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ABSTRACT 

Graph theory is one of the most flourishing branches of 

modern mathematics and computer applications.  Domination 

in graphs has been studied extensively in recent years and it is 

an important branch of graph theory.  An introduction and an 

extensive overview on domination in graphs and related topics 

is surveyed and detailed in the two books by Haynes et al. 

[ 6,7]. Recently dominating functions in domination theory 

have received much attention. In this paper we present some 

results on minimal signed dominating functions and minimal 

total signed dominating functions of corona product graph of 

a path with a star.  

Keywords 

Corona Product, signed dominating function, Total signed 
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1. INTRODUCTION 
Domination Theory has a wide range of applications to many 

fields like Engineering, Communication Networks, Social 

sciences, linguistics, physical sciences and many others. 

Allan, R.B. and Laskar, R.[1], Cockayne, E.J. and 

Hedetniemi, S.T. [2] have studied various domination 

parameters of graphs.  

Recently, dominating functions in domination theory have 

received much attention. The concepts of total dominating 

functions and minimal total dominating functions are 

introduced by Cockayne et al. [3]. Jeelani Begum, S. [8] has 

studied some total dominating functions of Quadratic Residue 

Cayley graphs. 

Frucht and Harary [5] introduced a new product on two 

graphs G1 and G2, called corona product denoted by G1G2. 

The object is to construct a new and simple operation on two 

graphs G1 and G2 called their corona, with the property that 

the group of the new graph is in general isomorphic with the 

wreath product of the groups of G1 and of G2. 

The authors have studied some dominating functions of 

corona product graph of a cycle with a complete graph [9] and 

published papers on minimal dominating functions, some 

variations of Y – dominating functions and Y – total 

dominating functions [10,11,12]. 

In this paper we study the concept of total dominating 

functions of corona product graph of a path with a star and 

some results on minimal total dominating functions are 

obtained. 

 

 

2. CORONA PRODUCT OF  AND   

The corona product of a path  with star   is a graph 

obtained by taking one copy of a  – vertex path   and n 

copies of  and then joining the vertex of   to every 

vertex of    copy of  and it is denoted by  

We require the following theorem whose proof can be found 

in Siva Parvathi, M. [8]. 

Theorem 2.1: The degree of a vertex  in   is 

given by 

 

3. TOTAL DOMINATING SETS AND 

    TOTAL DOMINATING FUNCTIONS  
The concepts of total dominating functions and minimal total 

dominating functions are introduced by Cockayne et al. [4]. In 

this section we prove some results related to total dominating 

functions of the graph . First let us recall some 

definitions. 

Definition: Let  be a graph without isolated vertices. 

A subset  of  is called a total dominating set (TDS) if 

every vertex in  is adjacent to at least one vertex in  . 

If no proper subset of  is a total dominating set, then  is 

called a minimal total dominating set (MTDS) of . 

Definition: The minimum cardinality of a MTDS of  is 

called a total domination number of  and is denoted by   

. 

Theorem 3.1: The total domination number of   is    

Proof: Let T denote a total dominating set of G.  Let T 

contain the vertices of the path . 

By the definition of the graph G, every vertex in  is adjacent 

to all vertices of associated copy of . That is the vertices 

in dominate the vertices in all copies of  respectively. 

Further these vertices being in , they dominate among 

themselves. Thus T becomes a TDS of G. Obviously this set 

is minimum. 
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Therefore      

Theorem 3.2: Let T be a MTDS of   Then a 

function  defined by 

  

becomes  a  MTDF of    

Proof: Consider the graph  with vertex set V. 

Let T be a MTDS of such that it contain all the vertices of 

Pn . 

The summation value taken over  of  is as follows: 

Case 1: Let  be such that  in . 

Then  contains  vertices of  and two vertices 

of  in  

So   .20.......011
)1()(

















 
timesmvNu

uf

 

Case 2: Let  be such that  in  

Then  contains  vertices of  and one vertex of 

 in  

So   .10.......01
)1()(

















 
timesmvNu

uf

 

Case 3: Let  be such that  in  

Then  contains  vertices of  and one vertex of  

in  

So   10.......01
)(













 
timesmvNu

uf . 

Case 4: Let  be such that  in  

Then contains one vertex  of  and one vertex of  

in  

So   101
)(




uf
vNu

. 

Therefore for all possibilities,  

we get   ,1
)(




uf
vNu  

 

This implies that f is a TDF. 

Now we check for the minimality of  . 

Define  1,0: Vg
 
 by 

   

where   0  <  r  <  1. 

Since strict inequality holds  at the vertex ,Tvk  it follows  

that  g  <  f. 

Case (i): Let  be such that  in G. 

Sub case 1: Let ).(vNvk   

Then 

  .110.......01
)1()(

















 rrug
timesmvNu


 

Sub case 2: Let )(vNvk  . 

Then   .20.......011
)1()(

















 
timesmvNu

ug

 

Case (ii): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then   .10.......0
)1()(

















 rrug
timesmvNu
  

Sub case 2: Let )(vNvk  . 

Then   .10.......01
)1()(

















 
timesmvNu

ug

 

Case (iii): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then   .10.......0
)(













 rrug
timesmvNu
  

Sub case 2: Let )(vNvk  . 

Then   .10.......01
)(













 
timesmvNu

ug

 

Case (iv): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then   10
)(




rrug
vNu

. 

Sub case 2: Let )(vNvk  . 

Then   101
)(




ug
vNu

. 
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This implies that   1
)(




ug
vNu

, for some  

So  is not a TDF. 

Since  is taken arbitrarily, it follows that there exists no g < f 

such that is a TDF. 

Therefore  is a MTDF.    

Theorem 3.3: A function    0, 1  defined by   

is  a  TDF  of     if  

   It  is  a  MTDF   if   q = 2. 

Proof: Consider the graph  with vertex set V. 

Let  be a function defined as in the hypothesis. 

Case I: Suppose q < 2. 

Case 1: Let  be such that  in  

So  

 

,1
31

.......
11

3

)(











q

m

qqq
uf

timesm

vNu   
 

since   and  .

 Case 2: Let  be such that  in  

So  

 

,1
21

.......
11

2

)(











q

m

qqq
uf

timesm

vNu   

 

since q < 2 and m ≥ 2.

 Case 3: Let  be such that  in G. 

So  

 

,1
11

.......
11

1

)(











q

m

qqq
uf

timesm

vNu   

 

since q < 2 and m ≥ 2. 

Case 4: Let  be such that  in  

So   ,1
211

)(


 qqq

uf
vNu

 since q < 2. 

Therefore  for all possibilities,   

we get   ,1
)(




uf
vNu  

 

This implies that is a TDF. 

Now we check for the minimality of  . 

Define  1,0: Vg   by 

  

where   . 

Since strict inequality holds at a vertex  of V, it follows that  

. 

Case (i): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then  

 
  

timesm

vNu qqq
rug







2

)(

1
.......

11

 

  ,1
321








q

m

q

m

q
  

since q < 2 and m ≥ 2. 

Sub case 2: Let )(vNvk  . 

Then  

 

,1
31

.......
11

3

)(











q

m

qqq
ug

timesm

vNu   

 

since q < 2 and m ≥ 2. 

Case (ii): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then  

 
  

timesm

vNu qqq
rug







1

)(

1
.......

11

 

  ,1
211








q

m

q

m

q
  

since q < 2 and m ≥ 2. 

Sub case 2: Let )(vNvk  . 

Then  

 

,1
21

.......
11

2

)(











q

m

qqq
ug

timesm

vNu   

 

since q < 2 and m ≥ 2. 

Case (iii): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then  
  

timesm

vNu qqq
rug






1

.......
11

)(

 

  ,1
11





q

m

q

m

q
  

since q < 2 and m ≥ 2. 

Sub case 2: Let )(vNvk  . 
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So  

 

,1
11

.......
11

1

)(











q

m

qqq
ug

timesm

vNu   

 

since q < 2 and m ≥ 2. 

Case (iv): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then   .
21

)( qq
rug

vNu




 

Since q < 2, it follows that  .1
2


q
 

Sub case 2: Let  )(vNvk  . 

Then   ,1
211

)(


 qqq

ug
vNu

 since q < 2. 

Hence, it follows that   ,1
)(




ug
vNu  

 

Thus  is a TDF. 

This implies that  is not a MTDF. 

Case II: Suppose q = 2. 

Case 5: Let  be such that  in  

So 

 

 

.1
2

1
1

2

331
.......

11

3

)(

















mm

q

m

qqq
uf

timesm

vNu   

 

Case 6: Let  be such that  in G. 

So 

 

 

.1
2

1
2

221
.......

11

2

)(














mm

q

m

qqq
uf

timesm

vNu     

Case 7: Let  be such that  in G. 

So 

 

 

,1
2

111
.......

11

1

)(














m

q

m

qqq
uf

timesm

vNu   

 

since m ≥ 2. 

Case 8: Let  be such that  in G. 

So   .1
2

2211

)(


 qqq

uf
vNu

 

Therefore for all possibilities,   

we  get   ,1
)(




uf
vNu   

 

This implies that  is a TDF. 

Now we check for the minimality of  . 

Define  1,0: Vg  by 

  

where   . 

Since strict inequality holds at a vertex  of V, it follows that  

. 

Then as in case (i), for  be such that , we 

get 

 

 

,1
1

.......
11

2

)(








  

timesm

vNu qqq
rug          

  if    vNvk  . 

And  

 

 

,1
2

1
1

2

331
.......

11

3

)(

















mm

q

m

qqq
ug

timesm

vNu   

 if  vNvk  . 

Again as in case (ii), for  be such that  

We have  

 

,1
1

.......
11

1

)(








  

timesm

vNu qqq
rug   

if  vNvk  . 

And 

 

 

,1
2

1
2

221
.......

11

2

)(














mm

q

m

qqq
ug

timesm

vNu   

 if  vNvk  . 

Again we can see as in case (iii) that for   be such 

that  

  ,1
1

.......
11

)(








  

timesm

vNu qqq
rug

  

if  vNvk  . 

And  
 

 

,1
2

111
.......

11

1

)(














m

q

m

qqq
ug

timesm

vNu   

  

if  vNvk  . 

Similarly we can show as in case (iv) that  be such 

that   
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  ,1
2

221

)(


 qq

rug
vNu

 if  ,vNvk   

and    ,1
2

2211

)(


 qqq

ug
vNu

 if  vNvk  . 

This implies that   1
)(




ug
vNu

, for some   

So   is not a TDF.  

Since  is defined arbitrarily, it follows that there exists no  

 such that  is a TDF. 

Thus  is a MTDF.    

Theorem 3.4: A function  defined by 

  where  and 

 is a TDF  of    if      . 

Otherwise it is not a TDF. Also it becomes a MTDF 

if  . 

Proof: Consider the graph  with vertex set V. 

Let  be defined by , 

where  and    

Clearly    

Case 1: Let  be such that  in  

So  

 

  .3.......

3

)( q

p
m

q

p

q

p

q

p
uf

timesm

vNu








  

 

Case 2: Let  be such that  in  

So 
 

 

  .2.......

2

)( q

p
m

q

p

q

p

q

p
uf

timesm

vNu








  

 

Case 3: Let  be such that  in  

So 
 

 

  .1.......

1

)( q

p
m

q

p

q

p

q

p
uf

timesm

vNu








  

 

Case 4: Let  be such that  in  

So   .2
)(











 q

p

q

p

q

p
uf

vNu

 

From the above four cases, we observe that  is a TDF   if   

. 

Otherwise   is not a TDF. 

Case 5: Suppose   . 

Clearly      is a TDF. 

Now we check for the minimality of    

Define  1,0: Vg  by 

  

where   . 

Since strict inequality holds at a vertex  of V, it follows that  

 

Case (i): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then  

 
  

timesm

vNu q

p

q

p

q

p
rug







2

)(

.......
 

                ,132 
q

p
m

q

p
m

q

p

 

 since    

Sub case 2: Let )(vNvk  . 

Then  

 

  ,13.......

3

)(








q

p
m

q

p

q

p

q

p
ug

timesm

vNu   

  

since    

Case (ii): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then  

 
  

timesm

vNu q

p

q

p

q

p
rug







1

)(

.......
 

      ,121 
q

p
m

q

p
m

q

p   

since    

Sub case 2: Let )(vNvk  . 

Then  

 

  ,12.......

2

)(








q

p
m

q

p

q

p

q

p
ug

timesm

vNu   

  

since    

Case (iii): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then  
  

timesm

vNu q

p

q

p

q

p
rug





 .......
)(
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    ,11 
q

p
m

q

p
m

q

p

 

 since    

Sub case 2: Let )(vNvk  . 

Then   

 

  ,11.......

1

)(








q

p
m

q

p

q

p

q

p
ug

timesm

vNu   

  

since    

Case (iv): Let  be such that  in G. 

Sub case 1: Let )(vNvk  . 

Then   .2
)(











 q

p

q

p
rug

vNu

 

Since 
 

Sub case 2: Let )(vNvk  . 

Then   ,12
)(











 q

p

q

p

q

p
ug

vNu

 since  

Hence it follows that   ,1
)(




ug
vNu  

 

Thus for all possibilities, we get that   is a TDF. 

This implies that   is not a MTDF. 

Case 6: Suppose  . 

As in case 1 and 2, we have that 

 
 

 

,1)3(.......

3

)(
















q

p
m

q

p

q

p

q

p
uf

timesm

vNu   
   

since  and  

And  
 

 

,1)2(.......

2

)(
















q

p
m

q

p

q

p

q

p
uf

timesm

vNu   
  

since  and  

Again as in case 3 and 4, we have that 

  

 

,1)1(.......

1

)(
















q

p
m

q

p

q

p

q

p
uf

timesm

vNu   

 

since  and  

And    1
2

1
  2

q

p
  2

)(


 q

p

q

p
uf

vNu

 

Therefore   for all possibilities,   

we get   ,1
)(




uf
vNu   

 

This implies that  is a TDF. 

Now we check for the minimality of  . 

Define  1,0: Vg  by 

  

where   . 

Since strict inequality holds at a vertex  of V, it follows that  

 

Then we can show as in case (i) and (ii) of case 5 that 

   ,1
)(




ug
vNu

 if  and )(vNvk  or  )(vNvk  . 

Again as in case (iii) of case 5, we can show that 

  ,1
)(




ug
vNu

 if  and )(vNvk  or  )(vNvk  . 

As in case (iv) of case 5, we can show that 

   ,1
2

1`
  2

q

p
  2    

)(


 q

p
rug

vNu

  

if    and  )(vNvk  . 

 

And    ,1
2

1
  2

q

p
  2

)(


 q

p

q

p
ug

vNu

  

if    and  )(vNvk  . 

This implies that   1
)(




ug
vNu

, for some vV. 

So   is not a TDF. 

Since  is defined arbitrarily, it follows that there exists no 

 such that  is a TDF. 

Thus  is a MTDF.      

4. CONCLUSION 
It is interesting to study the total dominating functions of the 

corona product graph of a path with a star. This work gives 

the scope for the study of convexity of these minimal total 

dominating functions and the authors have also studied this 

concept. 
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The function f takes the value 1 for the vertices of P7 

and the value 0 for the vertices in each copy of K1,3. 
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