
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

19

Multi-Agent based Sequence Algorithm for Detecting

Plagiarism and Clones in Java Source Code using

Abstract Syntax Tree

D. Poongodi
Research Scholar

Manonmaniam Sundaranar University
Tirunelveli, Tamilnadu

G.Tholkkappia Arasu
Principal

AVS Engineering College
Ammapet, Salem, Tamilnadu

ABSTRACT
Plagiarism and clone detection plays an important role in

software security protection, software maintenance and

license issues. Source-code similarity detection method can be

classified as string-based, token-based, parse-tree-based and

program-dependency-based. All of these approaches have

certain limitations and can not meet the requirements when

the source code is large and may produce false positives. But,

parse-tree based detection improves the detection ability and

efficiency. This paper describes method and statement based

source code similarity detection, which detects the simple

plagiarized code like exact match, near exact match and

longest common sequence using multi-agent based detection

which will perform the detection automatically. Automatic

plagiarism detection will be helpful for code clone detection

in software industry and plagiarism detection in projects.

Keywords
Abstract syntax tree, plagiarism detection, source code

plagiarism detection, parse tree, code clone.

1. INTRODUCTION
This Research investigates the application of plagiarism

technology that derives avoidance of duplicate files using

Artificial Intelligence and Abstract Syntax Tree. The

performance of this technology depends on parameters that

can influence its performance and this research aims to

investigate its performance using the time as major parameter.

This technology has Sequence Algorithm which is a similar

source code detection when the parameters are optimized will

be evaluated. A technique for searching duplicate source

codes using hierarchical technology is proposed in order to

find the plagiarism and clone detection is proposed. This tool

also will improve the plagiarism and clone detection with

effective investigation process.

This proposed work is used to avoid the source-code

plagiarism and clone increases in the source code of program

due to the plenty of resources available in the electronic form.

The easy access to the internet has also been increased.

Manual detection of source code similarity is not very easy

and it is time consuming due to the vast amount of contents

available. As the amount of programming code created is

increasing, different techniques are available to detect

plagiarism in source code.

The proposed system is designed using Abstract Syntax tree

and multi-agent for source code similarity detection in java

source code with the help of sequence algorithm. As a result,

the framework detects the source code similarity in java

source code based on method level and statement level using

the Multi-Agent. It is useful for the IT industry to detect

cloning from one version to the next version and also to find

plagiarism in source code of the projects.

2. LITERATURE SURVEY
People can gather source code using various technologies

available such as internet, text books, sources including large

database available in electronic form etc.,

According to the Study of source code similarity detection

approaches and its algorithms [1], some of the Detection

algorithms are classified based on the approach and

comparison method. They are sequence, finger print, hashing,

suffix tree and so on. Each algorithm has produced some false

positives.

At Present, People are aware of so many algorithms using

various technologies for detecting duplications that are not

giving complete results, and it also have so many

disadvantages, which are mentioned below.

1. Sequence algorithm [2], [9] detects sub-tree clones

and it is used essentially to detect statement and

declaration sequence clones. In this algorithm Clone

removal is not carried out.

2. Finger Print Algorithm[3] compares nm sub-trees of

m projects of size n (in terms of nodes) for exact

equality detection that would require O((nm) 2)

comparisons with a native approach, all sub-trees

are rather fingerprinted and put in buckets

according to their hash value. This algorithm takes

much time to compare.

3. In mapping algorithm [4], traverse the ASTs of the

function bodies of old and new versions in parallel,

adding entries to a LocalNameMap and

GlobalNameMap to form mapping between local

variable names and global variable names

respectively. LocalNameMap will help to detect

functions which are identical up to a renaming of

local and formal variables, and GlobalNameMap is

used to detect renaming of global variables and

functions. This algorithm cannot proceed without

mapping.

4. Hashing algorithm [5], [10] makes the main idea of the

algorithm to compute certain characteristic vectors

to approximate structural information within ASTs

and then adapt Locality Sensitive Hashing (LSH) to

efficiently cluster similar vectors. This algorithm

will not work efficiently without LSH.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

20

5. In Greedy String Tiled Algorithm [6] the whole parse

tree need not be converted to a string. An

intermediate stage in algorithm could transform the

original parse tree into a "degenerate" parse-tree by

removing nodes.

6. The pattern matching algorithm [7] will process in

the format of statement, if the statement order has

minor change this algorithm will not detect the

duplicate codes.

7. In the suffix tree algorithm [8], it will convert the

tree into string and compare the source code. This

algorithm is not the statement structure based

comparison.

So the various algorithms that were discussed could not meet

as per the user expectation. Hence the implementing proposed

Algorithm user expectation can be met and the false positives

can be reduced in order to increase the response time by

reducing its comparison time.

3. PROBLEM STATEMENT
In the current literature review, Source-code similarity

detection algorithms can be classified based on the following:

 String Based Detection

 Token Based Detection

 Parse Tree(AST) Based Detection

 PDG (Program Dependency Graph) Based

Detection

 Metric Based Detection

 Hybrid Based Detection

All of the above said detection methods have certain

limitations and cannot meet the requirements when the source

code is large and may produce false positives. The Abstract

syntax tree based linear representations is efficient than the

other comparison algorithms, because it uses the structure of

the source code for comparison. Multi-Agent system is a

computerized system composed of multiple interacting

intelligent agents within an environment. Multi-agent systems

can also be used to solve problems that are difficult or

impossible for an individual agent to solve. The main purpose

of the research work is to detect the source code similarity to

reduce the software maintenance in IT industry in the form of

cloning and to increase the software security in the form of

plagiarism done by the user. This detection technique is easy

and efficient using the intelligent agent and parallel detection

with the help of multi-agent system.

Though there are so many technologies used to develop the

algorithm for finding the duplication method, it is not

successfully processing the need of user requirement. The

existing method works for minimum task given by the user,

which is not giving the user to get the result as step by step

comparison result nor the statement level comparison method,

the same can be done using this method for plagiarism and

clone detection in the source code.

4. OBJECTIVES OF THE RESEARCH
The objective of the research work is to design the

architecture which will detect the source code similarities

available in the form of plagiarism and clone. Automatic

plagiarism detection will be helpful for the multi-tasking and

automatic code clone detection which helps the software

industry to detect the clones parallel with development.

Scope of the Work

 This component helps the user to detect the

plagiarism in the java source code, either by using

in method level or in the statement level.

 Various comparisons can be done simultaneously

using this tool and at the same time, it can be

executed / compared in different levels.

 This component can use to detect the clone in the

java source code, either using in the method level or

in the statement level.

 The sequence algorithm used in this component,

increase the response time and takes the minimum

comparison time in the order of n. (O(n)).

 This Algorithm also reduces the false positive in

both plagiarism and clone detection.

 Detection of code that gives the same result,

promises decreased software maintenance cost

corresponding to the reduction in code size.

 If the plagiarisms are detected, then the code will

not get any problem to get copyrights.

 This component is developed based on multi agent

system, which uses agents with their own actions

and behaviors. The main characteristic is to control

their own behavior and interact with the

environments and other agents. Some properties of

agents are

i. The agents are able to decide on their own

without the human or other interventions.

ii. The agents perceive their environments and

respond the change that occurs.

iii. The agent has initiative and they do not act

in response to their environment.

5. PROPOSED WORK

5.1 Multi Agent based Sequence Algorithm

for Plagiarism and Clone Detection
In tree-based approach, a program is parsed to a parse tree or

an Abstract Syntax Tree (AST) with a parser of the language

of interest. Similar sub trees are then searched in the tree with

the proposed tree matching technique and the corresponding

source code of the similar sub trees are returned as plagiarism

classes.

The programming languages are defined by their grammars,

which describe the set of all possible strings that represent

programs (called a language). During the compilation process,

a compiler builds a parse tree which represents the program

and uses this tree to guide compilation.

Traverse the parse tree of different parts of source code to

identify the plagiarism between the programs. Steps of

algorithm are given below:

1. Parse the source code into a AST using AST Parser

2. Compare the Parse trees, based on the methods as

follows

a) Count the number of child nodes that matches for

both the methods.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

21

b) If the number of child nodes matches with two

different methods and at the same time if it is

greater than or equal to three then do the

comparison

c) If both node matches then find the number of child.

d) Find the threshold value using the following

formula.

 

nm nm
Min(nmc(m1), nmc(m2))

nm i=0 i=0Ratio= x
nm nmMin m1, m2 !

Max(nmc(m1), nmc(m2))

i=0 i=0

 

 
 

Where nm is number of node matches in between

method1 and method2.

Where nmc is number of children count for the

node matched.

Ratio of threshold can be configured with 0.75, 0.9 or any

value greater than 0.5

Compare the tree, based on statements as follows

a. Count the number of child node matches between

two different Statements.

b. Find the number of child nodes which matches for

both the statements.

c. Find the threshold value using the following

formula.

 

nm nm
Min(nmc(sl1), nmc(sl2))

nm i=0 i=0Ratio= x
nm nmMin sl1, sl2 !

Max(nmc(sl1), nmc(sl2))

i=0 i=0

 

 
 

Where nm is number of node matches in between

statement list1 and statement list2.

Where nmc is number of child count for the node

matched.

Ratio of threshold can be configured as 0.75 , 0.9 or

any value greater than 0.5

5.1.1 Method of Comparison

The proposed approach of comparison is different from the

existing algorithms. After parsing the source code into parse

tree, if the comparison is method level, then it compares using

the following method

1. Collecting all the methods and its child node up to

leaf node.

2. Count the number of nodes in each method

3. Based on the number of nodes compare with other

source code, if the count difference is less than or

equal to 3 then do the node matching as follows

a. Take the first node or statement from the

given list of code1

b. Compare to the first node or statement of

the other list of code

c. If both the nodes matching then compare

the next statement in both the list of code,

else compare the first node of list1 to the

second node of list2 until to find the

matching node or compare with all other

nodes in the list.

d. While matching continuously (that is 3

nodes are matched continuously), if the

next node is not matching, then that node

will be compared from the first node

including the node which is matched.

e. Steps c and d will repeat until the end of

both the list or all nodes are compared.

4. Depending upon the number of child node matches,

the threshold value can be calculated using ratio

formula.

5. If the threshold value is between 0.1 and 0.9 then

there is a similarity between both the codes.

Statement level comparison is as follows

1. Collecting all the statements from different source

codes.

2. Take the first statement node from the given source

code and compare the same with similar program in

first statement node.

3. If both the statements are equal or match with each

other then take the second node of both the source

code, if it matches then compare the next as same

until there is a match.

4. In the continuous matching, if found a mismatch

then start comparing the similar program list

mismatch node with the first statement node of the

given source code.

5. If first statement node is not matched, take second

node and compare with the mismatch node.

6. If matched then next node of both the source codes

will compare as mention in step 3.

7. Matching nodes are stored in file and this report is

the output of the algorithm

8. This algorithm finds the exact match and near exact

match like longest common sequence.

For Example,

i) Exact match or no change Comparison.

The exact match codes are as follows

int i;

int j;

for(i=0;i<10;i++)

for (j=0;j<10;j++)

System.out.println(i+j);

int k;

int m;

for(k=0;k<10;k++)

for (m=0;m<10;m++)

System.out.println(k+ m);

Table1. Example for Exact Match Source Code

In the above source code both the list are same, the only

difference is that the identifier name is changed. This type of

plagiarism or clone is exact match or no change.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

22

The proposed algorithm compares the given source code with

similar type of program and it is represented in the below

given diagram for the exact match. First it takes the statement

node1 from both the parsed source code and compares. If it is

matches then it compares the next node of both the lists. The

process continues until it reaches at the end of both the parsed

source code

Figure1. Comparison Method of Exact Match Source

Code

Finally, it gives the report as text/html file which contains

matched node in the given source code and the similar

program source code.

ii) Near exact match or Longest Common Sequence (LCS)

Comparison

“Near exact match” is like copying part of the source code

from others and adding own code or including unnecessary

codes. If the plagiarizer includes some code then the source

code might look different from the original code.

Some of the plagiarizer may divide the copied code and paste

in different manner without affecting the final result of the

source code. That is by changing the order of the program like

first line as third or fourth line, fourth line as first or second.

Example for near exact match as follows

i=f=1;

for(i=1;i<=n;i++)

f=f*i;

System.out.println

(“Factorial”);

System.out.println(f);

System.out.println(“Factorial”);

i=f=1;

for(i=1;i<=n;i++)

f=f*i;

i=s=1;

for(i=1;i<=n;i++);

System.out.println(f);

Table2. Example for Near Exact Match Source Code

In the above source code, first and second line is repeated and

the fourth line is pasted as first line of other program. This

example code contains the “Near exact match” and the

“Longest common sequence”. Comparison of this kind of

source code is mentioned below.

1. Compare the first node with the all other nodes until

there is a match.

2. Once matched then compare the next node which is

given in source code and similar program source

code.

3. If mismatch occurred, it has to start comparing from

the first node until matches. If first node does not

match then second node will be compared until the

match occurs.

4. Once matched then repeat step2 and step3 until

source code ends.

Figure2. Comparison Method of Near Exact Match

Source Code

Finally, it gives the report as matched node as longest

common sequence and repeated node in the given source code

and similar program source code as text/html file.

This algorithm reduces the time of comparison and detect the

maximum possible plagiarized or cloned code in the given

source code and the similar source code of various programs.

5.2 Flow Diagram of the Tool
The flow diagram explains the flow of execution. Once the

tool is started, first it starts the JADE (Java Agent

Development Environment), then it starts the Generic Agent.

From the Generic Agent, Generic GUI will be started. Then

the user has to select the type of source code detection and

give the input files depends on the type. Once input is

received then it will translate the source code into the AST

using Java parser. If the detection type is plagiarism, collects

the list of relevant logic source and translates into the AST.

S1S1

S2

S3

S4

S5

S2

S3

S4

S5

S1S1

S2

S3

S4

S5

S2

S3

S4

S5

S6
S7

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

23

Figure3. Flow Sequence of Plagiarism and Clone

Detection Tool

After Translating the AST’s, Compare using the sequence

algorithm. If match occurs within the threshold it will

produces the match list as text or html file or else it gives the

message as “No Match” and stops the Agent.

6. RFORMANCE EVALUATION
The proposed system is based on multi-agent system using

Abstract Syntax tree. It is implemented with the help of JADE

framework and Eclipse.

6.1 Evaluation
To evaluate the effectiveness of proposed algorithm, various

similar programs are collected and compared. Once the source

code is converted into the parse file, comparison process is

easy for this algorithm approach. Java was used to parse the

source code into abstract syntax tree. Each statement of

source codes is converted into AST based node and each node

contains full information about the statement. Then the

number of node matches is found based on program level or

method level of the source code. The output file will generate

a report about the statement or method matches in various

similar programs.

Figure4. Performance Evaluation of Algorithm

The above chart displays the response time for exact match,

near exact match and no match based on the file size. If there

is a similarity in the source code, it takes more time than the

not similar source code.

7. CONCLUSION AND FUTURE WORK

Today, Plagiarism and clone detection in source code is an

active research area. In this research work it was presented

how the plagiarism detection can be handled using the new

algorithm based on the Abstract Syntax Tree. The proposed

algorithm reduces the time of comparison. This might take

minimum order of N (O(n)) comparison time to detect the

plagiarism in source code. It is developed using agent

Oriented Programming, which also reduces the man power.

Agent can control their own behaviors, actions and

communicate with other agents. The component is based on

multi-agent system, so it is helpful to control their own

behavior and interact with the environment and other agents.

This study may help the plagiarism and clone detection users

to detect the similarity of the source code.

This proposed approach support only for the java based

source code and the same approach may be used to compare

with cross programming language, which is language

independent comparison.

This algorithm helps to detect the plagiarism and cloning in

source code in an effective manner. However, still some of

the algorithms lacking to avoid the false positives. In future

these algorithms may be improved to avoid false positives and

detect all type of plagiarism to affect success plagiarism

detection using AST. So it may enrich to avoid false positive

with efficient manner.

General approaches are used like Meta data to find the similar

program or logic of source code. In future this can also be

found the similar logic of source code without using Meta

data.

8. REFERENCES
[1] Roy, ChanchalKumar;Cordy, James R.."A Survey on

Software Clone Detection Research". School of

Computing , Queen's University, Canada. Vol 115,

TR2007-541, September 26, 2007.

[2] Baxter,I.D, Yahin,A.; Moura, L.; Sant'Anna,M; Bier, L.

“Clone detection using abstract syntax trees”,

International conference on software maintenance 1998,

598, ISBN:0-8186-8779-7.

[3] Michel Chilowicz, Etienne Duris and Gilles

Roussel“Syntax tree fingerprinting: a foundation for

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

T
im

e
 i

n
 S

e
c
o

n
d

s

File Size in bytes
Exact Match Near Exact Match No Match

Start

Input type of Detection

Create list of relevant
logic source code

Match Occurs

Produce Match List

as Text/ Html

Translate each Program

in the list to AST source

Compare each AST with

the given Program AST

Stop

Input Old and

New Source

code
Clone

Detection ?

Parser to Translate
Program into AST

Input Source

code to check
N Y

Y

N

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 15, March 2014

24

source code similarity detection”, 17th IEEE

International Conference on Program Comprehension

(ICPC'09). Vancouver, BC,

Canada. May 2009. pp. 243–247. IEEE Computer

Society.

[4] IulianNeamtiu;Jeffrey S. Foster;Michael Hicks

“Understanding Source Code Evolution Using Abstract

Syntax Tree Matching” MSR '05 , Volume 30 Issue 4,

Pages 1-5, ISBN:1-59593-123-6, July 2005.

[5] Lingxiao Jiang Ghassan

andSt´ephaneGlondu“DECKARD: Scalable and

Accurate Tree-based Detection of Code Clones” 29th

International Conference on Software Engineering 2007,

96-105, May 2007.

[6] Matt G. Ellis, Claude W. Anderson “Plagiarism

Detection in Computer Code”,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.92.8027&rep=rep1&type=pdf , March 23, 2005.

[7] William S. Evans Christopher W. Fraser Fei Ma “Clone

Detection via Structural Abstraction”, Journal of

Software QualityControl, Vol 17, Issue 4, 309-330, Dec

2009.

[8] Rainer Koschke, RaimarFalke, Pierre Frenzel “Clone

Detection Using Abstract Syntax Suffix Trees” 13th

Working Conference on Reverse Engineering (WCRE

2006), 253-262, ISBN:0-7695-2719-1, October 2006.

[9] Kevin Greenan, “Method-Level Code Clone Detection

on Transformed Abstract Syntax Trees Using Sequence

Matching Algorithms”University of California - Santa

Cruz , 2005

[10] Baojiang Cui, Jun Guan, Tao Guo, Lifang Han, Jianxin

Wang and Yupeng J “Code Syntax-Comparison

Algorithm based on Type-Redefinition-Preprocessing

and Rehash Classification” , Journal of Multimedia, Vol

6, No 4 (2011), 320-328, Aug 2011

[11] Young-Chul Kim and Jaeyoung Choi “A Program

Plagiarism Evaluation System”, ICCSA 2005

http://link.springer.com/bookseries/558Volume 3483,

2005.

[12] A.S. Bin-Habtoor and M.A.Zaher, “A Survey on

Plagiarism Detection Systems”, International Journal of

Computer Theory and Engineering, Vol 4. No.2, April

2012.

[13] Christian Arwin and S.M.M.Tahaghoghi, “Plagiarism

Detection across Programming Lanugages”, ACSC’06,

Vol. 48, 277-286 , 2006, ACM.

[14] Tahira Khatoon, Priyansha Singh and Shikha shukla,

“Abstract Syntax Tree Based Clone Detection for Java

Projects”, IOSR ’12, Vol.2, 45-47, Issue 12, Dec 2012.

IJCATM : www.ijcaonline.org

