, Gridlets (jobs), schedulers, users (single or

multiple) and network connectivity with different capabilities,

configurations and domains. The Gridsim also supports

modeling and simulation of broad range of heterogeneous

resources like multiprocessors, SMPs and distributed memory

machines such as PCs, workstations etc.

Application schedulers in Grid environment, called resource

brokers, perform resource discovery, selection and

aggregation of various set of distributed resource for an

individual user[1].

A Gridsim toolkit 5.2 is used to build the Grid environment.

The Grid environment is simulated using My Eclipse 6.0 by

writing java code and implementing various Grid entities. The

various Grid entities that used in this research work, are

initialized by initializing the Gridsim package.

Create Gridlet(): This method will create Gridlets statically

and dynamically.

Create GridResource(): This method creates one Grid

resource. A Grid resource contains one or more machines.

Similarly, a Machine contains one or more PEs (Processing

Elements or CPUs).

Create grid user(): Single or multiple user can be created.

Each user must have a unique id. In our research work, only

one user is taken into account.

5.1.1 Input parameters
Gridlets : The number of gridlets.

A_MI : Average gridlet length in MI.

Deviate% : MI deviation percentage used to create different

number of gridlets that have different lengths.

GT : Granularity time is defined by user. It is a measure of

number of jobs that can be completed within a particular time.

OH_Time : Gridlet overhead time. In real world, overhead

time depends on current network, load and speed.

Resources : Resources are selected from the resource list.

5.1.2 Performance metrics
In this work, two performance metrics are used.

Total processing time
The total processing time [8] is calculated in seconds based

on:

 Overhead processing time each Gridlets.

 Time taken for performing Gridlet grouping

process.

 Time taken for sending Gridlets to the resources.

 Time taken for processing Gridlets at the resources.

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

25

 Time taken for receiving back the processed

Gridlets.

Total processing Cost
 The total processing cost [8] is calculated based on:

 Cost rate associated with each Grid resource.

 Total processing time for job execution.

5.2 Experimental setup
Three cases are considered in our research work :

Case1: Simulation without job grouping.

Case2: Simulation with job grouping.

Case3: Simulation with cost based job prioritization

grouping scheduling.

The above three cases are tested using seven different

MIPS and cost per resource

Table 1: Grid resource setup for the simulation.

Resource ID MIPS Cost per sceond

R1 150 100

R2 110 200

R3 240 300

R4 320 350

R5 210 400

R6 300 450

R7 410 500

Simulations are conducted to analyse and compare the

difference between the three cases. The input parameters to

the simulation are as follows:

 Total number of Gridlets :25-150

 Average MI(A_MI) of Gridlets : 200

 MI(D_%) deviation percentage: 20%

 OH_Time: 10 sec

GridSim Random function provides static methods for

incorporating randomness in data used for this simulation.

Experiment 1: Simulation without job grouping
In this experiment, jobs are coming in a sequential manner

and each job is allocated to the resource one by one. The job

length varies between 200 to 240.

Experiment 2: Simulation with job grouping
For simulation with job grouping, all the above input

parameters are same. In this approach, the jobs are not send

one by one rather they are send in groups. The Granularity

time is 10 secs. Each incoming job is grouped and then send

to the corresponding resource such that,

Total_joblength<=Resource_MIPS*GT

Table 2: Simulation without job Grouping

No. Of

Gridlets

Without job Grouping

 Process_cost Process_time
25 11740 51

50 23620 104

75 36040 158

100 45780 210

125 60040 262

150 69400 310

Table 3: Simulation with job Grouping(without

prioritization)

No. of

Gridlets

With Grouping (without prioritization)

 Number

of

Groups

Process_Cost Process_Time

(Sec)

25 1 400 4

50 1 1100 9

75 2 1900 13

100 2 2700 16

 125 3 3300 18

150 3 4200 21

Experiment 3: Simulation with cost based job

prioritization algorithm

In our proposed approach i.e., cost based job prioritization

algorithm, the jobs are prioritized on the basis of jobs profit

(job execution cost) in descending order. The resource list is

to be sorted in ascending order and then the job grouping

scheduling algorithm is applied to send grouped jobs to the

resource.

The cost based job prioritization proves slightly better than

job grouping scheduling algorithm

Table 4 : Simulation with cost based job

prioritization grouping scheduling algorithm.

No. of

Gridlets

Cost based job prioritization algorithm

 Number

of

Groups

Process_Cost Process_Time

(secs.)

25 1 400 4

50 1 800 8

75 1 1200 10

100 2 1500 14

125 2 1900 18

150 3 2800 20

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

26

Fig. 3: Comparison between processing cost and

Gridlet size with granularity time of 10 sec

5.3 Experimental Results
Simulations were conducted with a granularity time of 10

seconds, the Gridlets average MI of 200 in a virtual Grid

environment using Gridsim toolkit [1] and comparison of the

algorithms is done in terms of processing time and cost. The

comparison is done between the proposed cost based

prioritization with without job grouping [8] and with job

grouping [8] scheduling algorithms. The jobs are independent

in nature and the input parameters are given dynamically.

5.3.1 Observation 1
 We observed that the processing time and cost are higher

when fine grained jobs are send individually without

grouping. On the other hand, when individual jobs are

grouped into a number of coarse grained jobs the processing

time as well as cost reduces. In fig. (3) and fig. (4) the

processing cost and processing time of the without grouing

algorithm increased drastically as compared to with grouping

algorithm and the proposed algorithm.

5.3.2 Observation 2
We observed that the processing time and cost is improved by

applying grouping strategy but jobs are grouped on First come

First serve basis. In our proposed algorithm jobs are

prioritized based on the job execution cost. So, the higher

priority jobs will be executed first thus satisfying the user’s

requirement. In fig. (3) and fig. (4) the processing cost and

processing time of the with grouping algorithm is higher as

compared to the proposed algorithm.

Fig. 4: Comparison between processing time and

Gridlet size with granularity time of 10 sec

6. Conclusion and Future Work
When job grouping scheduling strategy is combined with cost

based job prioritization scheduling the processing time as well

as processing cost is reduced. In job grouping, without

prioritization the jobs are grouped on first come first serve

basis in a sequential manner but in cost based prioritization

scheduling the jobs with highest priority are grouped first and

allocated to the resource with minimum cost. This type of

scheduling is beneficial to both user and resource broker in

grid.

For the future work the QoS (Quality of Service) parameters

can be taken into account before performing the grouping

method. Moreover in our research work we considered the

independent task in future dependent task can also be

considered.

7. References
[1] Buyya. R, and Murshed. M, " GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource

Management and Scheduling for Grid Computing", pp.

1-37, 2003.

[2] Selvarani. S, and Sadhasivam. G.S, “Improved cost-based

algorithm for task scheduling in Cloud computing”,

Computational Intelligence and Computing Research

(ICCIC), IEEE, pp.1-5, 2010.

[3] N. Muthuvelu, I. Chai, and C.Eswaran, “An adaptive and

parameterized job grouping algorithm for scheduling grid

jobs”, International conference on Advanced

communication technology, pp. 975-980, 2008.

[4] Amudha. T, Dhivyaprabha. T.T. “QoS Priority Based

Scheduling Algorithm and Proposed Framework for Task

Scheduling in a Grid Environment”, IEEE-International

Conference on Recent Trends in Information

Technology, pp.1-6, 2011.

0

10000

20000

30000

40000

50000

60000

70000

80000

25 50 75 100 125 150

p
ro

ce
ss

in
g

co
st

No. Of Gridlets

without
grouping

with
grouping

cost based
priortization

0

50

100

150

200

250

300

350

25 50 75 100 125 150

p
ro

ce
ss

in
g

ti
m

e

No. of Gridlets

without
grouping

with
grouping

cost based
priority

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.15, April 2014

27

[5] Q. Liu, Y. Liao, “Grouping-Based Fine- grained Job

Scheduling in Grid Computing”, Vol.1, pp.556- 559,

IEEE First International Workshop on Education

Technology and Computer Science, 2009.

[6] Keat, N.W, Fong, A.T, Chaw. L.T, and Sun. L.C,

“Scheduling framework for bandwidth-aware job

grouping- based scheduling in Grid computing”,

Malaysian Journal of Computer Science, Vol. 19, pp. 117

– 126, 2006.

[7] T.F. Ang, W.K.Ng, T.C. Ling, “A Bandwidth-Aware Job

Grouping-Based Scheduling on Grid Environment”,

Information Technology Journal, vol .8, No.3, pp. 372-

377, 2009.

[8] Muthuvelu. N, Liu. J, Soe. N.L, venugopal. S and

Buyya. R, “A dynamic job grouping-based scheduling

for deploying applications with fine-grained tasks on

global Grids”. Australian workshop on Grid computing

and e research Australian Computer Society, Inc . vol.

44, pp. 41-48, 2005.

[9] Rosemarry. P, Singh. R, Singhal. P, and Sisodia. D,

“Grouping Based Job Scheduling Algorithm Using

Priority Queue And Hybrid Algorithm in Grid

Computing.” International Journal of Grid Computing &

Applications (IJGCA) Vol.3, No.4, December 2012.

[10] Soni. V. K, Sharma. R, and Mishra. M. K, “Grouping-

Based Job Scheduling Model in Grid Computing.” World

Academy of Science, Engineering and Technology 41,

2010.

[11] Chauhan. S. S, and Joshi. R. C, “A Heuristic for QoS

Based Independent Task Scheduling in Grid

Environment”, International Conference on Industrial

and Information Systems, ICIIS(IEEE), 2010.

[12] P. Rosemarry, Singhal, P, and Singh, R. “A Study of

various job & resource scheduling algorithms in Grid

Computing” International Journal of Computer Science

and Information Technologies(IJCSIT), 2012.

[13] Soni V.K., Sharma. R, and Mishra. M. K, and Das. S,

“Constraint-Based Job and Resource scheduling in Grid

Computing”, IEEE, 2010.

[14] Zheng. G, and Liu. Y, “A Selective Algorithm Based

on.Multiple QoS Constraints for Grid Task Scheduling”

First International Conference on Intelligent Networks

and Intelligent Systems (IEEE), 2008.

[15] Wang. Y, Hu. S, and Wang. G, “A Strategy of Resource

Scheduling for Grid Computing Based On QoS”.

International Conference on Information Science and

Engineering, 2009.

IJCATM : www.ijcaonline.org

