
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

36

A Vision Interface Framework for Intuitive Gesture

Recognition using Color based Blob Detection

Saikat Basak
Dept. of MCA

Techno India College of Technology
Kolkata, India

Arundhuti Chowdhury
Assistant Professor, Dept. of MCA

Techno India College of Technology
Kolkata, India

ABSTRACT

This paper is an illustrative approach for developing a visual

interface for an intuitive gesture recognition system using

finger gestures and color markers. The objective is to develop

a system by which one can communicate with any digital

device more interactively and make these interactions more

intuitive and cost effective at the same time. Although vision

interfaces that work with finger gestures have been researched

and developed for some time, this approach of developing the

interface is unique in many aspects. The initial goal was to

minimize hardware requirements and maximize

configurability of the system. To serve the purpose, no

external hardware other than an internal or external webcam is

used. This makes it cost effective and easier to obtain.

Predefined gestures are simple yet intuitive. And thus, using

this framework a low cost yet effective gesture interpretation

system is developed

General Terms

Computer vision, Gesture recognition, Perpetual computing.

Keywords

Vision interface, vision framework, gesture, finger gesture,

mouse control.

1. INTRODUCTION
The point and click method is arguably the most common way

to interact with today's digital devices, such as the personal

computer. And nowadays the emergences of computer vision

technologies have enabled us to send control instructions to

the computers by means of gestures. This paper aims to use

computer vision to analyze different sets of gestures or actions

done using the human fingers and interpret them as

meaningful instruction to be feed to the computer.

Computer vision is nowadays being used in Gaming Industry

or in the fields of Perpetual Computing and the aim is to use

gestures to interact with the computer or the gaming device.

Color based hand tracking systems [1], integrated person

tracking with color and pattern detection [2], 3D hand

tracking is studied [3] and implemented in several perpetual

computing environments. Finger gestures as pointing

interfaces have been well studied in [4] and [5]. The approach

proposed here is rather simple and cost effective as it will

require less hardware to implement and no sensors are

required.

The system implemented is capable of interpreting predefined

sets of gestures into mouse control instructions. In other

words, the aim is to emulate mouse driven point and click

events by using finger gestures. The system consists of a

built-in or USB webcam and a software system. The camera is

put on top of the display screen or the computer monitor

facing the user. The user uses two different color markers on

the fingers and when the mouse emulation is started using the

graphical user interface provided with the software, the

software tracks those markers using the camera. And this

information is used to move the mouse pointer on screen. The

user can also execute mouse events using gestures. The events

that can be executed are left click, right click and scroll. In the

following parts we talk about, Gesture Recognition – Here we

elaborate the framework that has been developed, using

diagrams and algorithms; Software Implementation – We

discuss about various components, libraries and language used

to develop the software; and finally, Conclusion – Here we

conclude with what we could achieve with our research so far

and what might be the future possibilities.

2. PREVIOUS WORK
One main objective of the proposed framework is to

overcome the limitations of the previous works mentioned

bellow.

2.1 Cave Automatic Virtual Environment
“Hand gesture recognition using blob detection for immersive

projection display system” [6] is a hand gesture interface for a

virtual reality simulation called Cave Automatic Virtual

Environment (better known by the recursive acronym CAVE).

It is a video theater with walls made up of rear projection

screens. A lifelike visual display is created by projectors

positioned outside the walls and controlled by physical

movements from a user inside it.

The CAVE system although being a good implementation of

computer vision to create a virtual reality environment, lags

intuitiveness and user interactions because of the limited hand

gestures.

2.2 FingerMouse
“FingerMouse: A freehand computer pointing interface” [4] is

a freehand pointing alternative to the mouse. A vision system

constantly monitors the hand and tracks the fingertip of the

pointing hand. The screen cursor is moved using hand gesture

and the mouse clicks are registered using the keyboard.

FingerMouse definitely tracks the fingertips and moves the

cursor on screen but click operations are performed using the

keyboard. This is obviously a huge limitation. The proposed

framework here overcomes the limitations of FingerMouse

and the inclusion of several gestures to perform operations

such as clicks, scroll make the proposed framework more

complete.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

37

3. GESTURE RECOGNITION

3.1 Framework
The current frame is captured using a web-cam. The captured

image is in BGR format. The image is flipped because mirror

images captured by web-cams are not intuitive.

Then the color space of the image is converted into HSV color

space. The regions of the color markers were masked using

predefined color range to generate a binary image. An

opening operation is then applied to the image to reduce

noise.

Later the blobs of the color markers are detected and the

gestures are recognized using the detected blobs. Once the

gestures are detected and analyzed system calls are sent to

control the mouse. A framework diagram is shown in Fig 1.

Fig 1: Framework for gesture recognition using color

markers.

3.2 Color Space Conversion
HSV color space is relatively robust to light variations, so it is

effective to detect color markers. A comparison of several

color models have been studied in [7].

3.3 Noise Reduction
For noise reduction an opening operation is used. Opening

consists of an erode operation followed by a dilate operation.

A general idea of noise reduction is using a blur operation but

opening is used because it does not change the size of the area

of the object, blur does, Fig 2.

Erosion with small square structuring elements shrinks an

image by removing a layer of pixels from both the inner and

outer boundaries of regions. Thus the small details are

eliminated. Larger structuring elements have a more

pronounced effect, the result of erosion with a large

structuring element being similar to the result obtained by

iterated erosion using a smaller structuring element of the

same shape. Erosion removes small-scale details from a

binary image but simultaneously reduces the size of regions of

interest, too. Dilation has the opposite effect to erosion - it

adds a layer of pixels to both the inner and outer boundaries of

regions.

In other words, erosion shrinks the image foreground and

expands its background, whilst dilation expands the image

foreground and shrinks its background. Resulting is an

opening, one of the most effective ways to reduce unwanted

noise from image.

Fig 2 (a): Original image.

Fig 2(b): After Gaussian blur, shows increase in area of

the pixels.

Fig 2(c): After Opening operation, shows reduced noise

and no increase in pixels.

3.4 Masking With Predefined Color Range
Region with any specific color can be extracted from the

image using this method. The color markers are masked using

predefined color range threshold. For better results, only

primary colors are suggested to be used as markers. The

original image taken using the webcam is shown in Fig 3(a).

The result mask is shown in Fig 3(b). It is a binary image and

will be used as input for blob detection after noise reduction.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

38

Fig 3(a): Original image.

Fig 3(b): Masked image.

3.5 Blob Detection
The color blobs are detected using image moments. Object

detection using image moments are well surveyed in [8] and

[9].

The mathematical formula used to calculate the co-ordinates

of the position of the center of the blobs is as follows (1) and

(2),

x = moment10 / moment00 (1)

y = moment01 / moment00 (2)

Here, (x, y) be the position co-ordinates of the center of the

detected blob, moment10 is 1st order spatial moment around

x-axis, moment01 is 1st order spatial moment around y-axis,

moment00 is 0th order central moment. Here similar methods

are applied to detect two different color blobs. The result of

blob detection is shown is Fig 4. The blobs are sorted by

color. The blob of the marker in the index finger is labeled b1

and the other is labeled b2.

Fig 4: Detected Blobs

3.6 Gesture Recognition
To recognize gestures, the gestures are categorized in two -

one finger and two finger gestures. “One-finger gesture” is

gesture by one finger, usually the index finger, controls the

movement of the mouse cursor on screen. “two-finger

gesture” is a combination of gestures by two fingers, usually

the index and the thumb, and comprises of „click‟, „right

click‟ and „scroll‟ commands. Algorithm of gesture

specification follows,

 // Gesture specification

 If number of blob = 1 Then

 Perform ‘one finger gesture’

 If number of blob = 2 Then

 Perform ‘two finger gesture’

 End If

 End If

The “one-finger gesture” is used to move the mouse pointer

on the display screen. We consider a rectangular area of small

margin within the image. Inside this area the position of the

blob b1 in the current frame is mapped to the display screen.

Also let us assume the margin of this area from the image

boundaries be m.

Let us assume the height and width of the display screen is hs

and ws, respectively. The co-ordinates after mapping the

position of the blob b1 to the screen is (xs, ys). The height and

width of the image be hi and wi, respectively. If the x-value

and y-value of center of b1 be xb1 and yb1, respectively, then,

(xs, ys) can be calculated using the following method (3) and

(4),

xs = (xb1 - m) * (ws / (wi - 2m)) (3)

ys = (yb1 - m) * (hs / (hi - 2m)) (4)

Thus the algorithm for “one-finger gesture”,

 // One finger gesture

 If (xb1> m && yb1> m && xb1< (wi- m) && yb1< (hi -

m)) Then

 Move mouse pointer to position (xs, ys) on screen

 End If

The “two-finger gesture” comprises of „click gesture‟, „right

click gesture‟ and „scroll gesture‟. We assume x-value and y-

value of center of b2 is xb2 and yb2, respectively. And let r be a

constant, d be the distance between the position of the center

co-ordinates of b1 and b2. Let us take a circle around the

center of b1 with radius r, Fig 5(a). If the center of b2,

represented by (xb2, yb2), is within this circle it is the „click

gesture‟, Fig 5(b). The „left mouse button pressed‟ and „left

mouse button released‟ events are controlled using the „click

gesture‟. The algorithm for „click gesture‟ follows,

 // Click gesture

 If (d < r) Then

 Perform event ‘left mouse button pressed’

 Else

 Perform event ‘left mouse button released’

 End If

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

39

Fig 5: (a) Normal hand, (b) Click gesture.

For the „right click gesture‟ a counter c and a timer t which is

a constant, has been introduces. Let us assume that the

position of the center of the blob b1 in current frame (n) be

(xb1, yb1)n. The position of b1 in frame (n+1) is (xb1, yb1) n+1.

We also assume that the displacement of the center of b1 in

two consecutive frames be D. Let δ be a constant. Then the

„right click gesture‟ is determined using the following

algorithm,

 // Right click gesture

 Let c = 0

 If (‘left mouse button pressed’ is FALSE) Then

 If (D <δ) Then

 c = c+1

 If (c == t) Then

 Perform ‘right click button event’

 c = 0

 End If

 Else

 c = 0

 End If

 End If

In simple words, if the center of the blob b1 stays within a

boundary of radius δ in consecutive frames for a certain time

identified by t, then it is a „right click gesture‟.

For the „scroll gesture‟, the image is separated in three

regions, region A, B and C, Fig 6(a). If the position of the

center of the second blob b2 is inside region A then the

„upward scroll event‟ is triggered, Fig 6(b). When center of b2

is inside region B, the „downward scroll event‟ is triggered.

Fig 6(c) shows gesture for downward scroll. The algorithm is,

 // Scroll gesture

 If (‘left mouse button pressed’ is FALSE && ‘right

click button event’ is FALSE) Then

 If (xb2> xb1&& yb2< yb1) Then

 Perform ‘upward scroll event’

 Else If (xb2> xb1&& yb2> yb1) Then

 Perform ‘downward scroll event’

 End If

 End If

Fig 6: (a) Regions in the image (b) Scroll down gesture, (c)

Scroll up gesture.

4. SOFTWARE IMPLEMENTATION
The whole system is developed and tested in a Gnu/Linux

operating system environment. The vision module has been

developed using the OpenCV library version 2.4.8. The

graphical user interface has been implemented using Qt

library version 4.x. The system calls are triggered using Xlib.

The system includes a webcam connected to a computer via

USB. The resolution of camera input is 640x480.

5. CONCLUSION
In this paper, a gesture interpretation system capable of

controlling the computer mouse using gestures is developed.

The framework is presented for gesture recognition using

color markers. It uses built in or an USB webcam and there is

no need of high cost devices. The system minimizes the need

of extra input devises for computer systems. This kind of

framework can be used to build gesture based input systems

for other digital appliances like televisions, media centers. In

future research more gestures can be introduced to control

web browsers, media players, and interactive games. The

efficiency of the system can also be dramatically improved by

background subtraction.

6. ACKNOWLEDGMENTS
This work was supported by Dept. of MCA, Techno India

College of Technology, Newtown, Kolkata.

7. REFERENCES
[1] K. Imagawa, S. Lu, S. Igi, "Color-Based Hands Tracking

System for Sign Language Recognition," Proc. 3rd Int.

Conf. on Face and Gesture Recognition, Nara, Japan,

April 1998.

[2] T. Darrell, G. Gordon, M. Harville, J. Woodfill,

"Integrated Person Tracking Using Stereo, Color, and

Pattern Detection," Proc. Conf. on Computer Vision and

Pattern Recognition, Santa Barbara, California, June

1998.

[3] Subutai Ahmad, "A usable real-time 3d hand tracker",

Conference Record of the Asilomar Conference on

Signals, Systems and Computers, pp. 1257-1261, 1994.

[4] Thomas A. Mysliwiec, "Fingermouse: A Freehand

computer pointing interface", Technical report VISLab-

94-01, University of Illinois at Chicago, 1994.

[5] Francis K. H. Quek, Thomas Mysliwiec, and MeideZhao,

"Fingermouse: A freehand pointing interface", Proc. Int.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

40

Workshop on Automatic Face-and Gesture-Recognition,

Zurich, Switzerland, pp. 372-377, June 1995.

[6] Hasup Lee, YoshisukeTateyama, TetsuroOgi, “Hand

Gesture Recognition using Blob Detection for Immersive

Projection Display System”, World Academy of Science,

Engineering and Technology, Vol:62 2012-02-27.

[7] Benjamin D. Zarit, Boaz J. Super, Francis K. H. Quek,

“Comparison of Five Color Models in Skin Pixel

Classification”, International Workshop on Recognition,

Analysis, and Tracking of Faces and Gestures in Real-

time Systems, pp. 58-63, September 1999.

[8] Jan Flusser, “On the independence of rotation moment

invariants”, Pattern Recognition - The Journal of the

Pattern Recognition Society, 19 May 1999.

[9] Jan Flusser, Tomás Suk, “Rotation Moment Invariants

for Recognition of Symmetric Objects”, IEEE

transactions on image processing, vol. 15, no. 12,

December 2006.

[10]

IJCATM : www.ijcaonline.org

