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ABSTRACT 

In this paper, new recurrence relations satisfied by the single 

and product moments using moment generating function of 

dual generalized order statistics from inverse exponential-type 

distribution are established. Recurrence relations for single 

and product moments of reversed order statistics and lower 

record value are obtained as special cases. Further, using a 

recurrence relation for single moments we obtain 

characterization of inverse exponential-type distribution.  
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1. INTRODUCTION 
The importance of generalized order statistics (gos) due to 

inclusion special cases which have been used in statistical 

research such as order statistics and record value, see [1]. Let 

( )F   be absolutely continuous distribution function with 

probability density function ( )f  . Further, let n N , 0k 

, 2,n 
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nm m m m R 
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 , such that 

= > 0,r rk n r M     for all  1,2, , 1 .r n   Then 

( , , , ),
'

X n n m k =1,2, ,r n   are called gos if their joint pdf 

given by:  
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 [2] represents the concept of dual generalized order statistics 

(dgos) as follows: 

Let n N , 1k  ,  be the parameters such that  

 = ( )( 1) > 0,for all 1 .r k n r m r n    „ „  

 Let (1, , , )
'

X n m k , (2, , , ) , ( , , , )
' '

X n m k X n n m k  be the 

dgos from an absolutely continuous distribution function 

( )F   with density function ( )f  , so, the joint probability 

density function (pdf) of the form  

   
1 1

1

=1 =1

( ) ( ) ( ) ( ),
n n

m k

j i i n n

j i

k F x f x F x f x
 

  
   

  
  (1) 

 for  

 1 1
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 The marginal pdf of r-th dgos, ( , , , )
'

X r n m k  is  
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The joint pdf of ( , , , )
'

X r n m k  and ( , , , ),
'

X s n m k
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Since (0, , , ) 0
'

X n m k   then ( 1, , , ) = 0
'

X n n m k . If 

= 0, =1,m k  then ( , , , )
'

X r n m k  reduces to the 

( 1)n r th    reversed order statistics, (
1: )n r nX  

 from the 

sample 
1 2, , , nX X X  and when = 1,m   then 

( , , , )
'

X r n m k  reduces to the k-lower record value [3]. 

[1] dealt with generalized order statistics from kumaraswamy 

distributibution and its characterization. Recurrence relations 

for moment generating functions of order statistics are 

established by [4]. [2] established moments of lower 

generalized order statistics from exponentiated Pareto 

distribution and its characterization. Recurrence relations for 

single and product moments of dual generalized order 

statistics from the inverse Weibull distribution are derived by 

[5]. [6] have established recurrence relations for moments of 

dual generlized order statistics from exponentiated Weibull 

distribution. [7] obtained recurrence relations for momet and 

conditional moment generating functions of gos based on 

random samples drawn from a population whose distribution 

is a member of a doubly truncated class of distributions. 

Consider the cummulative distribution function (cdf) is:  

 ( ) = exp[ ( )], 0,F x x x   (4) 

 where  x  is a non-negative, continuous, monotone 

decreasing, differentiable function of x  such that   0x   

as x   and  x   as 0 .x  This family contains 

many distributions such as inverse Weibull distribution, 

inverse exponential distribution and inverse Rayleigh 

distribution. 

The probability density function (pdf) is given by:  

( ) = ( )exp[ ( )], 0.
'

f x x x x     (5) 

Therefore, from (4) and (5), we have  

 
1

( ) = ( ).
( )

'
F x f x

x
  (6) 

The following table gives some distributions with proper 

choice of ( )x  as examples:- 

 

Distribution cdf ( )x  

inverse 

Weibull 

exp  ( )x





  , > 0, , > 0.x
x






 



 

inverse 

exponential 

exp  
1

( )x


  
1

, > 0, = 1.x
x




 

inverse 

Rayleigh 

exp  
2

( )x


  
 

2

1
, > 0, , = 2.x

x
 


 

 

2. CHARACTERIZATION BASED ON 

RECURRENCE RELATIONS FOR 

SINGLE MOMENT GENERATING 

FUNCTIONS OF DGOS 
The single moment generating function of dgos can be 

obtained, for 1,a   from Using (2), we have when 1m    
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 for simplicity ( , , , ) = .r m n kX x  

Relation 1  Let X  be a random variable, then for integers a  

such that 1,a  the following recurrence relation is satisfied 

iff X  has cdf (4).  
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Proof:  Using(7) and (2), we have  
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integrating by parts, we get  
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upon using (1.6) in (2.4), we obtain  
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so, we have the result. 

Conversely, if the characterizing condition (8) holds, then 

from (2) and (6), we have  
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integrating the first integral on the right hand side of Equation 

(11) by parts, we get  
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Now applying a generalization of the Muntz-Szasz Theorm to 

(13) [8], we get 

1
( ) = ( ), 0.

( )
'

F x f x x
x

   

3. SPECIAL CASES 
(1) By differentiating both sides of Condition (8) with respect 

to t  and then setting = 0t , we obtain the following 

recurrence relation for single moment of dgos:  
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 where  
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 (2) Putting = 0,m = 1k  in (8), we obtain the recurrence 

relations of reversed order statistics as follows:  
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 (3) Setting = 1,m  = 1k  in (8), we get recurrence relation 

for single moment of lower record values in the form:  
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 where =1,r , : : ( )= .r n m k L rX X  

4. CHARACTERIZATION BASED ON 

RECURRENCE RELATIONS FOR 

CONDITIONAL MOMENT 

GENERATING FUNCTIONS OF 

DGOS 
On using (3), the conditional distribution function of 

( , , , )X s n m k  given ( , , , ),X s n m k  is given by:  
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Relation 2   Let X  be a random variable, ,r s  be two 

integers such that 1 ,r s n„ „ „ m  and k  be real numbers 

such that 1,m   1.k   Then for integers a  such that 1,a   

the following recurrence relation is satisfied iff X  has the 

cdf (4).  
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integrate (19) by parts, we get  
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Substituting (6) and (20) in (19), we get  
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so, we can rewrite Equation (21) in the form  
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hence, we have the result. 

Conversely, if the characterizing condition (18), is satisfied, 

then from (3) and (17), we have 
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Integrating the first integral on the right hand side of Equation 

(23) by parts, yields  
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Applying Muntz-Szasz theorm to (25) [8], we get  
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'
F x f x

x
  (26) 

4.1 Special cases 
(1) By differentiating both sides of Condition (18) with 

respect to t  and then setting = 0t , we obtain the following 

recurrence relation for single moment of dgos:-  

   , : : , : :
| ) =a

s m n k r n m k
E X X y 
 

   1, : : , : :
| ) =a

s m n k r n m k
E X X y


 
 

 

 
 

 

 

1

1, : :

, : :

, : :

= | ) = .
( )

a

s m n k

r n m k'

s
s n m k

Xa
E X y

x 




 
 
 
 

 (27) 

(2) Putting = 0,m = 1k  in (18), we obtain the recurrence 

relations of reversed order statistics as follows: 
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 (3) Setting = 1,m  = 1k  in (18), we get recurrence relation 

for single moment of lower record values in the form:  

       
| |

( ) ( 1)( ) ( )

| |
a a

X X
X XL s L sL r L r

M t y M t y


  

 

( )

( )

( )

( )

= | = ,

atXa u s

L s

L r'

L s

X e
atE X y

X

 
 
 
  

 

( ) ( ) ( 1) ( )| = | =a a

L s L r L s L rE X X y E X X y
        

 
( )

( )

( )

= | = ,

a

L s

L r'

L s

X
aE X y

X

 
 
 
   

 

 

5. CHARACTERIZATION BASED ON 

PRODUCT MOMENT FOR DGOS 
Lemma     For 1 < 1,r s n   2n   and =1,2,...k  

( ( , , , ) ( , , , ))i jE X r n m k X s n m k  

( ( , , , ) ( 1, , , ))i jE X r n m k X s n m k   

   1 11

0 0

= ( ) ( ) ( )
( ) ( )

x
mi j rs

m

s

jc
x y F x f x g F x

r s r



 

     

   
1

( ( )) ( ( )) ( ) .
s r

s
m mh F x h F y F y dydx

 
   (30) 

Relation 3   Let X  be a random variable, then for integers a  

such that 1,a  the following recurrence relation is satisfied 

iff X  has cdf (4).  
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Proof:    From (30), we get  

[ ( , , , ) ( , , , )]i jE X r n m k X s n m k  

( ( , , , ) ( 1, , , ))i jE X r n m k X s n m k   

   1 11

0 0

= ( ) ( ) ( )
( ) ( )

x
mi j rs

m

s

jc
x y F x f x g F x

r s r



 

     

   
1 1

( ( )) ( ( )) ( )
s r

s
m mh F x h F y F y

  
 

1
( ) ,

( )
'

f y dydx
y

 
 
  

 (32) 

and hence (31) obtained. 

Conversely, if the characterizing condition (4.2) holds, then 

from (3) and (6), we have  
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Integrating the first integral on the right hand side of Equation 

(33) by parts, we get  
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Substituting (34) in (33), we get  
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Now applying a generalization of the Muntz-Szasz Theorm 

[8] , we get  
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5.1 Special Cases 
(1) Putting = 0,m = 1k  in (31), we obtain the recurrence 

relations of reversed order statistics as follows:  

    1:
: 1: := [ ].
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i
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j X
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n s y
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 (3) Setting = 1,m  = 1k  in (31), we get recurrence relation 

for single moment of lower record values in the form: 
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j

'

X
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   (37) 

6. THE INVERSE WEIBULL 

DISTRIBUTION 
The distribution function of the inverse Weibull distribution is 

given by:  

( | ) = exp[ ( ) ], > 0,F x x x    (38) 

where = ( , ),   > 0 , > 0  and  

1
( ) = , ( ) = .

'

x x
x x
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From Equations (14), (27) and (31), we have the following 

relations:  
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   , : : , : :
| ) =a

s m n k r n m k
E X X y 
 

 

   1, : : , : :
| ) =a

s m n k r n m k
E X X y


 
 

 

 
 

 , : : , : :
= | ) = .

a

s m n k r n m k

s

a
E X X y







 
 

 (41) 

( ( , , , ) ( , , , ))i jE X r n m k X s n m k  

[ ( , , , ) ( 1, , , )]i jE X r n m k X s n m k   

= [ ( , , , ) ( , , , )].i j

s

j
E X r n m k X s n m k







 (42) 

7. CONCLUSION 
The recurrence relations for single and product moments 

based on moment generating function of dual generalized 

order statistics from the inverse exponential-type distribution 

are obtained. The recurrence relation for the single moments 

is used to characterize the inverse exponential-type 

distribution. Recurrence relations for single and product 

moments of reversed order statistics and Power record values 

are deduced as special cases. All results can be applied to 

many inverse distribution such as inverse exponential, inverse 

Rayleigh and inverse Weibull. 
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