
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

42

Achieving Better Compression Applying Index-based
Byte-Pair Transformation before Arithmetic Coding

Jyotika Doshi

GLS Inst.of Computer Technology
Opp. Law Garden, Ellisbridge

Ahmedabad-380006, India

Savita Gandhi
Dept. of Computer Science;Guj. Uni.

Navrangpura
Ahmedabad-380009, India

ABSTRACT

Arithmetic coding is used in many compression techniques

during the entropy encoding stage. Further compression is not

possible without changing the data model and increasing

redundancy in the data set. To increase the redundancy, we

have applied index based byte-pair transformation (BPT-I) as

a pre-processing to arithmetic coding. BPT-I transforms most

frequent byte-pairs (2-byte integers). Here, most frequent

byte-pairs are sorted in the order of their frequency and

groups consisting of 256 byte-pairs are formed. Each byte-

pair in a group is then encoded using two tokens: group

number and the location in a group. Group number is denoted

using variable length prefix codeword; whereas location

within a group is denoted using 8-bit index. BPT-I is designed

to be applied on any type of source; not necessarily text. More

the number of groups considered during transformation, better

is the compression. Experimental results have shown around

4.30% additional reduction in compressed file size when

arithmetic coding is applied after byte-pair data

transformation BPT-I.

General Terms

Data Compression, Algorithms

Keywords

Data Compression, better compression rate, index based byte-

pair data transformation, data transformation as a pre-

processing to arithmetic coding, arithmetic coding

1. INTRODUCTION
In current days, arithmetic coding [6, 8, 16] is the most

preferred entropy coding technique used with most of the

compression methods as it provides optimal entropy. Due to

its entropy limitations, further improvement in compression is

not possible. The only way to achieve better compression

using arithmetic coding is to change the data model such that

the data becomes more skewed. One way to achieve this is by

applying data transformation.

Data transformation transforms data from one format to

another. The purpose of a data transformation is here to re-

structure the data to make it more compressible by a second-

stage arithmetic coding compression algorithm. Here, our

intention is to improve the overall compression rate as

compared to what could have been achieved by using only

arithmetic coding compression algorithm.

Authors of this paper have proposed Quad-Byte

Transformation using Index (QBT-I) method [4] with similar

purpose. The problem with QBT-I is in computing the

frequency of 4GB possible quad-bytes. With byte-pair

transformation, the maximum possible values are 65536 only.

This makes it easier to compute frequencies of all byte-pairs

using simple array data structure. It also enables the

computation to be faster due to random access with array.

Like QBT-I [4], BPT-I is also independent of source type. It

can be applied to any type of source; may be text, binary file,

image, video or any other format. Arithmetic coding method

is also applicable to any type of source. Both these

transformation and compression methods are reversible, so it

provides lossless compression. Moreover BPT-I is faster to

execute.

 BPT-I transforms most frequent byte-pairs (16-bit integers)

considering byte-pair belonging to a group of size 256. Each

byte-pair is encoded using group number and its position

within a group.

This two-stage process of transformation and then

compression is obviously going to be slower. But, this

slowness is affordable since the transform truly skews the data

source to fulfil our purpose of achieving more compression

2. LITERATURE REVIEW
Majority of the transformation techniques are seen to be

source-type specific. Research work in star-based encoding

techniques [1, 7, 11, 15], dictionary-based encoding

techniques [12, 13, 14] and digram encoding techniques [5, 9,

17] are intended for text files. Another category is of data

transformation techniques like DCT and wavelet used on

image files.

Transformation techniques BWT [2, 10], BPE[5], digram

encoding [17] and ISSDC [9] are intended for text files.

However, they can be applied to any type of source.

Burrows Wheeler Transform (BWT) performs block

encoding. For each block, BWT requires rotation-sorting-

indexing. Thus it is very time consuming and requires better

data structures for efficient pattern matching. Another

problem with BWT is that it gives better compression only

when it is combined with compression techniques Run Length

Encoding (RLE) and Move-To-Front (MTF) encoding and

then Huffman or arithmetic coding entropy coding.

Methods BPE (Byte Pair Encoding) [5], digram encoding [17]

and ISSDC (Iterative Semi-Static Digram Coding) [9] will

benefit more only when applied to small-alphabet source like

text files having some unused symbols. Moreover, BPE and

ISSDC use repetitive algorithms. So they are very time

consuming. If the source size is large enough to be

accommodated in main memory, it requires repetitive file

scanning. Thus they are better only with small sized files and

source with small-alphabet.

Most of the mentioned data transformation techniques may

introduce some compression also. Their main purpose is

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

43

obviously to retain enough context and redundancy for later

applied compression algorithms to be beneficial.

3. RESEARCH SCOPE
We saw a research scope in having transformation technique

that is applicable to any type of source. It should also

introduce redundancy in the data so that transformed file is

more compressible. Additionally if it can add compression

while transforming the source, it will result in faster

compression due to smaller file size.

Our prime purpose is to have source-type independent

technique to achieve better compression as compared to what

we get applying only arithmetic coding.

4. BRIEF INTRODUCTION TO BPT-I
BPT-I is very similar to QBT-I [4] except few differences:

BPT-I is applied on byte-pairs (16 bit integers) instead of

quad-bytes (32 bit integers). Frequency of byte-pairs is

computed using array data structure instead of binary search

tree.

BPT-I first computes frequency of all byte-pairs and then

arranges byte-pairs in decreasing order of their occurrence.

Then it forms groups considering first 256 byte-pairs in first

group, next 256 bytes in second group and so on. Number of

groups may be specified by a user. With nGrp number of

groups, most frequent (256 x nGrp) byte-pairs are encoded

and remaining byte-pairs remains untransformed.

Encoded codeword consists of two tokens: group number and

the location of byte-pair within a group. Group number is

encoded using variable length prefix codeword and location is

denoted using 8-bit index. Redundancy is introduced with 8-

bit index location. Larger the number of groups; more is the

redundancy in the transformed data. This should lead to better

compression using arithmetic coding later.

During reverse transformation, decoder requires to know

whether it is reading transformed byte-pair or not. For this,

encoder uses prefix code for group codeword as follows:

 Zero(0): denote untransformed byte-pair

 As many 1s as number of groups: denotes last group

 Otherwise, number of 1s denote the group number

Here, prefix codes used for group codeword are 0, 10, 110,

1110, 11110,....,all 1s. For example, for nGrp=1: codeword 0

means no transformation and 1 means transformed byte-pair

from 1st (also last) group; for nGrp=3: 0 implies

untransformed byte-pair, 10 implies transformed byte-pair

from 1st group (in first 256), 110 implies transformed byte-

pair from 2nd group and 111 implies transformed byte-pair

from group 3.

Maximum length of group codeword is same as number of

groups nGrp.

Thus, a byte-pair is transformed using two components

<variable-length prefix codeword for group number, 8-bit

index codeword>.

8-bit index codeword denotes the position of byte-pair within

a group. It introduces redundancy in the transformed data set.

To exploit redundancy at the time of arithmetic coding, we

have kept group codeword and index codeword in separate

files.

Use of variable length code leads to more reduction the size of

transformed file. Most frequent codes reside in the initial

groups and are assigned shorter prefix code.

Shortest prefix code 0 is used for untransformed integers

assuming the worst case of smaller nGrp. Smaller nGrp

indicates that only a few byte-pairs are to be transformed.

Smaller dictionary sizes helps to speed up the search process

during decoding.

5. ALGORITHM
Algorithm uses two output files: transformed data file and

code file.

The transformed data file contains the index codewords (for

transformed integers only).

Prefix codes denoting group codeword are copied in the code

file.

The number of bytes in a source file may not be in multiple of

size 2, so initial nExtrabytes (= filesize modulo 2) bytes are

not processed and output as they are. Transformation is

applied to remaining bytes.

The structure of code file is as follows:

 Byte 1: nExtrabytes (2 bits) and nGrp (6 bits, maximum

64 groups)

 Byte 2 to nExtrabytes+1: unprocessed initial extra bytes

from source file

 Next 2 bytes: Dictionary size d = number of most

frequent integers to be stored

 Next 2*d bytes: byte-pairs in descending order of

frequency

 Remaining bytes: prefix codes of transformed and

untransformed integers

5.1 QBT-I Encoder
1. Setup:

a. Find source file size, Accept nGrp

b. nExtrabytes = filesize module 2

c. Combine nExtrabytes (2 bits) and nGrp (6 bits) in a

byte and write in the code file

d. Read nExtrabytes bytes from source file and write to

code file

2. Pass I (Dictionary building)

a. Scan source file and compute frequency of all byte-

pairs

b. Sort byte-pairs in descending order of the frequency

c. Output dictionary information in code file

 Dictionary size = minimum (256 x nGrp, number of

integers with frequency > 0)

 Write dictionary size (using 2-bytes) and those

many most frequent byte-pairs in the code file.

Keep the dictionary stored in memory for later use

in pass II. (One may use data structure like array or

binary search tree (BST). BST is more efficient

while searching.)

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

44

3. Pass II (Transformation: Rescanning the source from the

beginning after extra bytes)

a. Let prefix array contain binary numbers 10, 110,

1110,… for nGrp groups

b. Read 16-bit integer (byte-pair)

c. Search in dictionary

d. If found at location k in dictionary

 Output index = (k modulo 256) in transformed

data file

 Determine group prefix code:

 Grp = k/256

 If Grp is the last group, i.e. value of Grp is

same as nGrp-1, then write last prefix (i.e.

nGrp times bit 1) to prefix code file

 If Grp is not the last group, write bits of

prefix[Grp] to prefix code file

e. If not found in dictionary, output integer data in the

transformed data file as it is and write prefix bit 0 in

prefix code file

Repeat steps from b onwards till all integers are scanned.

5.2 QBT-I Decoder
1. Setup

a. Read nExtrabytes and nGrp from code file

b. Read initial nExtrabytes bytes from code file and write

in output file

2. Dictionary building

a. Read Dictionary size and corresponding number of 16-

bit integers from code file.

b. Store these most frequent integers in dictionary (in

memory) in the order of their arrival. For dictionary,

one may use data structures like array or Binary

Search Tree.

3. Inverse Transformation:

a. Fetch prefix code from code file (bits are extracted till

either 0 is found or nGrp bits are extracted)

b. If prefix code is 0 (i.e. untransformed data), read 2-

byte integer from transformed data file and write in the

output file.

c. If prefix is not 0, it means transformed data file

contains 8-bit index for actual data.

 Determine the group where the actual data

belongs:

 If prefix is nGrp times 1s (i.e. lastPrefix), Grp

= nGrp-1 (i.e. last group)

 Otherwise, search for prefix in prefix array. If

it is found at location k, then Grp = k. (To

avoid searching array, count number of leading

1s and then subtract 1 to determine Grp)

 Determine location of the data in dictionary:

 Read 1 byte index from transformed data file

 Location of data in dictionary = Grp*256 +

index

 Write byte-pair from location in dictionary to

output file.

Repeat step 3 till end of code file.

6. EXPERIMENTAL RESULTS AND

ANALYSIS
Programs for BPT-I and arithmetic coding are written in C

language and compiled using Visual C++ 2008 compiler.

Programs are executed on a personal computer with Intel(R)

Core(TM)2 Duo T6600 2.20 GHz processor and 4GB RAM.

BPT-I is experimented with number of groups varying from 1

to 8. Experimental results are recorded using average of five

runs on each test files. Most of the test files are selected from

Calgary corpus, Canterbury corpus, ACT web site. Test files

are selected to include all different file types and various file

sizes as shown in Table 1.

Table 1. Test Files Used in Experiments

No File name Corpus, Description File Size

(Bytes)

1 act2may2.xls ACT: excel file 13,48,036

2 calbook2.txt Calgary: text file, "troff"

format

6,10,856

3 cal-obj2 Calgary: object file, Mac

executable

2,46,814

4 cal-pic Calgary: CCITT fax file,

bitmap image

5,13,216

5 cycle.doc Own: word doc with

images, text, drawing

14,83,264

6 every.wav ACT: sound file 69,94,092

7 family1.jpg Own: photograph 1,98,372

8 frymire.tif ACT: graphics file 37,06,306

9 kennedy.xls Canterbury: excel 10,29,744

10 lena3.tif ACT: graphics file 7,86,568

11 linux.pdf Own: pdf file, large 80,91,180

12 linuxfil.ppt Own: power-point file

with text, drawing

2,46,272

13 monarch.tif ACT: graphics file 11,79,784

14 pine.bin ACT: executable 15,66,200

15 profile.pdf Own: pdf file with text,

photos

24,98,785

16 sadvchar.pps Own: ppt show 17,97,632

17 shriji.jpg Own: image file 44,93,896

18 world95.txt ACT: text file 30,05,020

 Total Size (Bytes) 39,796,037

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

45

Table 2. Contribution of most frequent byte-pairs

% contribution of k most frequent byte-pairs

No. Filename total pairs k=256 k=512

1 act2may2.xls 674018 78.78 84.53

2 calbook2.txt 305428 82.36 92.89

3 cal-obj2 123407 71.51 81.13

4 cal-pic 256608 95.86 97.78

5 cycle.doc 741632 67.50 69.61

6 every.wav 3497046 02.52 04.73

7 family1.jpg 99186 04.13 06.63

8 frymire.tif 1853153 69.16 76.60

9 kennedy.xls 514872 83.58 95.11

10 lena3.tif 393284 04.50 08.06

11 linux.pdf 4045590 40.65 43.83

12 linuxfil.ppt 123136 58.93 64.71

13 monarch.tif 589892 15.60 22.90

14 pine.bin 783100 54.61 65.06

15 sadvchar.pps 898816 07.55 08.59

16 shriji.jpg 2246948 01.96 03.07

17 world95.txt 1502510 78.38 90.53

To compress with arithmetic coding, we have used AC-nShft

multi-bit processing implementation [3]. It is faster than

conventional implementation of arithmetic coding.

Table 2 shows that most of the data is covered by most

frequent 256 or 512 byte-pairs in majority of test files except

in files like jpg and wav. It means increasing number of

groups may not have significant benefit in reduction of file

size in most of the files.

Table 3. Transformed File Size after BPT-I

No
Source

Size

Transformed File Size (Bytes) After

Applying BPT-I Data Transformation

 (Bytes) nGrp=1 nGrp=4 nGrp=6 nGrp=8

1 1348036 901850 927867 924258 924365

2 610856 398020 397399 397475 398495

3 246814 174515 172202 171976 172913

4 513216 299830 326046 326816 327832

5 1483264 1075857 1119995 1118831 1119567

6 6994092 7343748 7205958 7163378 7156294

7 198372 207200 204846 204833 205675

8 3706306 2656797 2621920 2597842 2596275

9 1029744 664300 659818 661330 661585

10 786568 818536 796773 791352 791314

11 8091180 6952741 7011228 6995715 6994121

12 246272 189623 189714 189390 190279

13 1179784 1162006 1109190 1099571 1099192

14 1566200 1236940 1183351 1172965 1172821

15 2498785 2594535 2565203 2558612 2558356

16 1797632 1842640 1836728 1833892 1834218

17 4493896 4731298 4692106 4680844 4679660

18 3005020 2015663 1960299 1955828 1957200

 39796037 35266099 34980643 34844908 34840162

Table 3 shows transformed file size (bytes) after applying

BPT-I with varying number of groups. It is observed that

larger nGrp results in smaller transformed files. Due to larger

prefix codes with large nGrp, it may start deteriorating later as

seen for nGrp=8, but it also increases the redundancy due to

index code.

Figure 1 represents overall compression rate graphically.

Figure 2 shows compressed file size of individual test files

when BPT-I is applied with nGrp=1. Here also improvement

is seen even with only 256 byte-pairs transformed.

Table 4 shows the overall compression rate and BPS as a

result of compression (i) using only arithmetic coding (AC)

and (ii) using AC after applying data transformation with

BPT-I at pre-processing stage. It also shows total compression

time and data transformation time.

It is observed from Table 4 that around 4.30% more reduction

is obtained in compressed file size when arithmetic coding is

applied after byte-pair data transformation BPT-I using most

frequent 1024 byte-pairs (nGrp=4). It can be observed that

after nGrp=4, increasing number of groups does not show

significant improvement in compression rate.

Table 4. Overall Compression Rate and BitsPerSymbol

(BPS) using AC only and AC after BPT-I

Overall

Compre-

ssion Rate

(%)

Overall

BPS

Total

Compre-

ssion Time

(seconds)

Total Trans-

formation

Time

(seconds)

AC 16.77 6.658 17.488

nGrp=1 20.443 6.365 41.512 25.148

nGrp=2 20.633 6.349 51.323 34.895

nGrp=3 20.937 6.325 61.317 44.972

nGrp=4 21.085 6.313 70.625 54.385

nGrp=5 21.148 6.308 79.176 62.964

nGrp=6 21.168 6.307 88.635 72.443

nGrp=7 21.166 6.307 96.594 80.433

nGrp=8 21.144 6.308 106.614 90.357

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

46

Figure 1. Overall Compression Rate (%) using only AC, using AC after BPT-I with varying nGrp

Figure 2. Compressed File Size using only AC, using AC after BPT-I with nGrp=1

7. CONCLUSION
With BPT-I data transformation applied before arithmetic

coding, our purpose of achieving better data compression is

achieved. Using BPT-I at a pre-processing stage of arithmetic

coding, more than 4.3% overall data compression is achieved

over compression using only arithmetic coding.

8. REFERENCES
[1] F. D. Awan, N. Zhang, N. Motgi, R. T. Iqbal, A.

Mukherjee. “LIPT: A reversible lossless text transform to

improve compression performance”, Proceedings of the

IEEE Data Compression Conference (DCC’2001), pp.

481, March 27–29, 2001

[2] T.C. Bell, A. Moffat, “A Note on the DMC Data

Compression Scheme”, Computer Journal, vol. 32(1),

pp.16-20, 1989

[3] M. Burrows,D. J. Wheeler. ”A block-sorting lossless data

compression algorithm”, Digital Systems Research

Center, Research Report 124, Digital Equipment

Corporation, Palo Alto, California, May 10, 1994

[4] G.V. Cormack, R.N. Horspool, “Data Compressing

Using Dynamic Markov Modeling”, Computer Journal,

vol. 30(6), pp.541-550, 1987

[5] Jyotika Doshi and Savita Gandhi, “Computing Number

of Bits to be processed using Shift and Log in Arithmetic

Coding”, International Journal of Computer Applications

62(15):14-20, January 2013, Published by Foundation of

Computer Science, New York, USA. BibTeX

[6] Jyotika Doshi, Savita Gandhi, “Quad-Byte

Transformation as a Pre-processing to Arithmetic

Coding”, International Journal of Engineering Research

& Technology (IJERT), Vol.2 Issue 12, December 2013,

e-ISSN: 2278-0181

[7] M. Dyer,D. Taubman, S. Nooshabadi, “Improved

throughput arithmetic coder for JPEG2000”, Proc. Int.

Conf. Image Process., Singapore, pp. 2817–2820, Oct.

2004

[8] Philip Gage, "A New Algorithm For Data Compression",

The C Users Journal, vol. 12(2)2, pp. 23–38, February

1994

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

47

[9] P. G. Howard, J. S. Vitter, "Arithmetic coding for data

compression", Proc. IEEE. , vol.82: pp.857-865, 1994

[10] J. C. Kieffer, E. H. Yang, “Grammar-based codes: A new

class of universal lossless source codes”, IEEE Trans.

Inform. Theory, vol. 46, pp. 737–754, 2000

[11] H. Kruse, A. Mukherjee. “Preprocessing Text to Improve

Compression Ratios”,Proc. Data Compression

Conference, pp. 556, 1998

[12] G. Langdon, "An introduction to arithmetic coding",

IBM Journal Research and Development, vol. 28, pp.

135-149, 1984

[13] Detlev Marpe, Heiko Schwarz, Thomas Wiegand,

“Context-Based Adaptive Binary Arithmetic Coding in

the H.264/AVC Video Compression Standard”, IEEE

Trans. On Circuits and Systems for Video Technology,

vol. 13(7), pp. 620-636, July 2003

[14] Altan Mesut, Aydin Carus, “ISSDC: Digram Coding

Based Lossless Dtaa Compression Algorithm”,

Computing and Informatics, Vol. 29, pp.741–754, 2010

[15] Moffat, “Implementing the PPM Data Compression

Scheme”, IEEE Transactions on Communications,

vol.38, pp.1917-1921, 1990

[16] M. Nelson, "Data Compressin with the Burrows-Wheeler

Transform", Dr. Dobb's Journal, pp. 46-50, Sept 1996

available at http://marknelson.us/1996/09/01/bwt/

[17] Radescu R., "Lossless Text Compression Using the LIPT

Transform", Proceedings of the 7th International

Conference Communications 2008 (COMM2008), ISBN

978-606-521-008-0., pp. 59-62, Bucharest, Romania, 5-7

June 2008

[18] Senthil S, Robert L, “Text Preprocessing using Enhanced

Intelligent Dictionary Based Encoding (EIDBE)”,

Proceedings of Third International Conference on

Electronics Computer Technology, pp.451-455, Apr

2011

[19] Senthil S, Robert L, "IIDBE: A Lossless Text Transform

for Better Compression", International Journal of

Wisdom Based Computing, vol. 1(2), August 2011

[20] Shajeemohan B.S, Govindan V.K, "Compression scheme

for faster and secure data transmission over networks",

IEEE Proceedings of the International conference on

Mobile business, 2005

[21] Storer J. A., Szymanski T. G., "Data Compression via

Textual Substitution", Journal of ACM Vol. 29(4), pp.

928-951, Oct 1982

[22] W. Sun, A. Mukherjee, N. Zhang, “A Dictionary-based

Multi-Corpora Text compression System”, Proceedings

of the 2003 IEEE Data Compression Conference, March

2003

[23] S. Taubman and M. W. Marcellin, "JPEG2000: Image

Compression Fundamentals", Standards and Practice.

Norwell, MA: Kluwer Academic, 2002

[24] T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra,

“Overview of the H.264/AVC video coding standard”,

IEEE Trans. Circuits Syst.Video Technol., vol. 13(7), pp.

560–576, Jul 2003

[25] T. Welch, “A Technique for High-Performance Data

Compression”, IEEE Computer, vol. 17(6), pp. 8-19,

June 1984

[26] M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens, “The

context-tree weighting method: Basic properties”, IEEE

Trans. Inform. Theory, vol.41, pp. 653–664, May 1995

[27] H. Witten, R. M. Neal, J. G. Cleary, “Arithmetic coding

for data compression”, Commun. ACM, vol. 30(6), pp.

520–540, 1987

[28] H. Witten, Alistair Moffat, Timothy C. Bell, “Managing

Gigabytes-Compressing and Indexing Documents and

Images”, 2nd edition, Morgan Kaufmann Publishers,

1999

IJCATM : www.ijcaonline.org

