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ABSTRACT 

An Educational Data Portal (EDP) play important role in 

teaching and learning as it contains useful resources. Every 

big educational institutions such as university shall build an 

EDP soon or later. The aim of this study is to utilize Big Data 

solutions in building a Dashboard for an Education Data 

Portal. The proposed EDP is envisioned to be a core tool for 

all students and learning agencies, providing support for many 

types of views and content/instructional resources to allow 

effective data-driven decision-making for students, teacher 

and the public, based on recent standards. It supports many 

features such as accessibility of data and content anywhere, 

scalability, extensibility of functionality, and extensibility of 

the technology architecture to support integration with the 

Shared Learning Infrastructure (SLI). 

The Data Dashboard is highly scalable and extensible 

architecture that will grow, if necessary, to meet the needs of 

students, and educators 
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1. INTRODUCTION 
An Educational Data Portal (EDP) play important role in 

teaching and learning as it contains useful resources[1]. Many 

succesful implemntation of portals are proposed suc as 

StarBRITE, Vanderbilt University Biomedical Research 

Integration, Translation and Education portal [2]. Every big 

educational institutions such as university shall build an EDP 

soon or later. The aim of this study is to utilize Big Data 

solutions in building a Dashboard for an Education Data 

Portal. Section 2 reviews main terms and tools for Big Data 

solutions. Section 3 is the proposed framework. Section 4 

invesitages the proposed framework.  

2. PREVIOUS WORK 
It is often assumed that Big Data resources are too large and 

complex for human comprehension. The analysis of Big Data 

is best left to software programs. Not so.  

When data analysts go straight to the complex calculations, 

before they perform a simple estimation, they will find 

themselves accepting wildly ridiculous calculations. [3] Rapid 

increases in high performance computing sets the stage for so-

called “big data” analysis challenges. However, conventional 

climate analysis techniques are inadequate in dealing with the 

complexities of today's data. [4].  Big data are of special 

Volume, Variety, and Velocity([5], [6]). A data warehouse 

stores a substantial amount of historical data. Users of this 

system are able to continuously ask or query it to retrieve data 

for analysis. [7]  A data warehouse is a database containing 

data from multiple operational systems that has been 

consolidated, integrated, aggregated, and structured, so that it 

can be used to support the analysis and decision-making 

process of a business. [8] The data warehouse model is 

constructed from two relational data model schemas covering 

demographics and inventory-accounting. [9] 

Building a data warehouse requires focusing closely on 

understanding three main areas: the source area, the 

destination area, and the mapping area (Extraction–

transformation–loading, ETL processes). [10]. MapReduce 

has become an important distributed processing model for 

large-scale data-intensive applications like data mining and 

web indexing. There is a predictive schedule and prefetching 

(PSP) mechanism, that reduces the execution time, increases 

the overall throughput and improves the I/O utilization. [11]. 

MapReduce is a parallel programming model to process large 

datasets, and it was inspired by the Map and Reduce 

primitives from functional languages. Its first implementation 

was designed to run on large clusters of homogeneous 

machines ([12],[13]) MapReduce’s execution model includes 

an all-map-to-all-reduce communication, called the shuffle, 

across the network bisection. [14]. Hadoop–an open-source 

imple- mentation of MapReduce is widely used for short jobs 

requiring low response time. [15]. Hadoop Technology Stack 

is shown in figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1.  Hadoop Technology Stack [16] 
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Hive is a batch-oriented, data-warehousing layer built on the 

core elements of Hadoop (HDFS and MapReduce). It 

provides users who know SQL with a simple SQL-lite 

implementation called HiveQL without sacrificing access via 

mappers and reducers. 

As a result, Hive is best used for data mining and deeper 

analytics that do not require real-time behaviors.[12] Hive 

uses three mechanisms for data organization : Tables , 

Partitions and Buckets. [17]. Hive, allows SQL developers to 

write Hive Query Language (HQL) statements that are similar 

to standard SQL statements , HQL statements are broken 

down by the Hive service into MapReduce jobs and executed 

across a Hadoop cluster. [18] 

Pig was initially developed at Yahoo! To allow people using 

Hadoop to focus more on analyzing large data sets and spend 

less time having to write mapper and reducer programs. Like 

actual Pigs, who eat almost anything, the Pig programming 

language is designed to handle any kind of data. [18]. Pig was 

designed to make Hadoop more approachable and usable by 

nondevelopers. [17] 

3. PROPOSED FRAMEWORK 
The proposed EDP is envisioned to be a core tool for all 

students and learning agencies, providing support for many 

types of views and content/instructional resources to allow 

effective data-driven decision-making for students, teacher 

and the public, based on recent standards [19]. 

To support this vision, the solution architecture must have the 

following characteristics: 

 Accessibility of data and content anywhere and 

anytime by students, public, teachers, and other 

educators at home, school, and via mobile devices. 

 Scalability to accommodate students, public, and 

teachers/principals/other educators. 

 Extensibility of functionality in the system 

environment. 

 Extensibility of the technology architecture to 

support integration with the Shared Learning 

Infrastructure (SLI). 

The following diagram provides a graphical view of the 

proposed architecture for EDP. 

 

Figure 2.  Archetcture of EDP 

The Data Dashboard is highly scalable and extensible 

architecture that will grow, if necessary, to meet the needs of 

students, and educators. It also supports: 

 Clustering/acceleration—offers a framework to 

cluster application components for load balancing. 

 Caching—offers a framework to cluster application 

components to share runtime data, as well as data 

caching mechanism for increased performance.  

 Event logging—it has a centralized logging 

framework to enables tracking user operations done 

via the exposed user interfaces. 

 Security —as it supports a secure (SSL) login . 

 Notificatios—it has a powerful event publish with 

many channels of notification. 

4.  IMPLEMNTATION 
We implement the proposed framework in third author 

website http://el-dosuky.com . Each student, either under 

graduate or post-graduate , has a profile in the web site, as 

shown in the next fugure. 

 

Figure 3.  Sample student profile  
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To access or modify one's data, student is asked to enter 

credentials, as shown in fugure 4.  

 

Figure 4.  loging to the web site  

 

Figure 5.  XP desktop for each student  

 

 

 

Figure 6.  Administration   

 

Figure 7.  XP look and feel  

The website has access to the student affaire data warehouse, 

this enables  courses to tracks students scoring, as shoen in the 

following figures. 
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Figure 8. some courses   

 

Figure 9.  students list  

5. CONCLUSION AND FUTURE WORK 
The proposed EDP is envisioned to be a core tool for all 

students and learning agencies, providing support for many 

types of views and content/instructional resources to allow 

effective data-driven decision-making for students, teacher 

and the public, based on recent standards. It supports: 

 Accessibility of data and content anywhere and 

anytime by students, public, teachers, and other 
educators at home, school, and via mobile devices. 

 Scalability to accommodate students, public, and 

teachers/principals/other educators. 

 Extensibility of functionality in the system 

environment. 

 Extensibility of the technology architecture to 

support integration with the Shared Learning 

Infrastructure (SLI). 

The Data Dashboard is highly scalable and extensible 

architecture that will grow, if necessary, to meet the needs of 

students, and educators. In the future we plan to extend the 

underlying infrastructure, as well as linking it with many other 

databases. Also, we would like to incorporate other services 

such as recommending subjects for students [20] and opinion 

mining [21]. 
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