
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 6, March 2014

5

Job Scheduling in the Grid Computing using Criteria

Latha C A, Ph.D
Prof., Dept. of CS & E
D B I T, Bangalore-74

ABSTRACT

Clusters of computers have emerged as mainstream parallel

and distributed platforms for high performance, high

throughput, and high availability computing. To enable

effective load balancing in distributed systems, numerous

schedulers have been designed. Migration of the job from an

overloaded node to the idle node, involves matching the

possessions of the idle computer with the job requirements.

Both code and data are to be transferred to the idle node from

overloaded node. The job is executed at the idle node. The

results are transferred back to the host node. These consume a

lot of bandwidth, processor time, and memory. A good

selection of job results in less execution time, efficient usage

of resources and overall increase in the throughput of the

system with the minimum cost. The selection of the job and its

subsequent execution is an interesting area of research. The

proposed criteria based method assigns a weight for each

criterion of each job of several predefined criteria. Then the

total weights of all the jobs are found out. The job with the

highest weight will be considered for submission.

Key words
Distributed system, load balance, Idle, overloaded, criteria,

weight,

1. INTRODUCTION
When jobs are submitted for execution in a parallel system,

they are typically first organized in a job queue. From there,

they are selected for execution by the scheduler. Early

scheduling strategies for distributed systems just used a space-

sharing approach, wherein jobs can run side by side on

different nodes of the machine at the same time, but each node

is exclusively assigned to a job. When there are not enough

nodes, the jobs in the queue simply wait. Space sharing in

isolation can result in poor utilization, as nodes remain empty

despite a queue of waiting jobs. Furthermore, the wait and

response times for jobs with an exclusively space-sharing

strategy are relatively high.

Many applications running on grids take large amount of input

data and perform complex computation to produce useful

information. Grid systems are often built across wide area

network. They often consist of many nodes, distributed

geographically. The cost to transfer input data thus plays an

important role on the overall efficiency of the application. Due

to the heterogeneous nature of the wide area network, the

computing sites in grid system often differ from each other on

their computing and communication capabilities. After finding

an idle node, a job has to be selected from the queue of over

loaded computers in the network. This selected job has to be

migrated and processed at the idle system.

When jobs are submitted for execution in a parallel system,

they are typically first organized in a job queue. From there,

they are selected for execution by the scheduler. Once the idle

computer is identified, it is the function of the scheduler to

allocate a best suitable job from the ready queue of the

overloaded computer and submit it to the idle computer. As the

distributed system is heterogeneous, the idle system’s

resources and features should meet the requirements of the

selected job from overload om ed node.

The whole concept is pictorially shown in Figure 1. Each

computer has a job queue. On every node, a system task

regularly computes the workload on the node and stores the

information in appropriate data structures. This task runs as a

periodic system task. The scheduler will collect information

from all these system tasks and take a decision as to which job

from which overloaded computer would be mapped to suitable

available idle node. As the distributed system is

heterogeneous, the idle system’s resources and features should

meet the requirements of the job at overloaded computer.

 Ready queue Overloaded nodes

Idle nodes

Fig 1. Job scheduling in distributed system

2. PROPOSED CRITERIA BASED

METHOD
This work is based on the assumption that, in the distributed

system, the idle node and an overloaded node are already

identified for load balancing. First, idle computer’s

specifications are matched with that of overloaded node’s

specifications with reference to different attributes, example,

operating system, speed, and the resources required etc.

Alternately, the job requirements can be checked with the

specification of the idle computer. There is a tradeoff between

these two schemes. If it is desired to reduce the processing

time for selection, then latter match becomes more demanding

in terms of computations. All the jobs in the queue need to be

checked. However, such a check becomes a foolproof

approach for determination of the job to be selected. Next

question is who has to do this matching and checking process.

Overloaded node is already busy with the jobs. Hence, it is

proposed the idle node to perform this matching and checking

process. The overhead required for this selection may be very

1

2

3

n

Schedule
r

1

2

3

m

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 6, March 2014

6

nominal. The following section shows how the weights are

assigned for each job and the winning factor is calculated

based on which the scheduling is accomplished.

2.1. Job selection criteria
Consider the jobs at the ready queue of the overloaded node.

Each job is given a weight for its value of each criterion

considered, as demonstrated in the following tables. The table

in each criterion discussion shows, how the jobs are assigned

weights corresponding to their criterion values. The tables are

discussed for an example of a system with 10 jobs J1 to J10.

 First criterion considered is the real-time or nonreal-

time job.

Real-time jobs are assigned a weight of one and nonreal-time

jobs are assigned weight of zero.

Real-time jobs should be given highest importance which

needs to be scheduled at the earliest possible. Hence, assign

the real-time job indicated by R a highest weight of one and

nonreal-time job indicated by N a weight of zero. A sample of

10 jobs with different status of real time processing and the

corresponding weights assigned is shown in Table 1.

Table 1: Weight assignment for real time processes

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Real-time or Non

real-time

R R N N R N N R R N

Weight assigned 1 1 0 0 1 0 0 1 1 0

 Waiting time the process has spent already.

More the waiting time the process has spent, Higher is the

weight assigned.

This is to ensure that the processes, which have been waiting

for a long time at the overloaded node, are to be processed at

the earliest. Hence, to enable the job to be submitted at the idle

node earliest possible, a higher weight close to one is assigned.

If the job has arrived just then, then it can afford to wait for

some time more. Hence, to delay its submission at the idle

node, a lower weight towards zero is assigned. Hence, the

weight is assumed to be continuous in the range of zero to one.

A sample of 10 jobs with different values for time spent in

waiting and the corresponding weights assigned is shown in

Table 2.

Table 2: Weight assignment for waiting time

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Waiting

time (sec)

3
7

4
0

1
5

1
7

9

4
3

2
4

1
4

3
1

1
1

Weight

assigned

0
.8

2
3

0
.9

1
1

0
.1

7
6

0
.2

3
5

0

1

0
.4

4
1

0
.1

4
7

0
.6

4
7

0
.0

5
8

 Number of resources the job requires further to

complete its execution

More the number of resources the job requires, lesser is the

weight assigned.

As we are looking for job to be migrated to achieve load

balancing, lesser the message length and information to be

transferred better is the performance. Therefore, more the

resources, especially logical resources, larger will be message

and the information to be transferred along with the code. To

acquire the ownership of all the remote or local resources also

takes time. Instead, if the submission is delayed, there are

chances of it being executed locally once the host node

becomes moderately loaded. In addition, if the job is scheduled

and all those resources are allotted to this job, then many other

jobs requiring those resources would be delayed. This

decreases the overall throughput of the system. Hence, to delay

the submission, the weight is set to a lower value towards zero.

However, if the number of resources is less, then it is easier for

the remote idle processor to acquire the ownership of the

minimum number of resources. Hence, to enable such

processes to be migrated and submitted at the idle node at the

earliest possible, the weight is set to a higher value towards

one. Hence, the weight is assumed to be continuous in the

range of zero and one. A sample of 10 jobs with different

resources requirement for processing the jobs and the

corresponding weights assigned is shown in Table 3.

Table 3: Weight assignment for resources requirement

Job
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

No. of

resourc

es the

job

requires

2
5

6
0

4
9

3
1

4
2

4
5

6
0

3
1

6
0

5
5

Weight

assigne

d

1
.0

0
.0

0
.3

1
4

0
.8

2
9

0
.5

1
4

0
.4

2
9

0
.0

0
.8

2
9

0
.0

0
.1

4
3

 Number of resources already the process has

More the number of resources the process has, higher is the

weight assigned.

Here resources imply both physical and logical resources. If a

process has already acquired a number of resources, may be

after a waiting period, then it is not fair to make other

processes to keep waiting for those resources. Hence, to

enable it to be readily submitted at the idle computer, the

weight is set to a higher value towards one. On the contrary, if

the job is a newly arrived and has not acquired any resources,

then it will not cause much problems if kept waiting.

Therefore, to suggest that it can afford to wait for some more

time, the weight is set to a lesser value towards zero. Hence,

the weight is assumed to be continuous in the range of zero

and one. A sample of 10 jobs with various resources

possessions and the corresponding weights assigned is shown

in Table 4.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 6, March 2014

7

Table 4: Weight assignment for resources possession

 Processor time already consumed by the process

More the processor time consumed, higher the weight

assigned.

This is with the expectation that the process which has already

consumed majority of its required processor time, given

another short span of processor time, processor will complete

the execution of the job and release the resources acquired to

the resources’ pool. Hence, the process that has consumed

more processor time will have to be completed earlier.

Therefore, assign a higher weight towards one. On the

contrary, lesser the processor time already consumed, it can

afford a delay in submission. Hence, assign a lesser weight

towards zero. Hence, the weight is assumed to be continuous

in the range of zero and one. A sample of 10 jobs with

different status of processor time spent and the corresponding

weights assigned is shown in Table 5.

Table 5: Weight assignment for processor time spent

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Processor

time the

job has

spent

(sec)

9

8

5

8

1
2

1
2

1
5

1
4

1
1

3

Weight

assigned

0
.5

0
0

0
.4

1
7

0
.1

6
7

0
.4

1
7

0
.7

5
0

0
.7

5
0

1
.0

0
.9

1
7

0
.6

6
7

0

 Estimated processor time required to complete the

execution of the process.

More the processor time required to complete its execution,

lesser is the weight assigned.

If the process requires comparatively more processor time to

complete its execution and if scheduled at a remote idle

computer, then it causes many problems. Some of them to

mention, until the process is completed the other processes

should wait for a long time, which decreases overall

throughput of the system. If it takes a longer processor time at

the remote idle machine, then a local job arriving at the idle

machine will have to wait until its completion, which violates

the requirement of giving higher priority to the local jobs.

Another problem, if the process takes a longer execution time,

then usually it implies the job is very big. Transferring such a

huge job from the overloaded node to the idle node induces a

huge overhead and propagation delay. Hence, scheduling such

jobs at the idle nodes should be postponed as later as possible.

Therefore, assign a lower weight towards zero. On the

contrary, those jobs requiring lesser time to complete their

execution can be transferred at a relatively lower cost. Hence,

they can be scheduled immediately. Therefore, they are

assigned relatively higher weights towards one. Hence, the

weight is assumed to be continuous in the range of zero and

one. A sample of 10 jobs with different status of processor

time required to complete the execution and the corresponding

weights assigned is shown in Table 6.

Table 6: Weight assignment for processor time required

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Processo

r time

required

(seconds)

1
0

9

5

1

6

1
2

8

9

1
1

6

Weight

assigned 0
.1

8
2

0
.2

7
3

0
.6

3
6

1
.0

0
0

0
.5

4
5

0
.0

0
0

0
.3

6
4

0
.2

7
3

0
.0

9
1

0
.5

4
5

 Number of children or dependent jobs

More the number of dependent jobs, higher the weight

assigned.

If a process has many children or dependent processes,

delaying that job leads to automatic delaying of all those

dependent processes. To avoid that, such jobs should be

submitted at the earliest. Therefore, those jobs are assigned a

higher weight towards one. Jobs with lesser number of

children or dependent jobs can afford the delay with

comparatively lesser cost. Accordingly, they are assigned

relatively lower weight towards zero. Hence, the weight is

assumed to be continuous in the range of zero and one. A

sample of 10 jobs with different values of number of

dependent jobs and the corresponding weights assigned is

shown in Table 7.

Table 7: Weight assignment for dependent jobs

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

No. of

dependen

t jobs

1
3

2
3

1
2

2
0

3
6

5
1

3
0

1
0

1
3

2
6

Weight

assigned 0
.0

7
3

0
.3

1
7

0
.0

4
9

0
.2

4
4

0
.6

3
4

1

0
.4

8
8

0

0
.0

7
3

0
.3

9
0

 Priority of the job

Higher the priority of the job, higher the weight assigned.

Priorities can be set based on various parameters. Higher the

priority of the job, earlier it should be executed. Hence, higher

weight is assigned with value towards one. Lower the priority,

longer it can afford to wait. Accordingly, they are assigned a

lower weight with value towards zero. Hence, the weight is

assumed to be continuous in the range of zero and one. A

sample of 10 jobs with different priorities and the

corresponding weights assigned is shown in Table 8.

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

No. of

resources

the job has
3
2

5
3

3
6

6
6

3
4

7
0

3
2

6
6

2
1

5
2

Weight

assigned 0
.2

2
4

0
.6

5
3

0
.3

0
6

0
.9

1
8

0
.2

6
5

1

0
.2

2
4

0
.9

1
8

0

0
.6

3
2

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 6, March 2014

8

Table 8: Weight assignment for jobs’ priority

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Priority

of the

job

7

1
9

8

1

8

1
3

7

1
1

1
9

2

Weight

assigne

d 0
.3

3
3

1
.0

0
.3

8
9

0
.0

0
.3

8
9

0
.6

6
7

0
.3

3
3

0
.5

5
6

1
.0

0
.0

5
6

 Size of the job

Larger the job, lesser the weight assigned.

Transferring a huge job from the overloaded node to the idle

node induces overhead of routing, error checking and

retransmissions, packeting and assembling and the propagation

delay. Hence scheduling such jobs at the idle nodes should be

postponed as later as possible. Accordingly, assign a lower

weight towards zero. On the contrary, those smaller jobs can

be transferred at a relatively lower cost. Hence, they can be

scheduled immediately. Therefore, such jobs are assigned

relatively higher weights towards one. Hence, the weight is

assumed to be continuous in the range of zero and one. A

sample of 10 jobs of various sizes and the corresponding

weights assigned is shown in Table 9.

Table 9: Weight assignment for size of the jobs

Having set the weights for all jobs at the overloaded computer,

considering all the criteria, the winner factor, ‘µ’ is calculated

as,

m-1

µi = ∑Wij where i is the process-id and j is the

 j=0 criterion

That is, µi is the total weight assigned to process i,

for all criteria j = 0 to m-1.

The procedure is repeated for all n jobs in the queue of the

considered overloaded computer. Now the jobs are scheduled

by selecting a job with the highest weight. The job p will be

scheduled before job q, if and only if µp > µq for all p and q. If

there are two or more jobs with the same weights, then the

resources needed for each job and the available resources is

considered. One job, which can be given all the required

resources at that instant, so that waiting time of that job (in

turn of all other jobs) will be reduced, can be selected. As can

be expected, this increases the throughput of the system.

For all the criteria of each job, weight is set in the range of

zero and one, proportionate to value of the criterion. The

scheduler, after collecting the information about all the jobs at

the overloaded computer, finds the largest of all the values for

a criterion. It then sets the weight to highest as normalized one.

Similarly, the smallest of all the values for a criterion will be

set to the least normalized value as zero. The remaining values

are assigned proportionately ranging between zero and one.

2.2 Implementation
Distributed system is known to be highly dynamic. Hence, the

algorithm is implemented on a heterogeneous environment.

The heterogeneous environment is created by making both

jobs and nodes highly dynamically heterogeneous. The

attributes such as, operating system, number of resources

required, number of resources the processor already has, the

processor time required to complete the execution etc. are

randomly generated. There are 25 nodes and 150 jobs

submitted. The nodes are set to various configurations

randomly. The jobs are assigned different values for all the

criteria considered in the proposed method. The Table 10

shows the values of all those criteria and the corresponding

normalized weight assigned to that criteria in the next column.

The last column gives the winner factor based on which the

scheduling takes place. The first and the third columns give

the source and the destination machine ids. The different

values for source and destination ids imply the job being

migrated and executed remotely, showing an attempt of load

balancing. The same values for source and destination ids

imply local execution.

Figure 2 shows the status of execution as time elapses. It is

captured for a span of first 47 timestamps. Each timestamp

indicates one simulation time. It can be seen that in the

beginning the number of idle machines goes on getting

reduced. To be precise, until timestamp 9, the number of idle

machines decreases demonstrating load-balancing activity

taking place. After some time, the number of idle machines is

increased. This is because, the overloaded machines have

become moderately loaded. The case may also be that the jobs

from overloaded machines, which can be executed at any idle

machine, are exhausted. That is, the remaining jobs require the

host machines only for many reasons. Hence, gradually remote

execution reaches almost zero.

Fig 2 Execution statuses of idle and overloaded nodes

Job
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Size of

the job

(MI)

1
9

9

1
9

2

2
5

7

1
2

4

1
5

6

3
8

7
1

1
8

1
2

8

Weight

assigne

d

0
.0

0
.0

3
6

0
.9

0
6

1
.0

0
.3

9
1

0
.2

2
4

0
.8

3
9

0
.6

6
7

0
.9

4
3

0
.3

7
0

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 6, March 2014

9

Fig 3 Performance of with and without the proposed

algorithm

Figure 3 shows a comparative analysis of the distributed

system with and without the proposed algorithm. The triangle

bits line shows the number of idle nodes with the algorithm

and square bits line shows the number of idle nodes without

the algorithm. It clearly shows the number of idle machines is

reduced by 22 with the usage of algorithm. This accounts to

14% of better processor utilization.

3. CONCLUSION
The research work focuses on scheduling the job of an

overloaded node to be executed at the idle computer. In this

approach, weights are assigned to each of the job for each of

the criteria. Having set the weights, the winner factor, the

summation of all the weights of all the criteria is calculated.

The procedure is repeated for all the jobs in the queue of the

considered overloaded computer. The jobs are scheduled one

by one by selecting the jobs with the highest weight. The

whole idea is experimented considering a complete dynamic

scenario of 25 nodes and 150 jobs. The experiment is repeated

for both homogeneous and heterogeneous with respect to both

jobs and nodes. In the above case considered it shows 14%

better processor utilization. The results were very encouraging

evading most of the drawbacks of state-of-the-art methods.

4. REFERENCES
[1] J Bustos, et. al. 2008, “Load Information Sharing Polices

in communication Intensive Parallel Application”, From

Grids to Service and Pervasive Computing, pp.111-121.

[2] Helen D. Karatza, Ralph C. Hilzer 2003, “Parallel job

scheduling in homogeneous distributed systems”, The

Society for modeling and Simulation International.

Simulation, Vol. 79, No. 5–6, May–June.

[3] Karatza H. D, Hilzer R. C. 2003, “Performance analysis

of parallel job scheduling in distributed systems”. 36th

Annual Simulation Symposium, Mar-Apr, Orland, pp.

109-116.

[4] Karatza H. D. 2000, “A comparative analysis of

scheduling policies in a distributed system using

simulation”, International Journal of Simulation Systems,

Science &Technology, pp. 12-20.

[5] Karatza, H.D. 2000, “Scheduling Strategies for

Multitasking in a Distributed System”. The 33rd Annual.

Simulation Symposium, IEEE Computer system. Apr,

Washington, DC, pp. 83-90.

[6] Koip P. 2005, “Parallel Algorithms for Combinatorial

Search Problems”, University of Massachusetts,

[7] Legrand, H. B. Newman 2000, “A self-organizing neural

network for job scheduling in distributed systems”,

Contribution to ACAT.

[8] Luling R, Monien. B 1993. “A Dynamic Distributed Load

Balancing Algorithm with Provable Good Performance”,

5th ACM Symposium on Parallel Algorithms and

Architectures, pp.164-173.

[9] Renato P. et. al. 2007, “A complex network-based

approach for job scheduling in grid environments”, HPCC

2007, lncs 4782, pp. 204–215.

[10] Veeravalli, B. Wong Han Min 2004, “Scheduling

divisible loads on heterogeneous linear daisy chain

networks with arbitrary processor release time”, Vol. 15,

No. 3, March, pp. 273 – 288.

[11] Zhang Y, A. Sivasubramaniam 2001, “Scheduling best-

effort and real-time pipelined applications on timeshared

clusters”, 13th Annual ACM Symposium on Parallel

Algorithms and Architectures, July 4-6, Crete Island,

Greece, pp. 209-219.

[12] P. Agrawal, D. Kifer, and C. Olston 2008. “Scheduling

Shared Scans of Large Data Files”. In Proc. VLDB, pages

958–969.

[13] J. Dean and S. Ghemawat 2008. Mapreduce: simplified

data processing on large clusters. Communications of the

ACM, 51(1):107–113.

[14] D. Thain, T. Tannenbaum, and M. Livny 2005.

“Distributed Computing in Practice: The Condor

Experience. Concurrency and Computation: Practice and

Experience”, 17(2):323–356, February.

[15] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S.

Shenker, and I. Stoica 2009. “Job Scheduling for Multi-

User MapReduce Clusters”. Technical Report

UCB/EECS-2009-55, University of California at

Berkeley, April.

[16] Gulati, I. Ahmad, and C. A. Waldspurger 2009.

“PARDA: Proportional Allocation of Resources for

Distributed Storage Access”. In Proceedings of the

Seventh USENIX Conference on File and Storage

Technologies (FAST’09), pages 85–98, February.

5. AUTHOR’S PROFILE
Author, Dr. LATHA C A is a doctorate from Anna University

Chennai, India, in the domain of distributed systems. She has

graduated in the year 1991 from Mysore University, post

graduated from National Institute of Technology Karnataka,

India in 2003. She has a teaching experience of more than 20

years and research experience of more than 7 years. As a

result, she has in her credit several national and international

papers. She has also filed for a patent at USPTO for one of her

research works. Her area of interest includes, computer

networks, distributed systems and cloud computing. At

present she is serving as Professor in the department of

Computer Science and Engineering at Don Bosco Institute of

Technology, Bangalore, India, affiliated to Visweswaraya

Technological University.

IJCATM : www.ijcaonline.org

