
International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

8 

A Proposed Off-Line DVS Approach for Minimizing 

Energy Consumption 

 
     Suaiman M Abbas                                       Yarub Y Abbas 

Electrical Engineering Department / College Of Engineering / University Of Baghdad 
           

ABSTRACT 

This paper concerns with the issue of minimizing of ever 

increasing energy consumption in computer systems .The 

minimization of energy consumption can be achieved by help 

of hardware feature in the processors called Dynamic Voltage 

Scaling (DVS).When the applied voltage on processor 

decreased then the energy consumption of processor will 

decrease ,but at the same time  the speed of the processor will 

also decrease .The decision of when and how much to change 

the applied voltage will be the job of the DVS algorithm. 

One of the software methods to maximize energy saving is 

redistributing the available slack among the tasks .An 

important derivation of slack distribution among tasks says 

that when the processor execute all tasks with only one clock 

frequency then the energy consumption is minimized, and the 

proposed algorithm adapted this derivation in its kernel as 

optimum energy saving solution .This paper proposes an 

algorithm to solve the problem of deadline violation of tasks 

(the violation happen due to distribution of the slack among 

tasks) by new method which eliminates the amount of 

violation from the total slack and redistribute the updated 

slack again. 

General Terms 

Power minimization ,task scheduling 

Keywords 

Dynamic voltage scaling ,slack distribution ,power dissipation 

minimizin 

1. INTRODUCTION 
The rapid progress in semiconductor technology has led to 

higher chip density and operation frequency ,making today's 

systems more complex and power hungry [1].The power 

dissipation of modern processors has been rapidly increasing 

along with increasing transistor count and clock frequencies. 

At the same time ,there is growing disparity between 

maximum power consumption of a processor and the typical 

power consumed by that processor ,i.e. power consumed 

while running typical applications .This trend is the result of 

the significant increase in transistor count required to reach 

the desired peak performance targets[3].Power consumption is 

increasing because frequency and leakage current are scaling 

up so much that their effect on power cannot be offset .Such 

trend makes the cost of cooling system grow and challenges 

the performance benefits that can obtained by the ever-

growing transistor density[3].There are several reasons for 

this new interest in dynamic voltage scaling(DVS).First, 

portable and handheld systems have limited battery usage  ,so 

power saving will increase battery life. Second , a reduction in 

power consumption leads to increased reliability in 

microprocessors .Higher power devices dissipate more heat 

,which can permanently damage a chip ,so lowering a 

processors power reduces the likelihood of failure .Third 

,reducing power can reduce cost. 

2. DYNAMIC VOLTAGE SCALING 

(DVS) 

Dynamic voltage and frequency scaling  is a mechanism 

whereby software (or operating system) can dynamically 

adjust central processing unit (CPU) voltage and frequency 

.This mechanism allows systems to address the problem of 

ever-increasing CPU power dissipation and energy 

consumption ,as they are both quadratically  proportional to 

the CPU voltage .However ,reducing CPU voltage may also 

require CPU frequency to be reduced and results in degraded 

CPU performance with respect to execution time .In other 

words ,DVS trades off performance for power and energy 

reduction[4].In general ,CMOS  circuits consume power 

proportional to V2f where Vis the voltage and f is the 

frequency .Energy consumption per cycle is power 

consumption divided by frequency ,so energy consumption is 

proportional to V2.In other words ,reducing the voltage 

quadratically reduces the energy needed to perform the same 

number of cycles .However ,a performance trade-off arises 

because running at a lower voltage increases gate settling time 

and thus necessities running at a lower frequency .The 

maximum valid frequency for a given voltage is roughly 

linear in voltage ,more accurately ,it is proportional to (V-

Vth)
2/V where Vth is the threshold voltage of the CMOS 

processor .Due to this trade-off between performance and 

energy consumption ,the decision about when to raise or 

lower the speed is a complex one requiring knowledge about 

CPU requirements both now and in the future. DVS 

algorithms attempt to predict such requirements and adjust 

speed and voltage accordingly [5] 

3. POWER AND ENERGY REDUCTION 

IN CMOS  
Digital CMOS circuits are used in the industry of modern 

microprocessors .Power dissipation in CMOS circuits arises 

from three different mechanisms: static power ,which results 

from resistive paths connecting power supply to ground 

,dynamic power which results from switching capacitive loads 

between two different voltage states[6],and the short-circuit 

power due to flow of IS[7].The power of CMOS gate is simply 

approximated as: 

                                                 

𝑃𝑂𝑊𝐸𝑅𝑔𝑎𝑡𝑒 =  𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝐿𝐸𝐴𝐾 + 𝑃𝑆𝐻𝑂𝑅𝑇  

=    𝑎 . 𝑓 . 𝐶 . 𝑉𝑑𝑑
2 + 𝐼0  . 10

𝑉𝑡 𝑕

𝑆  . 𝑉𝑑𝑑 +  𝑎 . 𝐼𝑆  . 𝑉𝑑𝑑      (1)                                                                                                              

where a is switching activity of the gate, f is the operating 

frequency ,C is the load capacitance (C=CG +CJ +CINT, where 

CG ,CJ ,and CINT denote gate ,junction ,and interconnection 

capacitance respectively), Vdd is the supply voltage, IO is the 

drain current when the threshold voltage is equal to zero, S is 

the device parameter, Vth is the threshold voltage of the 

transistor, and IS is the current which flows through turning-

off MOSFET .With relatively small static power and short-



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

9 

circuit power ,charging and discharging capacitors generally 

consumes most of the power on CMOS circuit .The dynamic 

power of this gate(or node) is the energy per cycle times the 

number of cycles as shown: 

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶 . 𝑉2
𝑑𝑑  . 𝑎 . 𝑓                                        (2)                                                                        

where a is the number of times this node cycles each clock 

cycle and is usually called the activity ratio .The dynamic 

power for the whole chip is the sum of last equation over all 

the nodes in the circuit [6].The dynamic power consumption 

for whole chip can be modeled by: 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =   𝐶𝑖  ·  𝑓𝑖  ·  𝑉2
𝑑𝑑

𝑁
𝑖=1                                (3)                          

Last equation can be simplified by assuming that all gates gi 

create a collective switching capacitance operating at a 

common switching frequency f [8],thus 

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =  𝛽 · 𝐶 ·  𝑓 ·  𝑉2
𝑑𝑑                                    (4)                

Last equation shows that lowering the clock frequency 

linearly decreases power, but that voltage reduction results in 

a squared power reduction. 

3.1 System-level Techniques for Energy 

Reduction 
Energy management can be done at several levels in the 

computer system hierarchy: the component level ,the 

operating system level ,the application level ,and the user 

level .The end-to-end argument suggests that this management 

should be performed at the highest level possible ,because 

lower levels have less information about the overall workload 

.Most energy management is best performed at the operating 

system level. 

Dynamic power management(DPM) and Dynamic voltage 

scaling(DVS) represent the two operating system-level 

techniques to reduce the system power consumption.DPM 

refers to the use of power-down modes when the processor is 

idle to reduce the processor power consumption.DVS refers to 

dynamically varying the speed of a processor by changing the 

clock frequency along with the supply voltage[1]. 

3.2 Deep investigation in time equation of 

CMOS processors 
Decreasing Vdd will minimize the power consumption ,but on 

the other hand ,this will lead to maximizing propagation delay 

of the gates and hence decrease the overall processor 

performance ,so for this task ,the execution time T( Vdd) 

according to this equation will get longer: 

𝑇𝑗  𝑉𝑑𝑑  =  𝑁𝐶𝑗  × 𝐾 
𝑉𝑑𝑑

(𝑉𝑑𝑑 − 𝑉𝑡𝑕)𝛼
                1 <  𝛼 ≤ 2       (5) 

Where Tj(Vdd) is execution time of task j under applied voltage 

Vdd , NCJ is required number of cycles to execute the task , Vth 

is gate threshold voltage, K,a are constants depending on 

CMOS processor characteristics .The aim of all DVS 

algorithms is to minimize Vdd as much as possible to save 

power, or to maximize the execution time of particular task 

without violating that task deadline .The algorithms should be 

able to determine the correct voltage Vdd and correct timing to 

use it .From last equation a formula can be found that gives 

the exact value of the voltage Vdd for a given (or calculated ) 

value of T(Vdd) and other constant parameters (i.e. K,a,Vth,CL 

).For comprehensive view of this topic ,the variations of these 

parameters will be considered one by one.  

3.2.1. A Variation  
A tends to be decreased so that lower voltages can excite the 

logic gates faster. "Figure 1" shows this point for same job 

where Vj increases as a increase. The values of a is given by 

the formula 1<a<2, and that means there are three values of a 

namely: a=2, 1<a<2, a=1   

  

Figure(1) : voltages needed to execute task with different  

α values. 

3.2.1.1 Case a=2  
the modern DVS-CMOS processors have a around 1.3 and 

hence consumes less power .So considering a=2 gives 

indication for maximum level of the voltage Vdd .For 

simplicity let Vdd =Vj which means the correct voltage for 

taskj  ,under these conditions last equation would be: 

𝑇 𝑉𝑗  =  𝑁𝐶𝑗  × 𝐾 𝐶𝐿 
𝑉𝑗

(𝑉𝑗−𝑉𝑡𝑕)2
                                   (6)                           

(6)                                                    

It is clear that value of K.CL.Vj / ( Vj  - Vth  )
2 represents the 

amount of time for one cycle under the voltage Vj.The derived 

voltage Vj from last equation gives this following real and 

practical solution: 

𝑉𝑗 = 0.5 ×  2 𝑉𝑡𝑕 +  
𝑁𝐶𝑗

𝑇 𝑉𝑗 
 𝑘  

∓  0.5   2 𝑉𝑡𝑕 + 
𝑁𝐶𝑗

𝑇 𝑉𝑗 
𝑘  

2

−  4 𝑉𝑡𝑕
2      (7) 

3.2.1.2. Case a=1 
that indicates ideal CMOS processor because the modern 
CMOS processors have a greater than one, equation[5] would 

be: 

                                             

𝑇 𝑉𝑗  =  𝑁𝐶𝑗  × 𝐾 
𝑉𝑗

(𝑉𝑗−𝑉𝑡𝑕 )1                                                    (8)                                            

The derived voltage Vj from last equation gives the following 

solution : 

 𝑉𝑗 = 0.5 
 𝑉𝑡𝑕

 1 − 
𝑁𝐶𝑗

𝑇 𝑉𝑗  
 𝑘 

1                                                    (9) 

Where       

1 >  
𝑁𝐶𝑗

𝑇(𝑉𝑗 )
 𝑘 > 0                                                 

3.2.1.3. Case 1<a<2 

0

0.2

0.4

0.6

0.8

1

0.95 1.45 1.95

V
o

lt
ag

e
 R

e
q

iu
re

d
 t

o
 

e
xe

cu
te

 t
h

e
 T

as
k

Values of Alpha



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

10 

the typical and practical values of a are in the range between 1 

and 2.The trend now to minimize a which will reduce 

propagation delay of gates ,and that means lower voltages and 

higher processor speed .That means minimizing dynamic 

power term of total power equation[1].Equation[5] becomes: 

𝑇 𝑉𝑗  =  𝑁𝐶𝑗  × 𝐾 
𝑉𝑗

(𝑉𝑗−𝑉𝑡𝑕 )𝛼
  ,             1 <  𝛼 < 2         (10)                                                                

Solving above equation is not an easy task and it needs 

numerical methods to get an approximate value of Vj .Last 

equation can be reformulated as shown: 

(𝑉𝑗 − 𝑉𝑡𝑕)𝛼 − 𝑉𝑗  
𝑁𝐶𝑗  ×𝐾

𝑇 𝑉𝑗  
 = 𝑒𝑟𝑟𝑜𝑟                                    (11)                                                              

The correct value of Vj can be approached by using last 

equation repeatedly until the difference becomes acceptable 

.The approach used to find acceptable error is important 

because bad computation lead to longer operation and hence 

more power consumption. 

3.2.2. (Vj – Vth )
a
 variation  

As a greater than 1 and approaching 2, the magnitude (Vj  - 

Vth  )
a will behave differently depending on the value of (Vj  -

Vth  ) compared to 1,mathematically speaking there are three 

possible variations of (Vj  -Vth ) namely:if (Vj –Vth) <1, a is 

minimized, close to 1, so it can keep the gates propagation 

delay time relatively short and overall processor speed high 

(i.e.T(Vj) short) as shown in figure[2] for Vj = 0.6,0.8.and1.0 

the propagation delay increases as a increase . 

 

Figure(2): T(Vi) vs. α where α changes from 1 to 2 with 

Vth = 0.2 and six Vi values . 

If (Vj  -Vth) >1 ,it is better to maximize a to be close to 2 

rather than 1 ,because when a=2 then T(Vj ) is shorter than 

T(Vj) when a = 1 ,as seen from figure[2] for voltages Vj 

=1.4,1.6,3.3,and 5.It can be seen from last figure that voltages 

3.3 and 5 achieve close processor speed ,so it is better to pick 

3.3 over 5 ,to minimize energy consumption .If (Vj –Vth ) 

=1,then the voltages do not depend on a as seen from figure .It 

can be noticed from last figure that the variation in cycle time 

get more and more extremer as a approaches 2 while it is less 

as a approaches 1.So for a system operating with different 

levels of voltages like DVS processor it is always 

recommended  to minimize a to be close to 1 as possible so a 

will not has that influence on T(Vj) as shown in figure[2].It is 

also recommended for DVS systems to choose levels of 

operating voltages as near to (1+ Vth  )V as possible ,since in 

these levels neither value of a nor the number of operating 

voltage levels will have that impact on T(Vj) as shown in 

figure[2] for Vj =1,1.2,1.4,and1.6 

3.2.3. Vth variation 
It is obvious from equation[5] that Vdd should be greater than 

Vth ,because the logic gates will not be excited ,or 

mathematically speaking when Vdd  = Vth the time of cycle 

T(Vdd) approaches infinity .Figure[3] shows that if Vj is 

slightly greater than Vth ,gates excitation will be very slow 

and vice versa. It can be seen that after a certain value of Vj , 

T(Vj ) will not change that much, and that small values of Vth 

leads to faster operation for gates .Equation (5) becomes here: 

𝑇 𝑉𝑗  =   
𝑉𝑗

(𝑉𝑗−𝑉𝑡𝑕 )𝛼
                    1 <  𝛼 ≤ 2    (12) 

 

Figure(3) : T(VI) vs. VI with different values of Vth and α 

4. OPTIMUM OFF-LINE DVS 

ALGORITHM 
It is known that there are many DVS algorithms ,each one 

solve the scheduling problem in different method targeting 

particular problem .This paper proposed DVS algorithm 

concentrated on simplicity as a primary target to solve the 

scheduling problem ,because the algorithm itself consumes 

processor speed and energy .The approach used here is to 

convert the problem of finding correct voltage to 

mathematical model and simply substitute the variables to get 

the exact voltage as in equations[7,9,11].It is assumed that the 

target set of tasks have the same moment of existence(i.e.all 

tasks exist at time=0).If for certain reason another task exist at 

time>0,then the algorithm cancels the old optimal scheduling 

0

0.5

1

1.5

2

2.5

3

3.5

4

0.95 1.15 1.35 1.55 1.75 1.95

Ti
m

e
 o

f 
o

n
e

 c
lo

ck
 c

yc
le

 (
µ

Se
c)

Alpha  values

Vj=0.6 Vj=0.8

Vj=1 Vj=1.2

Vj=1.4 Vj=1.6

Vj=3.3 Vj=5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1.4 1.9 2.4 2.9 3.4

Th
e

 t
im

e
 o

f 
o

n
e

 c
lo

ck
 c

yc
le

 (
µ

Se
c)

Vj Voltages (V)

Vth=0.2 Vth=0.3

Vth=0.4 Vth=0.5

Vth=0.6 Vth=0.7

Vth=0.8 Vth=0.9



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

11 

and repeat the procedure of calculating optimal scheduling 

including the new tasks. 

4.1 Scheduling condition for Tasks 
Most of the operation systems arrange the tasks according to 

certain policy ,and gives priorities accordingly .For a set tasks 

to be schedulable ,the execution of all tasks at maximum 

processor speed should  not violate any of their deadlines .If 

the set of tasks not schedulable then it is not possible to make 

any successful schedule .There is a schedulable condition for 

each single task ,so for a task to be schedulable among a set of 

tasks ,the execution of all higher priority tasks one by one at 

maximum processor speed including the execution of this task 

should not violate this task deadline .The above condition can 

be represented by mathematical formula as given: 

 
 𝐸𝑇𝑗

𝑁
𝑗=1

𝐷𝐿𝑁
 ≤ 1                                                                  (13) 

The summation of execution times of all higher priority tasks 

include task N(∑  ETj) should not violate the deadline DLN 

OF TASK N .For a particular task x to be scehedulable , the 

following condition must be fulfilled : 

    (
 𝐸𝑇𝑗

𝑥
𝑗=1

𝐷𝐿𝑥
 ≤ 1                                                     (14) 

4.2 Minimum power scheduling algorithm 

for non-periodic tasks 
A set of non-periodic tasks is that set of tasks which are not 

repeated periodically ,but be considered as one period tasks 

.The proposed algorithm will find minimum power 

consumption for this kind of tasks .In the proposed algorithm 

,it is assumed that there are N non-periodic tasks ,but before 

making any kind of scheduling, the algorithm has to make 

sure all N tasks must satisfy condition in equation[13,14].The 

tasks must be arranged and given priority according to certain 

policy .The most effective policy in DVS litertures is the 

earliest deadline first policy(EDF).If a set of tasks has  

feasible deadlines, then scheduling in increasing deadline 

order will always satisfy all deadlines .If the tasks passed the 

schedulable conditions ,then any available slack has to be 

found when executing all the tasks at maximum processor 

speed or not .To do that ,it is needed to find the total 

summation of execution times of all tasks altogether at 

maximum speed and subtract it from last priority task 

deadline .If the result is positive ,then there is a slack given 

by: 

𝑆𝑙𝑎𝑐𝑘 =  𝐷𝐿𝑁 −  𝐸𝑇𝑗
𝑁
𝑗=1                                                               (15)                                                                          

If the slack is greater than specified threshold then this slack 

worth distributing among tasks to save power consumption 

.Thus algorithm should distribute the slack among tasks 

without missing taskj deadlines. 

4.3. Optimum slack distribution between 

two tasks 
It is mentioned earlier when the amount of available slack is 

large enough(i.e. slack>threshold),then the distribution of the 

slack is worthy and important to minimize energy 

consumption .But this raises another problem about optimal 

method of distributing this slack .To show this point :assume 

that there are two tasks ,namely task1 and task2 with the 

number of execution cycles are NC1 andNC2 respectively and 

the available slack S.The problem is how to decide how much 

share of S would be given for each task to ensure minimum 

energy consumption as shown in figure[4]. 

Task1 D
L

 
o

f
 
T

1

Task2 (1-m)SmS

D
L

 
o

f
 
T

2

Figure(4) : Two tasks with optimal slack distribution 

It is known that for CMOS processors ,the power 

consumption is dominated by dynamic power dissipation Pd as 

in [9], 

 𝑃𝑑 = 𝐶𝑒𝑓  . 𝑓 . 𝑉𝑑𝑑
2                                                         (16)          

Now processor speed is almost linearly related to supply 

voltage for Vdd>Vth[9] 

𝑓 = 𝑘 
(𝑉𝑑𝑑 −𝑉𝑡𝑕 )2

𝑉𝑑𝑑
   )                                                       (17)                                                        

 thus Pd is almost cubically related to f [9] 

 𝑃𝑑 ≈ 𝐶 .
𝑓3

𝑘2                                                                    (18) 

assuming that the system is working at maximum processor 

speed or at fmax=1/ Tmin, then power cosumed by such system 

is Pd = C.fmax
3, which is true for all tasks, but the energy 

consumed by each task is different: 

𝐸𝑇𝑎𝑠𝑘 2 = 𝑃𝑑  . 𝑇2      𝐸𝑇𝑎𝑠𝑘 1 = 𝑃𝑑  . 𝑇1  

where T1,T2 are execution time for task1 and task2 under 

clock frequency fmax .If the operating frequency changes for 

each task ,then the calculation would be different ,i.e. each 

task will dissipate different power and consume different 

energy as given: 

      𝑃1 =  𝐶 . 𝑓1
3  ,      𝑃2 = 𝐶 . 𝑓2

3                              (19)     

where P1 ,P2 are power dissipation for task1 and task2 and the 

corresponding energy are given by: 

   𝐸1 = 𝑃1 . 𝑡1  ,     𝐸2 = 𝑃2 . 𝑡2                                  (20)                             

where t1,t2 are the execution time of task1 and task2 at the 

frequencies f1and f2. Now, assuming the new task execution times 

after distributing slack S are: 

 𝑡1 =   𝑇1 +  𝑚. 𝑆 ,     𝑡2 =   𝑇2 +  1 − 𝑚 . 𝑆         (21)                                                    
m<1                                    

the new cycle time for each task clock frequency: 

 𝑐𝑦𝑐𝑙𝑒1 = 𝑇𝑚𝑖𝑛 + 
𝑚.𝑆

𝑁𝐶1
  ,    𝑐𝑦𝑐𝑙𝑒2 = 𝑇𝑚𝑖𝑛 +  

 1−𝑚 .𝑆

𝑁𝐶2
  (22) 



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

12 

It is known that the execution time at fmax of each task is the 

time of one cycle times the number of cycles, i.e. 

,𝑇1 = 𝑁𝐶1 . 𝑇𝑚𝑖𝑛  ,     𝑇2 = 𝑁𝐶2 . 𝑇𝑚𝑖𝑛     

where 

𝑁𝐶1 =  
𝑇1

𝑇𝑚𝑖𝑛
  ,        𝑁𝐶2 =  

𝑇2

𝑇𝑚𝑖𝑛
       23  

and 

𝑐𝑦𝑐𝑙𝑒1 = 𝑇𝑚𝑖𝑛 + 
𝑚. 𝑆

𝑇1
𝑇𝑚𝑖𝑛

 

=  
𝑇𝑚𝑖𝑛

𝑇1
 .  𝑇1 +  𝑚. 𝑆  ,                                   

𝑐𝑦𝑐𝑙𝑒2 = 𝑇𝑚𝑖𝑛 + 
(1 − 𝑚). 𝑆

𝑇2
𝑇𝑇𝑚𝑖𝑛

 

=   
𝑇𝑚𝑖𝑛

𝑇2
 .  𝑇2 + (1 −  𝑚). 𝑆           (24) 

 

substitute values from (24) into 19 ,where f1 = 1/ cycle1,f2 =1/ 

cycle2,yields 

 𝑃1 = 𝐶.
1

𝑇𝑚𝑖𝑛
3

𝑇1
3 .  𝑇1 + 𝑚. 𝑆 3

 ,

𝑃2 = 𝐶.
1

𝑇𝑚𝑖𝑛
3

𝑇2
3 .  𝑇2 + (1 − 𝑚). 𝑆 3

            (25)  

 

Since E = P.t ,then 

𝐸1 =  𝐶.
𝑇1

3

𝑇𝑚𝑖𝑛
3 .  𝑇1 + 𝑚. 𝑆 3

 .  𝑇1 + 𝑚. 𝑆 

= 𝐶.
𝑇1

3

𝑇𝑚𝑖𝑛
3 .  𝑇1 + 𝑚. 𝑆 2

   , 

𝐸2 =  𝐶.
𝑇2

3

𝑇𝑚𝑖𝑛
3 .  𝑇2 + (1 − 𝑚). 𝑆 3

.  𝑇2 + (1 − 𝑚). 𝑆 

=  𝐶.
𝑇2

3

𝑇𝑚𝑖𝑛
3 .  𝑇2 + (1 − 𝑚). 𝑆 2

 

 

The total energy consumption for both tasks is 

𝐸𝑇 = 𝐸1 + 𝐸2

=  
𝐶

𝑇𝑚𝑖𝑛
3 .   

𝑇1
3

 𝑇1 + 𝑚. 𝑆 2

+  
𝑇2

3

 𝑇2 +  1 − 𝑚 . 𝑆 2
                                                    (26) 

 

Deriving last equation to find the minimum possible value 

gives:
 

𝑑 (𝐸𝑇)

𝑑𝑚
= 0 =  

−𝑇1
3

 𝑇1 + 𝑚. 𝑆 3 +  
𝑇2

3

 𝑇2 +  1 − 𝑚 . 𝑆 3

 

which gives , 

𝑇1

 𝑇1 + 𝑚. 𝑆 
=  

𝑇2

 𝑇2 +  1 − 𝑚 . 𝑆 
 

𝑇1

𝑇𝑚𝑖𝑛  𝑇1 + 𝑚. 𝑆 
=  

𝑇2

𝑇𝑚𝑖𝑛  𝑇2 +  1 − 𝑚 . 𝑆 
 

 

Using equation 23 yields: 

 𝑇1+𝑚.𝑆 

𝑁𝐶1
=  

 𝑇2+ 1−𝑚 .𝑆 

𝑁𝐶2
                  (27) 

                 

 equation 27 tells that when execution time of one cycle of 

each task is equal (i.e. same frequency for both tasks) the 

energy consumption will be minimum as shown in figure 5  

Execution 

cycle

Task1

Execution 

cycle

Execution 

cycle

Execution 

cycle
Execution 

cycle

Execution 

cycle
Execution 

cycle

Execution 

cycle

Execution 

cycle

Task 2

Figure(5) : Cycle execution time must be equal to all tasks 

for maximum energy saving 

Equation [27] can br rewritten as shown: 

 

𝑇1

𝑁𝐶1
+ 

𝑚. 𝑆

𝑁𝐶1
=  

𝑇2

𝑁𝐶2
+ 

 1 − 𝑚 . 𝑆

𝑁𝐶2
                                       28  

 

and from equation [23], 

𝑇1

𝑁𝐶1
=  

𝑇2

𝑁𝐶2
= 𝑇𝑚𝑖𝑛  

,then 
𝑚. 𝑆

𝑁𝐶1
 =  

 1 − 𝑚 . 𝑆

𝑁𝐶2
                                         29  

                                 

,m can be found from equation[29] which satisfy minimum 

energy consumption condition 

 

𝑚 =  
𝑁𝐶1

𝑁𝐶1+ 𝑁𝐶2
 ,      𝑎𝑛𝑑   1 − 𝑚 =  

𝑁𝐶2

𝑁𝐶1+ 𝑁𝐶2
                (30)  



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

13 

From last equation ,it can noticed that the optimal value of m 

of a slack given for each task is independent of amount of 

available slack(equation[30] is independent of S),rather m is 

totally dependent on number of execution cycles of each task 

.Another thing to be noticed is that the task with large number 

of execution cycles gets most of the slack(i.e. the task with 

long computation time should have most of the slack).In 

general ,the optimal slack share for a task for N tasks is given 

by: 

𝑆𝑕𝑎𝑟𝑒 𝑡𝑎𝑠𝑘𝑖 =  
𝑁𝐶𝑖

 𝑁𝐶𝑘
𝑁
𝑘=1

∗ 𝑆𝑙𝑎𝑐𝑘                           (31)   

                                                     

So the new execution time for taski would be: 

𝐸𝑇 𝑡𝑎𝑠𝑘𝑖 𝑛𝑒𝑤 = 𝑇 𝑡𝑎𝑠𝑘𝑖 𝑜𝑙𝑑 +
𝑁𝐶𝑖

 𝑁𝐶𝑘
𝑁
𝑘=1

∗ 𝑆𝑙𝑎𝑐𝑘          32   

Equation[32] will be used as task execution time updater .The 

above equation  should take into consideration deadline 

violation ,and checking policy. 

4.4 The optimum energy saving algorithm 
For any set of tasks to be optimally scheduled ,it is assumed 

that tasks are scheduled at maximum processor 

speed(otherwise it is not scheduled at all).It will be considered 

that the tasks at Vmax as a reference point and any subsequent 

calculations will be based on this point .This is the basis of 

algorithm-1 given here: 

Algorithm 1: 

1- Set the voltage supply = 𝑽𝒎𝒂𝒙  

2- if ( 
 𝑬𝑻𝒋

𝑵
𝒋=𝟏

𝑫𝑳𝑵
 ≤ 𝟏 is not true ) 

    exit(these tasks are not schedulable); 

3- for ( i = 1 ; i <= N ; i++) 

 {  

    temp = temp + 𝑬𝑻(𝒕𝒂𝒔𝒌𝒊); 

    if( temp > 𝑫𝑳(𝒕𝒂𝒔𝒌𝒊) ) 

    exit(these tasks are not schedulable); 

 } 

4- 𝑺𝒍𝒂𝒄𝒌 =  𝑫𝑳𝑵 −  𝑬𝑻𝒋
𝑵
𝒋=𝟏  ; 

5- while(_slack) 

  {_slack = 0; temp = 0; 

   for ( j = 1 ; j <= N ; j++ ) 

      { Old_ET = 𝑬𝑻𝒐𝒍𝒅  𝒕𝒂𝒔𝒌𝒋  ;  

        𝑬𝑻𝒏𝒆𝒘  𝒕𝒂𝒔𝒌𝒋  =  𝑬𝑻𝒐𝒍𝒅  𝒕𝒂𝒔𝒌𝒋  +

 
𝑵𝑪𝒋

 𝑵𝑪𝒌
𝑵
𝒌=𝟏

 ∗  𝑺𝒍𝒂𝒄𝒌 ; 

   temp = temp + 𝑬𝑻(𝒕𝒂𝒔𝒌𝒋); 

  if(temp > 𝑫𝑳(𝒕𝒂𝒔𝒌𝒋)) 

     {_slack = _slack + (temp - 𝑫𝑳(𝒕𝒂𝒔𝒌𝒋) );} 

     𝑬𝑻𝒏𝒆𝒘  𝒕𝒂𝒔𝒌𝒋  = Old_ET;/Retrieve original 

ET for next run 

       }//End for 

  if(_slack > slack) 

   { 

    print(The Vmax is optimum schedule); 

    Run tasks at Vmax; 

   }//End if 

 else 

   slack = slack - _slack; 

}// End while 

 

 

6- if(slack > threshold) 

7- for ( j = 1 ; j <= N ; j++ ) 

8-    { 𝑬𝑻𝒏𝒆𝒘  𝒕𝒂𝒔𝒌𝒋  =  𝑬𝑻𝒐𝒍𝒅  𝒕𝒂𝒔𝒌𝒋  +

 
𝑵𝑪𝒋

 𝑵𝑪𝒌
𝑵
𝒌=𝟏

 ∗  𝑺𝒍𝒂𝒄𝒌 ;} 

9-  𝑽 = 𝒇 [ 𝑬𝑻 𝒕𝒂𝒔𝒌𝒋 ]; 

10-            𝑽𝒋 = select closet maximum voltage 

level(𝑽); 

11-            Execute (𝒕𝒂𝒔𝒌𝒋); 

12-          }// End for 

13-       }// End if 

14-     else 

15-       { 

16-     print(The Vmax is optimum schedule); 

17-     Run tasks at Vmax; 

18-    }// End else 

 

The algorithm first check whether the set of tasks are 

schedulable or not,for all tasks (step 2) and then for individual 

task (step 3).Then check the possibility to minimize the 

energy consumption of tasks execution by stretching the tasks 

execution times after determining the amount of available 

slack(step 4) ,updating the tasks execution times .Step 5 will 

check for possible deadline violation and redistribute the 

available slack among tasks .Step 6 will check if the slack is 

larger than threshold and the distribution is worthy and will 

give significant energy saving. 

4.5 Demonstrating the algorithm 

Assuming the set of tasks shown which has been generated by 

a simulater (table-1) 

 

The optimum scheduling according to algorithm-1 is given in  

 

The percentage of energy saving for above scheduling is 

92.35%,but there is a problem in this scheduling, which is that 

task B has missed its deadline by 47µs (table 2).To solve this 

problem ,the following procedure should be 

1.algorithm should remove the extra time (47µs) from total 

slack' 

2.repeat step for distribution of optimal slack, 

Task NC. 

(Mega 

Cycle) 

Old 

ET.(µSec) 

DL.(µSec) 

A 26 16 174 

B 32 19 211 

C 11 6 307 

Task New 

ET 

(µSec) 

DVS 

Voltage 

(V) 

Cumulative 

ET (µSec) 

DL. 

(µSec

) 

DL-

(Cumulative 

ET) (µSec) 

A 116 0.5576 116 174 58 

B 142 0.5530 258 211 -47 

C 48 0.5574 306 307 1 



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

14 

3.check for deadline violation 

4.checkj the new optimum scheduling. 

The algorithm will repeat mentioned procedure above three 

times to achieve the optimum scheduling shown in table[3] 

 

The energy saving achieved now is 90.68% or just 1.8% less 

than last scheduling ,the program has eliminated 55µs from 

total slack ,but such elimination makes task scheduling 

possible and gives a high percentage of energy saving 

.Figure[6] shows energy consumption for GSM decode for 80 

ms-period task, while figure[7]  gives energy consumption 

variations with number of tasks .Figure[8] indicates 

normalized energy consumption versus number of tasks. 

 

 

 

 

 

 

Figure(6) : Energy consumption for GSM decode 

 

 

Figure(7) : Graphical representation for different tasks 

execution 

 

Figure(8) : Energy saving achievements for different 

versions of EDF policy 

5. COCLUSION 
This paper has studied the individual behavior of each 

parameter of equation[1],indicating that minimizing a do not 

always lead to minimum gate cycle time ,It was found that the 

parameter (Vj  -V th )a is very important here ,if its value is 

nearly 1,then a has to be increased to minimize gate cycle 

time ,while if its value is less than 1,a has to be decreased 

.Another point is that minimizing Vth would minimize gate 

cycle time ,but this will maximize static power dissipation ,so 

there is an optimal design for this value .The optimal slack 

distribution among tasks was studied and it was found that 

maximum saving could be achieved if all clock cycles of all 

tasks where executed with one voltage level(one clock 

frequency).It was shown that the share of each task from the 

slack never depend on amount of available slack ,rather it 

depends on number of execution cycles of each task .The 

problem of deadline violation was solved also by eliminating 

the amount of violation from the total available slack. 

6. REFERENCES 
[1] R.B.Prathipati, 2004.Energy Efficient Scheduling 

Techniques For Real-Time Embedded Systems .M.Sc 

.Thesis, Texas A&M University. 

[2] S.H,.Gunther,F.Binns,D.M.Carmean,J.C.Hall,2001.Mana

ging the Impact of Increasing Microprocessor Power 

Consumption .Desktop Platforms Group ,Intel 

Technology Journal Q1,Intel Corp. 

[3] P.Chaparro,G.Magklis,J.Gonzalez,A.Gonzalez,2002.Usi

ng MCD-DVS for Dynamic Thermal Management 

Performance Improvement .Intel Barcelona Research  

Center ,Intel Labs. 

[4] C.h.Hsu, W.C.Feng,2004.Effective Dynamic Voltage 

Scaling through CPU-Boundedness  Detection ,The 4th 

workshop on power aware Computer Systems ,Portland 

,Oregon .Los Almos  National Lbs. 

[5] J.R.Lorch.2001.Operating Systems Techniques for 

Reducing Processor Energy Consumption .PhD .Thesis 

,University of California ,Berkeley. 

[6] K.Nose,2001.Circuit Design for Low-power High Speed 

VLSI Processor in 0.5 V Generation ,PhD Thesis 

,University of Tokyo, 

0

200

400

600

1 3 5 7

En
e

rg
y 

C
o

n
su

m
p

ti
o

n
 

(m
J)

Number of Tasks

P…
I…



International Journal of Computer Applications (0975 – 8887)  

Volume 91 – No.14, April 2014 

15 

[7] M.Horoitz, T.Indermaur, R.Gonzalez, 2001.Low-Power 

Digital Design, Center for Integrated Systems, Stanford 

University. 

[8] J.A.Mouw, K.Langendoen, J.Pouwelse, 2002.LART 

Lessons Learned; cpu frequency, Ottawa Linux 

Sympoium. 

[9] D.Zhu,R.Melhem,B.R.Childers,2003.Scheduling with 

Dynamic Voltage/Speed Adjustment using Slack 

Reclamation in Multiprocessor Real-time Systems .IEEE 

transactions on parallel and distributed systems ,Vol 

14,No7. 

 

IJCATM : www.ijcaonline.org 


