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ABSTRACT
In this paper the quasilinearization technique along with the
Chebyshev polynomials of the first type are used to solve
the nonlinear-quadratic optimal control problem with terminal
state constraints. The quasilinearization is used to convert the
nonlinear quadratic optimal control problem into sequence of
linear quadratic optimal control problems. Then by approximating
the state and control variables using Chebyshev polynomials, the
optimal control problem can be approximated by a sequence
of quadratic programming problems. The paper presents a
closed form solution that relates the parameters of each of
the quadratic programming problems to the original problem
parameters. To illustrate the numerical behavior of the proposed
method, the solution of the Van der Pol oscillator problem
with and without terminal state constraints is presented.
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1. INTRODUCTION
Optimal control problems can be solved using the direct
method by employing either the discretization technique or
the parameterization technique [1-8]. There is a number of
research papers which describe the use of the parameterization
technique. Some accomplish parameterization by approximating
the control variables by a function of unknown parameters [2],
some by approximating the state variables [5-6,9] and some by
approximating both the state and the control variables [3-4,7,10-11]
.
In [10], a method to solve a nonlinear optimal control problem by
approximating the state and control variables by Chebyshev series
has been proposed. The method converts the nonlinear optimal
control problem into a nonlinear mathematical programming
problem. The proposed method, however, is complicated in
approximating the state equations and the performance index.

In [12], Jaddu presented a method to solve the constrained linear
optimal control problem using state-control parameterization. Also
in [8], a closed form solution of the linear quadratic optimal control
problem was proposed. In this paper, the method of [12] and
the work of [8] are extended to obtain a closed form solution
of a nonlinear optimal control problem subject to initial and
terminal state constraints. The proposed method is based on using
the quasilinearization, therefore, the original nonlinear optimal
control problem is approximated by a sequence of time-varying
linear-quadratic optimal control problems. Then each of the state
variables and control variables is approximated by a finite length
Chebyshev series of unknown parameters. In this way the original
nonlinear optimal control problem is converted into a sequence of
quadratic programming problems. The use of the quasilinearization
enables us to express the quadratic programming problems’
parameters in terms of the parameters of the original problem,
which simplifies the implementation of the method. The method
approximates the state equations and the performance index in a
different and easier way in comparison with the method of [10].
To illustrate the effectiveness of the proposed algorithm, the results
of solving Van der Pol oscillator optimal control problem with and
without terminal state constraints are presented.

2. PROBLEM STATEMENT
The system whose behaviour is described by the following system
of differential equations is considered

ẋ = f(t,x,u) 0 ≤ t ≤ tf (1)

where tf is a fixed terminal time; x is an n × 1 state vector, u is
an m × 1 control vector; f : Rn × Rm → Rn is continuously
differentiable with respect to its arguments.
The initial condition of the system is:

x(0) = x0 (2)

and the terminal state constraints are given by:

x(tf ) ∈ S

where S is a given nonempty subset of Rn. The following case is
treated in this paper

S = {x ∈ Rn|Ex(tf ) = xf} (3)
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where E is an s × n constant matrix, xf is a given s × 1 vector
of terminal conditions. However, the method is equally suitable for
S = Rn, that is, for problems with no terminal constraints.
As a set of feasible controls, take the set U consisting of all
piece-wise continuous function u : [0, tf ] → Rm for which there
exists a solution of (1) such that (2) and (3) are satisfied.
The problem is to find a feasible control that minimizes, over the set
of all feasible controls, the quadratic performance index J : U →
R1 given by:

J(u) =

∫ tf

0

(xTQx+ uTRu)dt (4)

where Q is an n × n positive semidefinite matrix, and R is an
m×m positive definite matrix.

3. PROBLEM REFORMULATION
To solve the problem of the previous section, the second method
of the quasilinearization is applied [13]. The performance index is
expanded up to the second order and the constraints are expanded
up to the first order around a nominal state vector xk(t) and a
nominal control vector uk(t).
The quasilinearization replaces the nonlinear optimal control
problem (1)-(4) by a sequence of time-varying linear-quadratic
optimal control problems given, for each k = 0, 1, 2, · · ·, as
follows:
Minimize:

Jk+1(uk+1) =

∫ tf

0

((xk+1)TQxk+1+(uk+1)TRuk+1)dt (5)

subject to the linearized state equations, initial conditions and
terminal state constraints given by:

ẋk+1 = Ak(t)xk+1 +Bk(t)uk+1 + hk(t) (6)

xk+1(0) = x0 (7)

Exk+1(tf ) = xf (8)

where:

hk(t) = f(t,x(k),u(k))−Ak(t)x(k) −Bk(t)u(k)

Ak(t) =
∂f(t,x,u)

∂x

∣∣∣∣
xk,uk

Bk(t) =
∂f(t,x,u)

∂u

∣∣∣∣
xk,uk

The next step in the proposed method is to convert each of the
linear quadratic optimal control problems (5)-(8) into a quadratic
programming problem by approximating each of the state variables
and control variables by finite length Chebyshev polynomials of
unknown parameters. The time interval t ∈ [0, tf ] of the optimal
control problem has to be changed to τ ∈ [−1, 1] because
Chebyshev polynomials are orthogonal on this range. In the new
setting τ = −1 is the initial time and τ = 1 is the terminal time.
Expressing the problem (5)-(8) in terms of τ , gives

Jk+1(uk+1) =
tf
2

∫ 1

−1
((xk+1)TQxk+1 + (uk+1)TRuk+1)dτ

(9)
subject to the constraints given by:

2

tf

dxk+1(τ)

dτ
= Ak(τ)xk+1 +Bk(τ)uk+1 + hk(τ) (10)

xk+1(−1) = x0 (11)

Exk+1(1) = xf (12)

Expanding each of the state variables xk+1(τ) and the control
variables uk+1(τ) by a Chebyshev series of order N , results in

xk+1
j (τ) =

N∑
i=0

aji (k + 1)Ti(τ) j = 1, 2, · · · , n (13)

uk+1
r (τ) =

N∑
i=0

bri (k + 1)Ti(τ) r = 1, 2, · · · ,m (14)

where aji (k + 1)s and bri (k + 1)s are (N + 1)n and (N + 1)m
unknown parameters respectively; Ti(τ) is the i-th Chebyshev
polynomial.
These two systems of equations can be rewritten using the
Kronecker product ⊗ [14] as follows:

xk+1(τ) = (TT (τ)⊗ In)ak+1 (15)

uk+1(τ) = (TT (τ)⊗ Im)bk+1 (16)

where:

aTk+1 = [a10(k + 1) a20(k + 1) · · · an0 (k + 1) a11(k + 1) · · ·
an1 (k + 1) · · · anN (k + 1)]

bTk+1 = [b10(k + 1) b20(k + 1) · · · bm0 (k + 1) b11(k + 1) · · ·
bm1 (k + 1) · · · bmN (k + 1)]

TT (τ) = [T0(τ) T1(τ) · · · TN (τ)]

and In, Im are n× n and m×m identity matrices respectively.

3.1 Performance Index Approximation
Substituting (15) and (16) into (9), gives:

Jk+1
N (ak+1,bk+1) =

tf
2

∫ 1

−1
aTk+1(T⊗ In)Q(TT ⊗ In)ak+1 +

bTk+1(T⊗ Im)R(TT ⊗ Im)bk+1 dτ (17)

where the values of Jk+1
N are the approximate values of Jk+1

obtained through approximation of the state and control variables
by N-th order Chebyshev series. This equation can be simplified to:

Jk+1
N (ak+1,bk+1) =

tf
2

∫ 1

−1
(aTk+1(TTT ⊗Q)ak+1 +

bTk+1(TTT ⊗R)bk+1) dτ (18)

which can be written in compact form as:

Jk+1
N (zk+1) =

1

2
zTk+1Hzk+1 (19)

where:

zTk+1 =
[
aTk+1 bTk+1

]
H = tf

∫ 1

−1

[
TTT ⊗Q O

OT TTT ⊗R

]
dτ

where O is n(N + 1) × m(N + 1) zero matrix. H is
(m + n)(N + 1) × (m + n)(N + 1) matrix. The integration in
this equation is performed element-wise.
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3.2 Constraints Approximation
To approximate the state equation, the initial condition and the
terminal state constraints, equation (13) is written as follows:

xk+1 =

N∑
i=0

Tiαi(k + 1) (20)

or:

xk+1 = TT [αT0 (k + 1) αT1 (k + 1) · · ·αTN (k + 1)]T

= TTαk+1 (21)

where:

αTi (k + 1) =
[
a1i (k + 1) a2i (k + 1) · · · ani (k + 1)

]
Similarly, the control variables (14) can be written as:

uk+1 = TT [βT0 (k + 1) βT1 (k + 1) · · · βTN (k + 1)]T

= TTβk+1 (22)

where:

βTi (k + 1) =
[
b1i (k + 1) b2i (k + 1) · · · bmi (k + 1)

]
Notice that αk+1 = ak+1 and βk+1 = bk+1. However,
the multiplication in equations (21) and (22) has to take place
block-wise, while the multiplication in equations (15) and (16) is
performed element-wise.
Also, Ak(τ), Bk(τ) and hk(τ) have to be expanded by a finite
Chebyshev series.
The approximation of Ak(τ) can be given by:

Ak(τ) =

N∑
i=0

AiTi

= [A0 A1 · · · AN ]T (23)

where Ai, i = 0, 1, · · ·N is an n × n constant matrix of the
coefficient of the Chebyshev polynomial Ti. Ai’s can be obtained
as follows [15]:

A0 =
1

M

M∑
n=1

A(cos(θn))

Ai =
2

M

M∑
n=1

A(cos(θn))cos(iθn) i = 1, 2, · · · , N

where θn = 2n−1
2M

π, n = 1, 2, · · · ,M and M > N .
Similarly, Bk(τ) can be expanded by Chebyshev series and can be
expressed as:

Bk(τ) = [B0 B1 · · · BN ]T (24)

where Bi is an n×m matrix of constant elements.
Following the same procedure the vector hk(τ) can be expanded
into a Chebyshev series as:

hk(τ) = TT [hT0 hT1 · · · hTN ]T

= TTH (25)

where:

hTi =
[
h1
i h2

i · · · hni
]

Notice that the multiplications in (23), (24) and (25) is performed
block-wise.

The last part of the state equation (10) to be approximated is ẋk+1,
which can be expressed in terms of the parameters of xk+1. This
can be achieved, by using the differentiation operational matrix D
[16] given in the appendix, as follows:

ẋk+1(τ) = TTDTαk+1 (26)

Substituting (21), (22), (23), (24), (25) and (26) into (10), gives

2

tf
TTDTαk+1 = [A0 · · ·AN ]TTTαk+1 +

[B0 · · ·BN ]TTTβk+1 +TTH (27)

The right hand side can be simplified using the property of
Chebyshev polynomials derived in [17]. Although this property is
derived for the Chebyshev polynomials of the second type, it can be
proved that the same property holds for the Chebyshev polynomials
of the first type that are used in this work. Applying this property
yields,

[
A0 A1 · · · AN

]
TTT = TTA (28)[

B0 B1 · · · BN

]
TTT = TTB (29)

where A,B are constant matrices given in the appendix.
Substituting (28) and (29) into (27) gives:

2

tf
TTDTαk+1 = TTAαk+1 +TTBβk+1 +TTH (30)

In this equation the multiplications have to be performed
block-wise. To be able to perform element-wise multiplication, this
equation can be rewritten as:

2

tf
(TTDT ⊗ In)αk+1 = (TT ⊗ In)Aαk+1 +

(TT ⊗ In)Bβk+1 + (TT ⊗ In)H (31)

Using the Kronecker product properties [14], this equation can
written as:

2

tf
(TT ⊗ In)(D

T ⊗ In)αk+1 = (TT ⊗ In)Aαk+1 +

(TT ⊗ In)Bβk+1 + (TT ⊗ In)H (32)

Equating the coefficients of TT ⊗ In on both sides, yields:

2

tf
(DT ⊗ In)αk+1 = Aαk+1 + Bβk+1 +H (33)

In this equation αk+1 and βk+1 can be replaced by ak+1 and bk+1

respectively to become:

(A− 2

tf
(DT ⊗ In))ak+1 + Bbk+1 +H = 0 (34)

This equation will replace the system state equation (10).
In addition to the state equations, the initial conditions and the
terminal state constraints have to be approximated. Substituting
(15) into both (11) and (12), yields:

(TT (−1)⊗ In)ak+1 = x0 (35)

E(TT (1)⊗ In)ak+1 = xf (36)
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Combining equations (35),(36) with (34), yields: A− 2
tf
(DT ⊗ In)

TT (−1)⊗ In
E(TT (1)⊗ In)

ak+1 +

[
B

O(n×m(N+1))

O(s×m(N+1))

]
bk+1 +

[
H
−x0

−xf

]
= 0 (37)

or  A− 2
tf
(DT ⊗ In) B

TT (−1)⊗ In O(n×m(N+1))

E(TT (1)⊗ In) O(s×m(N+1))

 zk+1 = h̃ (38)

where

zk+1 =

[
ak+1

bk+1

]

h̃ =

[
−H
x0

xf

]
Equation (38) represent the equality constraints that replace the
state equations, initial condition and the terminal state constraints.
Each of the time-varying linear-quadratic optimal control problems
(5)-(8) is converted into a quadratic programming problem. The
new problem is to find a vector z∗k+1 that minimizes:

Jk+1
N (zk+1) =

1

2
zTk+1Hzk+1 (39)

subject to:

Fzk+1 = h̃ (40)

where:

F =

[ A− 2
tf
(DT ⊗ In) B

T(−1)⊗ In O(n×m(N+1))

ET(1)⊗ In O(s×m(N+1))

]
The n state equations are replaced by n(N+1) equality constraints
while the initial condition and the terminal state constraints
represent an additional n+s equality constraints. Hence each of the
linear quadratic optimal control problems (9)- (12) is approximated
by quadratic programming problem of (n+m)(N + 1) unknown
parameters and n(N + 2) + s equality constraints. Therefore, to
make sure that the number of the unknown parameters is greater
than the number of equality constraints, the following inequality
should hold when choosing the order N of the approximation:

N >
n+ s−m

m
(41)

The solution of the quadratic programming problem can be
obtained by matrix-vector multiplication and the optimal value of
the unknown parameters vector z is given by:

z∗k+1 = H−1FT (FH−1FT )−1h̃ (42)

After obtaining the optimal value of the unknown parameters
vector, these values will be substituted back into equations (13)
and (14) to obtain the new nominal state vector and the new
nominal control vector that will be used to obtain the next linear
quadratic optimal control problem. This process is continued until

|Jk+1
N − JkN | is small enough. In this work the computations are

terminated when |Jk+1
N − JkN | ≤ 1× 10−4.

In order to decide whether the computed solution is close enough
to the optimal solution, the following criteria is used: Substitution
of the calculated control uk(t) of the last iteration into the state
equation (1) gives:

ẋ = f(t,x(t),uk(t)) (43)

Numerical integration of (43) is possible for a given initial or final
conditions. If x̂(t) is the solution of the numerical integration, then
the following criteria can be used to estimate the error

εdyn = max
0≤t≤tf

|x̂(t)− xk(t)| (44)

4. NUMERICAL EXAMPLE
To illustrate the numerical behaviour of the proposed method, the
Van der Pol oscillator problem is considered. The problem is to
minimize the performance index:

J =

∫ 5

0

(x21 + x22 + u2)dt (45)

subject to the state equations and initial conditions given by:

ẋ1 = x2 (46)
ẋ2 = −x1 + x2 − x21x2 + u (47)

x1(0) = 1 and x2(0) = 0,
Applying the quasilinearization and expressing the problem in
terms of τ , the following sequence of problems is obtained: For
k = 0, 1, 2 · · ·, minimize:

Jk+1 =
5

2

∫ 1

−1

(
(xk+1

1 )2 + (xk+1
2 )2 + (uk+1)2

)
dτ (48)

subject to the linearized state equations and initial conditions:

2

5

[
dxk+1

1
dτ

dxk+1
2
dτ

]
=

[
0 1

−1− 2xk1x
k
2 1− xk1

2

][
xk+1
1

xk+1
2

]
+

[
0
1

]
uk+1

+

[
0

2xk1
2
xk2

]
xk+1
1 (−1) = 1

xk+1
2 (−1) = 0

This problem is solved using the proposed algorithm, starting from
x01 = x02 = 0 and expanding each of the state variables and the
control variable by Chebyshev series of unknown parameters. The
cases considered are N = 3, N = 5, N = 7, N = 9 and N =
11. The resulting approximate optimal values, their differences in
subsequent iterations and the error estimate εdyn are shown in Table
1. From this table, it is clear that a decreasing sequence of optimal
values, with very satisfactory behaviour, is obtained asN increases.
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The optimal states and the optimal control for N = 11 are shown
in Fig. 1 and Fig. 2 respectively.
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Fig. 1. Optimal state x(t) for unconstrained case
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Fig. 2. Optimal control u(t) for unconstrained case

Also, the previous problem is solved, but with the following
terminal state constraints:

x1(5) = −0.97
x2(5) = −0.96

for N = 5, N = 7, N = 9 and N = 11. The case, N = 3 is
excluded because it does not satisfy the condition of (41).
The approximate optimal values along with their differences in
subsequent iterations and the error estimate εdyn are summarized
in Table 2. The initial and the terminal state constraints are exactly

satisfied. The optimal states and control for N = 11 are shown in
Fig. 3 and Fig. 4 respectively.
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Fig. 3. Optimal state x(t) for constrained case
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Fig. 4. Optimal control u(t) for constrained case

The problem with terminal state constraints was solved by Frick
and Stech [11] using Epsilon-Ritz method on parallel processor
array. They found an approximate optimal value to be 4.2490 in
five iterations.
By looking closely at Table 1 and Table 2, it is clear that for each
N , an acceptable approximation of the optimal value is obtained
for k = 2. By increasing k the optimal value does not change
considerably as Table 3 shows. This table shows that the difference
between the third and the second iteration is very small, and
accurate results can be obtained from the second iteration. It is
believed that this fast convergence is due to the use of Chebyshev
polynomials in combination with the quasilinearization method.
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Table 1. Approximate optimal value for the first case
N k Jk+1

N | Jk+1
N − JkN | εdyn

N=3 0 4.02168387 –
1 3.53249140 0.489192
2 3.52811178 0.004379
3 3.52827537 0.000163
4 3.52826923 0.000006 0.38

N=5 0 3.38355087 –
1 2.86896807 0.514580
2 2.86865514 0.000131
3 2.86867141 0.000016 0.032

N=7 0 3.37167025 –
1 2.86798210 0.503688
2 2.86789913 0.000082 1.8× 10−3

N = 9 0 3.37164338 –
1 2.86693354 0.504709
2 2.86703264 0.000099 6× 10−4

N=11 0 3.37164327 –
1 2.86685508 0.504788
2 2.86695986 0.000104
3 2.86695565 0.000004 7.3× 10−5

Table 2. Approximate optimal value for the second case
N k Jk+1

N | Jk+1
N − JkN | εdyn

N=5 0 4.49271577 –
1 4.24763913 0.245076
2 4.24842816 0.000789
3 4.24833707 0.000091 0.033

N=7 0 4.49107754 –
1 4.22138666 0.269690
2 4.22217961 0.000792
3 4.22219794 0.000018 6.1× 10−3

N=9 0 4.49100236 –
1 4.22037466 0.270627
2 4.22015874 0.000215
3 4.22016087 0.000002 0.83× 10−3

N=11 0 4.49100235 –
1 4.22023610 0 .270766
2 4.22004433 0.000191
3 4.22004500 0.0000006 1.2× 10−4

Table 3. Difference between J2
N and J3

N

unconstrained case constrained case
N |J2

N − J
3
N | N |J2

N − J
3
N |

3 0.000163
5 0.000016 5 0.000091
7 0.000003 7 0.000018
9 0.000007 9 0.000002

11 0.000004 11 0.0000006

5. CONCLUSION
A computational method is proposed to solve the nonlinear
quadratic optimal control problem with initial and terminal state
constraints. The method reduces the problem into solving sequence
of quadratic programming problems which can be solved easily
by matrix vector multiplications. The sequence of the approximate
optimal values generated by the method seems to converge very
fast to the optimal value. It is believe that this is due to the use of
quasilinearization and the use of Chebyshev polynomials.

6. APPENDIX
Chebyshev polynomials’ differentiation operational matrix D [16]
is given by:

D =



0 0 0 0 0 0 0 0 · · · 0
1 0 0 0 0 0 0 0 · · · 0
0 4 0 0 0 0 0 0 · · · 0
3 0 6 0 0 0 0 0 · · · 0
0 8 0 8 0 0 0 0 · · · 0
5 0 10 0 10 0 0 0 · · · 0
0 12 0 12 0 12 0 0 · · · 0
7 0 14 0 14 0 14 0 · · · 0
0 16 0 16 0 16 0 16 · · · 0
...

...
...

...
...

...
...

...
...

...


(49)

The matrix A is given by:
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A =



A0
A1
2

A2
2

· · · AN
2

A1 A0 +
A2
2

(A1+A3)
2

· · · AN−1
2

A2
(A1+A3)

2
A0 +

A4
2
· · · AN−2

2

A3
(A2+A4)

2
(A1+A5)

2
· · · AN−3

2
...

...
... · · ·

...
AN

AN−1
2

AN−2
2

· · · A0


(50)

The matrix B is defined similarly.
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