International Journal of Computer Applications (0975 — 8887)

Volume 90 — No 13, March 2014

Application Specific Cache Simulation Analysis for
Application Specific Instruction set Processor

Ravi Khatwall
Research scholar
Department Of Computer science,
Mohan LaL Sukhadia University,
Udaipur, India.

ABSTRACT

An Efficient Simulation of application specific instruction-set
processors (ASIP) is a challenging onus in the area of VLSI
design. This paper reconnoiters the possibility of use of ASIP
simulators for ASIP Simulation. This proposed study allow as
the simulation of the cache memory design with various ASIP
simulators like Simple scalar and VEX. In this paper we have
implemented the memory configuration according to desire
application. These simulators performs the cache related
results such as cache name, sets, cache associativity, cache
block size, cache replacement policy according to specific
application.

Keywords
ASIP Simulators, VEX Simulator, SimpleScalar Simulator,
Simulation and Cache Memory Design.

1. INTRODUCTION

ASIPs are the challenging task in the area of high
performance embedded system design. ASIP performs the
target architecture such big-endian and little-endian it can
reduce the cost, speed, code size, and power consumption and
increasing performance. We have used two ASIP simulator
like SimpleScalar and VEX. SimpleScalar simulator is an
ASIP simulator; it consists of compiler, assembler, linker and
simulation tools for the Simple Scalar PISA and Alpha AXP
architectures. SimpleScalar tool set contains many simulators
ranging from a fast functional simulator to a detailed out-of-
order issue processor with a multi-level memory system.
SimpleScalar also provides extensible, portable, high-
performance architecture for high performance embedded
systems design. Specific application compiled with using
SimpleScalar, which generates application specific cache
results. Another kind of ASIP simulator is VEX defines a
parametric space of architecture that share a common set of
application and system resources. VEX is a 32-bit clustered
VLIW ISA is scalable and customizable to specific
application domains.

2. RELATED WORK

Jain, M. K., Balakrishnan M. and Kumar A. proposed [1]
scheduler based technique for exploring the register windows
and cache configuration. Kin, J., Gupta, M. And Mangione-
Smith, W. H. [2] analyzed energy efficiency by filtering cache
references through an unusually small first level cache. A
second level cache, similar in size and structure to a
conventional first level cache, is positioned behind the filter
cache and serves to mitigate the performance loss.
Performance for different register file sizes is estimated by
predicting the number of memory spills and its delay.

Manoj Kumar Jain, Ph. D
Associate Professor
Department Of Computer science,
Mohan LaL Sukhadia University,
Udaipur, India.

Vivekanadarajah K. and Thambipillai, S. [3] the tuning filter
cache to the needs of a particular application can save power
and energy. Beside, a simple loop profiler directed
methodology to deduce the optimal or near-optimal filter
cache is proposed, without having to simulating all possible
combinations of cache parameters from the specified space.
The technique employed does not require explicit register
assignment. Shuie, W. T. [4] Proposed three performance
metrics, such as cache size, memory access time and energy
consumption. Extensive experiments indicate that a small
filter cache still can achieve a high hit rate and good
performance. This approach allows the second level cache to
be in a low power mode most of the time, thus resulting in
power savings. Prikryl Z., Kroustck 1., Hruska, T. and Kolar,
D. [5] proposed automatically generated just-in-time
translated simulator with the profiling capabilities. Gremzow,
C. [8] using virtual machine architectures for ASIP synthesis
and quantitative global data flow analysis for code
partitioning, several ‘“real world” applications from the
domain of digital video signal processing. D. Fischer, J.
Teich, M., Weper, R. [9] designed an efficient exploration
algorithm for architecture/compiler co-designs of application-
specific instruction-set processors. Guzman, V.,
Bhattacharyya, S.S, Kellomaki, E. and Takala, J. [10]
developed an integration of SDF- and ASIP-oriented design
flows, and use this integrated design flow to explore trade-offs
in the space of hardware/software implementation and explore
an approach to ASIP implementation in terms of “critical” and
“non-critical” applications.

3. SIMPLESCALAR SIMULATOR

SimpleScalar simulator [6] used the MIPS architecture and
support both big-endian and little-endian executable.
SimpleScalar used the target files big-endian and little endian
architecture is sshig-na-sstrix and sslittle-na-sstrix,
respectively. We have determined endian to our host
environment and run the endian program located in the
simplesim-2.0/ directory. SimpleScalar simulator provides
fast cache simulation. SimpleScalar simulator is target
specific simulator we have used 32-bit system as i-386 or 64-
bit as i-686 host platform after targeting little-endian we have
analyzed the cache memory result. In SimpleScalar we have
used various application benchmarks and compiled with
SimpleScalar version of GCC, which generates SimpleScalar
assembly. The SimpleScalar assembly and loader, along with
the necessary ported libraries, it produce SimpleScalar
executable that can then be feel directly one of the provided
simulators (this simulator compiled with the host’s platforms)
(see Figure 1).Simulator resources such as Sim-Cache,Sim-
Safe etc. used for simulation.

31

International Journal of Computer Applications (0975 — 8887)

Volume 90 — No 13, March 2014

Fig 1: SimpleScalar simulation overview

3.1 SimpleScalar internals processor

simulator

SimpleScalar simulator [6] contains five executions driven
processor simulator. SimpleScalar processor simulator
performs the non-blocking cache and speculative execution.
We have used Sim-Cache for cache simulation.

Yy

ravi@ubuntu: ~/simplescalar
ravi@ubuntu:~/simplesc

This version nf Slmprcalal is hcﬂnvd fm acadﬂmlc
rcial use. No portion of this work may be used by any commercial
tity, or for any commercial purpose, without the prior wri
of SimpleScalar, LLC (info@simplescalar.com).

fatal: cannot npen executable “a.out’

Copyright (c) 1994-2063 by Todd M. Austin, FhD and SlmpLPScalm LLC.
ATl Rights Rese This version of SimpleScalar is licensed for academic
rcial use. No portion of this work may be used by any commercial
tity, or for any commercial purpose, without the prior written permission
of SimpleScalar, LLC (info@simplescalar.com).

sim: command line: /home/ravi/simplescalar/simplesin-3.0/sim-safe ravi
sim: simulation started @ Tue Mar 13 06:60:10 2012, options follow:

sim-safe: This simulator implements a functional simulator. This
functional simulator is the simplest, most user-friendly simulator in the
simplescalar tool set. Unlike sim-fast, this functional simulator checks
or all instruction errors, and the implementation is crafted for clarity
rather than speed.

-config # load configuration from a file
-dumpconfig # dump configuration to a file
-h false # print help message
false # verbose operation
false # enable debug message
false # start in Dlite debugger
1 # random nunber g tor seed (6 for timer seed)
i minate immediatel

y
restore EIU trace execution from <fname>
<null> # redirect sinulator output to file (non-interactive only)
<null> # redirect sinulated program output to file
sinulator scheduling priorit
8 # maximum number of inst's to execute

Executions driven processor simulator are:

3.1.1 Sim-safe

This simulator is a functional simulation, it can providing
alignment and access permissions for each memory reference.
It contains the details of max instruction & scheduling
operation. Complete simulation details show in Figure 2.

1) 6:15AM @uravi O

Fig 2: Sim-safe simulator

32

3.1.2 Sim-cache:

Simplescalar Sim-cache simulator performs the cache
mapping as a set-associative mapping. Set associative
mapping, is an improvement over the direct-mapping
organization in that each word of cache can store two or more
word of memory under the same index address. Each data
word is stored to-gether with it’s tag and no. of tag item in one
word of cache is said to form a set. With the help of Sim-
Cache we have implemented memory configuration according
to specific application. This cache simulator performs the
cache memory related results such as cache name, sets, cache
associativity, cache block size, cache replacement policy etc.
(see Figure 3).

@ MO A ravi@ubuntu: ~/simplescalar
ravi@ubuntu:~/simplescalar$ $IDIR/simplesim-3.8/sim-cache ravi
sim-cache: SimpleScalar/PISA Tool Set version 3.0 of August, 2603.
Copyright (c) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
ALl Rights Reserved. This version of SimpleScalar is licensed for academic
non-commercial use. MNo portion of this work may be used by any commercial
entity, or for any commercial purpose, without the prior written permission
of SimpleScalar, LLC (info@simplescalar.com).

sim: command line: /home/ravi/simplescalar/simplesim-3.8/sim-cache ravi
sim: simulation started @ Tue Mar 13 06:00:36 2012, options follow:

sim-cache: This simulator implements a functional cache simulator. Cache
statistics are generated for a user-selected cache and TLB configurat
which may include up to two levels of instruction and data cache (wit
levels unified), and one level of instruction and data TLBs. Mo timing
information is generated.

-config # load configuration from a file
-dumpconfig # dump configuration to a file
ebug message
start in Dlite debugger
ator seed (0 for timer seed)
rninate immediately
xecution from <fname

d
-h
-V
-d
i

> # redirect simulated program output to file
0 # simulator scheduling priorit
0 # maximum number of inst's to ute
-cache:dl1 1256:32:1:1 # 11 data cache config, i.e., {<confi
-cache:d12 E 1 # 12 data cache config, i.e., {<config=|none}
e :1 # 11 inst cache config,

-t itlb:16:4696

-tlb:dt dtlb:32:4096:4:1 # data TLB config, i. <
-flush alse # flush caches on system calls
-cache:icompress
-pcstat <null> # profile stat(s) against text addr's (mult uses ok)

The cache config parameter <config> has the following format:

International Journal of Computer Applications (0975 — 8887)

config>|dl1|d12|nok:}
{<config>|d12|none}

convert 64-bit inst addresses to 32-bit inst equivalents

Volume 90 — No 13, March 2014

Sim-cache used various cache configurations are:

-cache:dl1 <config> configures a level-one data cache.
-cache:dI2 <config> configures a level-two data cache.
-cache:ill <config> configures a level-one instr. cache.
-cache:il2 <config> configures a level-two instr. cache.
-tlb:dtlb <config> configures the data TLB.

-tlb:itlb <config> configures the instruction TLB.
-flush <boolean> flush all caches on a system call;
-pcstat <stat> generate a text-based profile.

= o) 6:15AM @uravi (O

Fig 3: Sim-cache overview

3.1.3 Sim-cheetah

Sim-Cheetah cache simulation engine to generating
simulation results for multiple cache configurations with a
single simulation. It’s full associative efficiently as well as
simulating a sometimes optimal replacement policy.

3.1.4 Sim-profile

SimpleScalar Sim-profile simulator generates detailed profiles
on instruction classes and addresses, text symbols, memory
accesses, branches, and data segment symbols.

3.1.5 Sim-out order:
SimpleScalar simulator supports the out-of-order processor’s
memory system which employs a load/store queue. Store

values are placed in the queue and Loads are dispatched to the
memory system when the addresses of all previous stores are
known. Loads may be satisfied either by the memory system
or by an earlier store value residing in the queue, if their
addresses match. We can easily implementation with memory
and processor by Sim-out order processor simulator.

We can specify the processor core parameters are

-fetch: ifgsize<size> set the fetch width to be <size>
instructions.

-Fetch: speed<ratio>

-fetch: mplat <cycles> set the branch misprediction latency.
-decode: width <insts> set the decode width to be <insts>,
which must be a power of two.

33

-issue: width <insts> set the maximum issue width in a
given cycle.
-issue: inorder
-issue: wrongpath
misspeculation.
-ruu:size <insts> capacity of the RUU (in instructions).
-Isq:size<insts> capacity of the load/store queue (in
instructions).
-res:ialu<num>
res:imult<num>
multipliers/dividers.
-res: memports<num> specify number of L1 cache ports.

force the simulator to use in-order issue.
allow instructions to issue after a

specify number of integer ALUS. -
specify number of integer

-res:fpalu <num>
-res: fpmult <num>

specify number of floating point
specify number of floating point

We can specify the memory hierarchy parameters are

-cache:dl1lat <cycles> specify the hit latency of the L1 data
cache.

-cache:d12lat <cycles>specify the hit latency of the L2 data
cache.

-cache:illlat <cycles> specify the hit latency of the L1
instruction cache.

@ D86 ravigubuntu: ~/simplescalar

<assoc> - associativity of the cache
<repl> - block replacement strategy, 'l'-LRU, 'f'-FIFO, 'r'-random

Examples: -cache:dll dl1:4096:32:1:1
-dtlb dtlb:128:4096:32:r

Cache levels can be unified by pointing a level of the instruction cache
hierarchy at the data cache hiearchy using the "dl1" and "d12" cache
configuration arguments. Most sensible combinations are supported, e.g.

A unified 12 cache (il2 is pointed at d12)
-cache: 111 111:128:64:1:1 -cache:il2 d12
-cache:dll dl1:256:32:1:1 -cache:dl2 ul2:1024:64:2:1

Or, a fully unified cache hierarchy (ill pointed at dl1):
-cache:ill dll
-cache:dll ul1:256:32:1:1 -cache:dl2 ul2:1024:64:2:1

im: ** starting functional simulation w/ caches **
ravi
sim: ** sinulation statistics **
sin nun_insn 7064 # total number of instructions executed
sin_nun_refs 4008 # total nunber of loads and stores executed
sin elapsed tine 1 # total sinulation tine in seconds
sin inst rate 7064.0000 # sinulation speed (in insts/sec
7664 # total number of accesses
6629 # total number of hits

435 # total nunber of misses

221 # total number of replacements
il1.uritebacks 0 # total number of writebacks
ill.invalidations 0 # total number of invalidations
ill.niss rate 0.0616 # miss rate (i.e., misses/ref
ill.repl rate 0.6313 # replacement rate (i.e., repls/ref
ill.wb rate 0.0000 # writeback rate (i.e., wrbks/ref
ill.inv rate 0.0000 # invalidation rate (i.e., invs/ref
4682 # total number of accesses
3627 # total number of hits

455 # total number of misses

199 # total number of replacements

193 # total nunber of writebacks

0 # total number of invalidations

il1.replacements

dl1. replacenents
dl1.writebacks
dl1.invalidations

International Journal of Computer Applications (0975 — 8887)

Volume 90 — No 13, March 2014

-cache:il2lat <cycles> specify the hit latency of the L2
instruction cache.

-mem:lat <lst><next> specify main memory access latency
(first, rest).

-mem: widths<bytes> specify width of memory bus in bytes.
-tlb:lat<cycles> specify latency (in cycles).

3.2 SimpleScalar Cache Simulation
SimpleScalar simulator is an application specific Simulator
which can produce the target specific cache memory results
(see Figure 4). This SimpleScalar simulator contain cache
simulator; this simulator can emulate a system with multiple
levels of instruction and data caches. After simulation of
SimpleScalar we can get the parameter such as total no. of
instructions, sim-mem ref., sim-elapsed time, sim-inst-rate
etc. (see Table [1]). We have analyzed the memory references
according to the total no. of instruction executed (see Figure
5). Our model assumes two level data cache. Simplescalar
tool suite defines both little-ness and big-endian-ness (target)
of the architecture to improve the portability (the host
machine is the one that matches the endian-ness of the host).
A lot of features are available but we have used some limited
parameter for ASIP simulation.

$ 2) M 615AM Quravi O

Fig 4: SimpleScalar Simulation Results

34

International Journal of Computer Applications (0975 — 8887)
Volume 90 — No 13, March 2014

Tablel.Simplescalar Simulation Result

Benchmarks | Total no. Of Sim-Memory- Sim —elapsed time Sim-inst-rate
instruction Ref. (sec) (inst/sec)
lil.c 5086757 1248274 3 1695585.6
IIM.c 670697 162635 2 335348.5
IIMx.c 7035 3936 1 7035.00
lICs.c 8339 4292 1 8339.0
1112.c 8076 4263 1 8076.0

SIMPLESCALAR SIMULATION

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

SHARE MEMORY INST.

[11.c [IM.c [IMx.c lICx.c 112.c
BENCHMARKS

Fig 5: Simplescalar simulation analysis with total no. of instruction and memory references
3.3 Simplescalar limitation and features
Simplescalar tool set have following limitations.

e Simplescalar have no architectural delay slots :
loads,stores and controll transfer do not executes the
succeding instruction.

e Two level cache analysis.
e Target as little-endian and big-endian.

e Specific with host platform.

35

4. VEX SIMULATOR

VEX [7] provides a parametric space of architecture that share
a common set of application and system resources, such as
registers and operation.VEX is a 32-bit clustered VLIW ISA
which is scalable and customizable to individual application.
VEX simulator is an architecture-level (function) simulator
that uses compiled simulator technology to achieve a speed of
many equivalent ‘MIPS’. This simulation system used sets of
POSIX -like libc and libm libraries, VEX uses a cache
simulator (level-1 cache only), and an API that enables for
modeling the memory systems. VEX contains two qualifiers
that specify streaming access (access to object that only exhibit
spatial locality); and local access (access to object that exhibit
a strong temporal locality).

4.1 VEX Cluster architecture

VEX uses cluster architecture (see Figure 6): it provides
scalability of issue width and functionality using modular
execution clusters. Each cluster is a collection of register files

International Journal of Computer Applications (0975 — 8887)

Volume 90 — No 13, March 2014

and a tightly coupled a set of functional units. Functional units
within a cluster directly access only cluster register files. Data
cache port and private memories are associated with each
cluster. VEX allow multiple memory access to executes
simultaneously.

4.2 Customization of VEX

VEX used load/store architecture, meaning that only load and
store operations can access memory, and that memory
operations only target general-purpose registers. VEX
generally uses a big-endian byte ordering target model.

4.2.1 VEX Cache customize

We can easily choose the cache configuration according to
desire application. Vex contains various cache property such
as cache size, sets, line size, no. of cache line size, cache miss
penalty etc. (see Figure 7). In VEX compiled simulator we
can easily specify the execution —driven parameters, such as
clock and bus cycle, cache parameters (size, associativity,
refill latency).

16x32 16x32
Mult Mult
FYy Tl
P
P =P » ¥ P
Reg L+ N
—| Ly File >
1 7| | e4cr [€ X Load e yf D8
32KB 2 32 bi N Store 4-Way
direct [—pf =1 ($;o=1:j4 T » Unit 32KB
$r63=r >
—P —> |“ P
. T'T Yy Yy Yy
BrRegFile
Uni ALU ALT ALU ALT
it (1 bit)
o S Sl % S S—

Fig 6: VEX cluster structure

36

] vex.cfg %
CoreCkFreq 1008
BusCkFreq 500
lg2CacheSize 16 # (CacheSize
lg2sets 2 # (Sets
lg2LineSize 5 # (LineSize
MissPenalty 36
WBPenalty 33
lg25trsize 9 # (StrSize
lg2strsets 4 # (strsets
lg2StrLineSize 5 # (StrLineSize
StrMissPenalty 36
StruWBPenalty 33
lg2ICacheSize 15 # (ICacheSize
lg2ICacheSets 8 # (ICacheSets
lg2ICachelLineSize 6 # (ICacheLineSize
ICachePenalty 45
NumCaches 1
Branchstall 1
StreamEnable FALSE
PrefetchEnable TRUE
LockEnable FALSE
ProfGranularity AUTO

International Journal of Computer Applications (0975 — 8887)
Volume 90 — No 13, March 2014

256k)

n oo
s

32)

512)
16)
32)

32k)

"n un nu
—

64)

Fig 7: Customize Cache Parameter in vex.cfg file

4.2.2 Vex cluster customize

The Defaults VEX cluster contains two register files, four
integer ALUs, two 16x32-bit Multiply units, and a data cache
port. The register set consists of 64 general purposes 32-bit
registers (GRs) and 8 1bit branch register (BRs).

4.3 VEXVCG

VEX contain Visualization tools are often a very useful in the
developemnt of various tunned application profiling and

optimization of a complex application. This profilling usually
necessary regardness of the target architecture. VEX have the
rgg utility that converts the standards gprof output intoa VCG
call graph (see Figure 8). Each Application can be
implementing with VEX VCG and eaisly optimized specific
application.

s=0.0% 1=0.0% 3=0.0% 4=100.0%

0.0% 1 100.0% 1

exit printf
s=0.0% 1=0.0% 5=0.0% 4=100.0%

0.0% 1 10050% 1

viprintf
5=0,0% £=100.0%

0.0% 1 1000 1

_fualk _vfprintf_r
5=0.0% t=100.0%

|

s=0.0% t=0.0%

Program:test
Erec.time: 0.01 sec

Fig 8: VEXVCG

37

4.4 VEX Cache Simulation

VEX development system (VEX tool chain) provides the set
of tools that allow application benchmarks compiled for a VEX
target to be simulated on a host workstation. VEX tool chain is
mainly used for architecture exploration, application
development, and benchmarking. It includes very fast

| Compress.s #

International Journal of Computer Applications (0975 — 8887)
Volume 90 — No 13, March 2014

architectural simulation that uses a form of binary translation to
convert VEX assembler files. When we simulate an application
with vex simulator it can generate assembly files (see Figure
9), Assembly files are simulated and we get execution statistics
including cache misses. The pcntl utility is used for this
purpose.

.Trace 1
LO?3:
@ add sre.8 = sre.5, 2 ## bblock 1, line 12z-2, tlz22, t232, 2i(5I32)
cQ add sre.7 = sre.z, 2 ## bblock 1, line 12z-2, t218, *t179, 2(5I32)
cQ add sre.6 = sre.5, 1 ## bblock 1, line 12-1, t220, t232, 1(5I32)
cQ add sr@.3 = sro.z2, 1 ## bblock 1, line 12-1, t219, t179, 1(5I32)
i #&# 0
ca shzadd sre.3 = sro.3, sro.4 ## bblock 1, line 12-1, t235, *t219, t8
ca shzadd sro.7 = sro.7, sro.4 ## bblock 1, line 12-2, t236, t218, to8
o add $r@.13 = $r9.5, 3 ## bblock 1, lime 12-3, +t78, +t232, 3(5132)
o add $r@.12 = sre.2, 3 ## bblock 1, lime 12-3, +t94, +t179, 3(sI32)
s ## 1
B shzadd sre.12 = sre.12, sro.4 ## bblock 1, lime 12-3, t237, 194, to
e add $r@.15 = sr@.5, 4 ## bblock 1, linme 12-4, +t74, +t232, 4(s5132)
8 add Sr@.14 = sr8.2, 4 ##% bblock 1, lime 12-4, +t212, +t179, 4(sI32)
c@ cmplt sbB.@ = $r@.5, 4 ## bblock 1, linme 8-1, t239(I1), t232, 4(sSI32)
e H#H 2
@ shzadd 5r@.14 = $r0.14, $r@.4 ## bblock 1, lime 12-4, t238, t212, t8
@ add sr9.17 = sr@.1a, 1 ## [spec] bblock 22, lipe 12-1, t128, T177. 1(5I32)
@ add sro.l16 = sr@.11, 1 ## [spec] bblock 22, line 12-1, T227., t178, 1(5I32)
@ add sro.18 = sreo.11, 2 ## [spec] bblock 22, lipe 12-1, 225, t178, 2i(5I32)
##E 3
o shzadd sre.le = sr@.la, sra.4 ## [spec] bblock 22, line 12-1, tzee, t227, to
cQ add $ro.l19 = sr@.la, 2 ## [spec] bblock 22, line 12g1, t226, t177, 2(s51I32)
cQ shZadd $r0.18 = $r@.18, %ro.4 ## [spec] bblock 2z, Eﬂne 12-1, t2e7, t225, t©
o add $r9.20 = sre.l1l, 3 ## [spec] bblock 22, line 12-1, 1223, tl78, 3(s5I32)
4
o add $re.21 = sre.la, 3 ## [spec] bblock 22, line 12-1, t224, t1l77,., 3(sI32)
i shZadd $r0.20 = $ro.20, sro.4 ## [spec] bblock 22, line 12-1, t268, t223, tO
@ add $r9.22 = sr0.1a, 4 ## [spec] bblock 22, lipne 12-1, LE3E t177,. 4(s5I32)
o add sr9.22 = sri.l1l1, 4 ## [spec] bblock 22, lipe 12-1, t1l38, t178, 4i(s5I32)
5
@ sh2add $r0.22 = $r0.22, sr0.4 ## [spec] bblock 22, line 12-1, t269, t138, t0
@ mov $rio.24 = Sr@.8 ##% [spec] bblock 22, line 12-2, 185, t122

Fig 9: VEX assembly file

(cycles)
Insts Dcac
228 26 3
o
1

2
1

1

6.
3.2
4.
4.
4,
4.4
3.
3.
3.
3.
2.
2.
2.
2.
2.
2.
1.
1.8:
1.
1.
1.
0.6:
8.

(others not profile

he
96
72
08
A
36

6]
-0
52
36
80
=8
08

2]
36
-8
=8
36
36
-0

6]
36
=8

6]

6]

2]

Dcache%

Function
viprintf r
sfwwrite
__smakebuf
~malloc r
mbtowc
Tflush
_beopy
std
_morecore r
printf
__swsetup
_fstat r
sinit
exit
_fwalk
__wrap_memchr
_sbrk r
vfprintf
__swrite
_write r
localeconv
__sprint
__wrap_memmove
_cleanup r
_localeconv r

Icache Icache%
13.5: 1080 15.
2.4 675
360
315
90
270
3608
90
225
90
225
135
180
180
135
135
90
90

w

'
OO OO0 OWE 0 0EE W
© @ b e e e e RS R L W U W e

)

Fig 10: VEX D-CACHE and I-CACHE simulation analysis

38

Thtal Cycles:
Execution Cycles:
Stall Cycles:

Nops :

Executed operations:

Executed branches:
Not taken branches:
aken branches:
Taken uncond branches:
Taken cond branches:
Size of Loaded Code:

Instruction Memory Operations:
Accesses:
Hits (Hit Rate):
Misses (Miss Rate):
Instruction Memory Stall Cycles
Total (in cycles):
Due to Misses:
Due to Bus Conflicts:

Data Memory Operations:
Accesses:
Hits (Hit Rate):
Misses (Miss Rate):
Data Memory Stall Cycles
Total (in cycles):
Due to Misses:
Due to Bus Conflicts:

Percentage Bus Bandwidth Consumed:

International Journal of Computer Applications (0975 — 8887)
Volume 90 — No 13, March 2014

(0.017562 msec)

ops) (22.45% 1insts)

ops)(6.45% insts)(28.74% br)

Fig 11: Vex Cache levell simulation results

VEX links with a simple cache simulation library, which
models a L1 instruction and data cache memory. The cache
simulator is really a trace simulator, which is embedded in the
same binary for performance reasons. The VEX simulator
supports for gprof, when invokes with the “-mas_G”. Gprof
running in the host environment. At the end of simulation,
four files are created, gmon.out containing profile data that
include cache simulation, gmon-nocache.out containing
profile data not include cache simulation, gmon-icache/gmon-
dcache containing data for respectively only instruction and
data cache statistcs (see Figure 10).VEX gmon-icache/gmon-
dcache file contains complete details of instruction and data
memory operations,stall cycles,cache hit rate, cache miss rate
etc.

VEX output file containing the complete statistcis, such as
cycles (total,execution,stall,operations,time), branch statistics
(execution, taken, condition, unconditions), instruction
memory statistics (estimated codesize, hits/misses) data
memory statistics (hits/misses, bus conflicts), bus statistics
(bandwidth usages fration), simulation speed (mips,simulation
time) (see Figure 11). In VEX cache simulation process we
have used various standard benchmarks applications and after
simulation we can get I-Cache & D-cache results according to
the total no. of instruction executed (see table(2,3)) and
analyzed the I-cache/ D-cache according to desire application
(see Figure 12).

Table 2. VEX cache simulation results with total no. of
instruction (I-CACHE/D-CACHE)

Benchmarks D-cache | I-cache | total no. of
values values instruction
(mips) (mips) (mips)
Rgb_to_cmyk 20.00 0.98 142.93
Dither 23.39 0.62 89.33
Interpolate_x 3.07 0.40 41.68
Interpolate_y 12.1662 | 0.231 34.70
Ycc_rgh_converter 1.818 0.057 2457
Jpeg_idct_islow 0.51 0.02 5.54
H2v2_fancy_upsample | 0.963 0.05 3.49
Decode_mcu 0.192 0.05 2.74
Jpeg_fill_bit_buffer 0.043 0.003 1.35
Imppipe 0.081 0.044 0.16

39

International Journal of Computer Applications (0975 — 8887)
Volume 90 — No 13, March 2014

Table 3. VEX cache simulation results (I-CACHE/D- Ycc_rgh_converter 7 0.2
CACHE)
Jpeg_idct_islow 9.1 0.3
Benchmarks D-cache values (%) I-cache values
(%) H2v2_fancy_upsample | 27.5 1.5
Rgb_to_cmyk 13.9 0.6879664 Decode_mcu 7.0 1.9
Dither 26.1 0.6 Jpeg_fill_bit_buffer 31 0.2
Interpolate_x 7.3 0.9 Imppipe 48.2 26.4
Interpolate_y 35. 0.6

vex simulation result

SHARE MEMORY INS.

BENCHMARKS

Fig 12: Vex Cache Simulation result

4.5 Vex features
Vex has following features.

e Cluster architecture.
e Single level cache analysis.
e Custom memory processor configuration.

e VLIW InstructionSetArchitecture.

5. CONCLUSION

ASIP simulators allows as the simulation of the cache
memory design is an efficient manner. We have used ASIP
simulators like SimpleScalar and VEX simulator performs
target specific cache memory results. SimpleScalar is MIPS
based architecture used in design space exploration, perform
two level cache simulation.VEX defines a 32-bit clustered
VLIW ISA is scalable and customizable to specific
application and performs single level cache simulation. By the
use of these ASIP simulators we have customized the memory

configuration according to desire application and we can get
complete details of I-Cache & D-cache according to the total
no. of instructions executed.

6. ACKNOWLEDGMENTS

Our thanks to the SimpleScalar and VEX tool developer who
has developed these simulators.

7. REFERENCES

[1] Jain, M. K., Balakrishnan, M. and Kumar, A. 2005.
Integrated on-chip storage evaluation in ASIP synthesis.
VLSI Design, (2005), 274 - 279.

[2] Kin J., Gupta, M. And Mangione-Smith, W. H.
2000.Filtering memory references to increase energy
efficiency. |IEEE transaction on computes .Vol. 49,
(2000), 1-15.

[3] Vivekanadarajah, K. and Thambipillai, K. 2011 .Custom
Instruction Filter Cache Synthesis for Low- Power
Embedded systems. (2011).

40

(4]

(5]

(6]
(7]

Shiue, W. T.1999. Data Memory Design and Exploration
for Low Power Embedded Systems. In proc of 36 ™
annual ACM/IEEE Design automation conference.
(1999), 140-145.

Prinkyl, Z. 2011 .Fast just in time translated simulator for
ASIP design. IEEE 14" International symposium.
(2011), 279-282.

Simple scalar homepage: http://www.simplescalar.com

Vex homepage: http://www.hpl.hp.com/downloads/vex/

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)

(8]

[9]

Volume 90 — No 13, March 2014

Gremzow, C.2007.Compiled Low-Level Virtual
Instruction Set Simulation and Profiling for Code
Partitioning and ASIP-Synthesis in Hardware/Software
Co-Design. (2007), 741-748.

Fischer, D., Teich, J., Thies, M., Weper, R.
2002.Efficient Architecture/Compiler Co-Exploration for
ASIPs. (2002).

[10] Guzman, V. Bhattacharyya, S.S, Kellomaki, E. and

Takala, J. 2009. An Integrated ASIP Design Flow for
Digital Signal Processing Applications. (2009).

41

