
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

31

Application Specific Cache Simulation Analysis for

Application Specific Instruction set Processor

Ravi Khatwal

Research scholar
Department Of Computer science,
Mohan LaL Sukhadia University,

Udaipur, India.

Manoj Kumar Jain, Ph. D
Associate Professor

Department Of Computer science,
Mohan LaL Sukhadia University,

Udaipur, India.

ABSTRACT

An Efficient Simulation of application specific instruction-set

processors (ASIP) is a challenging onus in the area of VLSI

design. This paper reconnoiters the possibility of use of ASIP

simulators for ASIP Simulation. This proposed study allow as

the simulation of the cache memory design with various ASIP

simulators like Simple scalar and VEX. In this paper we have

implemented the memory configuration according to desire

application. These simulators performs the cache related

results such as cache name, sets, cache associativity, cache

block size, cache replacement policy according to specific

application.

Keywords

ASIP Simulators, VEX Simulator, SimpleScalar Simulator,

Simulation and Cache Memory Design.

1. INTRODUCTION
ASIPs are the challenging task in the area of high

performance embedded system design. ASIP performs the

target architecture such big-endian and little-endian it can

reduce the cost, speed, code size, and power consumption and

increasing performance. We have used two ASIP simulator

like SimpleScalar and VEX. SimpleScalar simulator is an

ASIP simulator; it consists of compiler, assembler, linker and

simulation tools for the Simple Scalar PISA and Alpha AXP

architectures. SimpleScalar tool set contains many simulators

ranging from a fast functional simulator to a detailed out-of-

order issue processor with a multi-level memory system.

SimpleScalar also provides extensible, portable, high-

performance architecture for high performance embedded

systems design. Specific application compiled with using

SimpleScalar, which generates application specific cache

results. Another kind of ASIP simulator is VEX defines a

parametric space of architecture that share a common set of

application and system resources. VEX is a 32-bit clustered

VLIW ISA is scalable and customizable to specific

application domains.

2. RELATED WORK
Jain, M. K., Balakrishnan M. and Kumar A. proposed [1]

scheduler based technique for exploring the register windows

and cache configuration. Kin, J., Gupta, M. And Mangione-

Smith, W. H. [2] analyzed energy efficiency by filtering cache

references through an unusually small first level cache. A

second level cache, similar in size and structure to a

conventional first level cache, is positioned behind the filter

cache and serves to mitigate the performance loss.

Performance for different register file sizes is estimated by

predicting the number of memory spills and its delay.

Vivekanadarajah K. and Thambipillai, S. [3] the tuning filter

cache to the needs of a particular application can save power

and energy. Beside, a simple loop profiler directed

methodology to deduce the optimal or near-optimal filter

cache is proposed, without having to simulating all possible

combinations of cache parameters from the specified space.

The technique employed does not require explicit register

assignment. Shuie, W. T. [4] Proposed three performance

metrics, such as cache size, memory access time and energy

consumption. Extensive experiments indicate that a small

filter cache still can achieve a high hit rate and good

performance. This approach allows the second level cache to

be in a low power mode most of the time, thus resulting in

power savings. Prikryl Z., Kroustck I., Hruska, T. and Kolar,

D. [5] proposed automatically generated just-in-time

translated simulator with the profiling capabilities. Gremzow,

C. [8] using virtual machine architectures for ASIP synthesis

and quantitative global data flow analysis for code

partitioning, several “real world” applications from the

domain of digital video signal processing. D. Fischer, J.

Teich, M., Weper, R. [9] designed an efficient exploration

algorithm for architecture/compiler co-designs of application-

specific instruction-set processors. Guzman, V.,

Bhattacharyya, S.S, Kellomaki, E. and Takala, J. [10]

developed an integration of SDF- and ASIP-oriented design

flows, and use this integrated design flow to explore trade-offs

in the space of hardware/software implementation and explore

an approach to ASIP implementation in terms of “critical” and

“non-critical” applications.

3. SIMPLESCALAR SIMULATOR
SimpleScalar simulator [6] used the MIPS architecture and

support both big-endian and little-endian executable.

SimpleScalar used the target files big-endian and little endian

architecture is ssbig-na-sstrix and sslittle-na-sstrix,

respectively. We have determined endian to our host

environment and run the endian program located in the

simplesim-2.0/ directory. SimpleScalar simulator provides

fast cache simulation. SimpleScalar simulator is target

specific simulator we have used 32-bit system as i-386 or 64-

bit as i-686 host platform after targeting little-endian we have

analyzed the cache memory result. In SimpleScalar we have

used various application benchmarks and compiled with

SimpleScalar version of GCC, which generates SimpleScalar

assembly. The SimpleScalar assembly and loader, along with

the necessary ported libraries, it produce SimpleScalar

executable that can then be feel directly one of the provided

simulators (this simulator compiled with the host‟s platforms)

(see Figure 1).Simulator resources such as Sim-Cache,Sim-

Safe etc. used for simulation.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

32

Fig 1: SimpleScalar simulation overview

3.1 SimpleScalar internals processor

simulator
SimpleScalar simulator [6] contains five executions driven

processor simulator. SimpleScalar processor simulator

performs the non-blocking cache and speculative execution.

We have used Sim-Cache for cache simulation.

Executions driven processor simulator are:

3.1.1 Sim-safe
This simulator is a functional simulation, it can providing

alignment and access permissions for each memory reference.

It contains the details of max instruction & scheduling

operation. Complete simulation details show in Figure 2.

Fig 2: Sim-safe simulator

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

33

3.1.2 Sim-cache:
Simplescalar Sim-cache simulator performs the cache

mapping as a set-associative mapping. Set associative

mapping, is an improvement over the direct-mapping

organization in that each word of cache can store two or more

word of memory under the same index address. Each data

word is stored to-gether with it‟s tag and no. of tag item in one

word of cache is said to form a set. With the help of Sim-

Cache we have implemented memory configuration according

to specific application. This cache simulator performs the

cache memory related results such as cache name, sets, cache

associativity, cache block size, cache replacement policy etc.

(see Figure 3).

Sim-cache used various cache configurations are:

-cache:dl1 <config> configures a level-one data cache.

-cache:dl2 <config> configures a level-two data cache.

-cache:il1 <config> configures a level-one instr. cache.

-cache:il2 <config> configures a level-two instr. cache.

-tlb:dtlb <config> configures the data TLB.

-tlb:itlb <config> configures the instruction TLB.

-flush <boolean> flush all caches on a system call;

-pcstat <stat> generate a text-based profile.

Fig 3: Sim-cache overview

3.1.3 Sim-cheetah
Sim-Cheetah cache simulation engine to generating

simulation results for multiple cache configurations with a

single simulation. It‟s full associative efficiently as well as

simulating a sometimes optimal replacement policy.

3.1.4 Sim-profile
SimpleScalar Sim-profile simulator generates detailed profiles

on instruction classes and addresses, text symbols, memory

accesses, branches, and data segment symbols.

3.1.5 Sim-out order:
SimpleScalar simulator supports the out-of-order processor‟s

memory system which employs a load/store queue. Store

values are placed in the queue and Loads are dispatched to the

memory system when the addresses of all previous stores are

known. Loads may be satisfied either by the memory system

or by an earlier store value residing in the queue, if their

addresses match. We can easily implementation with memory

and processor by Sim-out order processor simulator.

We can specify the processor core parameters are

-fetch: ifqsize<size> set the fetch width to be <size>

instructions.

-Fetch: speed<ratio>

-fetch: mplat <cycles> set the branch misprediction latency.

-decode: width <insts> set the decode width to be <insts>,

which must be a power of two.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

34

-issue: width <insts> set the maximum issue width in a

given cycle.

-issue: inorder force the simulator to use in-order issue.

-issue: wrongpath allow instructions to issue after a

misspeculation.

-ruu:size <insts> capacity of the RUU (in instructions).

-lsq:size<insts> capacity of the load/store queue (in

instructions).

-res:ialu<num> specify number of integer ALUs. -

res:imult<num> specify number of integer

multipliers/dividers.

-res: memports<num> specify number of L1 cache ports.

-res:fpalu <num> specify number of floating point

-res: fpmult <num> specify number of floating point

We can specify the memory hierarchy parameters are

-cache:dl1lat <cycles> specify the hit latency of the L1 data

cache.

-cache:d12lat <cycles>specify the hit latency of the L2 data

cache.

-cache:il1lat <cycles> specify the hit latency of the L1

instruction cache.

-cache:il2lat <cycles> specify the hit latency of the L2

instruction cache.

-mem:lat <1st><next> specify main memory access latency

(first, rest).

-mem: widths<bytes> specify width of memory bus in bytes.

-tlb:lat<cycles> specify latency (in cycles).

3.2 SimpleScalar Cache Simulation
SimpleScalar simulator is an application specific Simulator

which can produce the target specific cache memory results

(see Figure 4). This SimpleScalar simulator contain cache

simulator; this simulator can emulate a system with multiple

levels of instruction and data caches. After simulation of

SimpleScalar we can get the parameter such as total no. of

instructions, sim-mem ref., sim-elapsed time, sim-inst-rate

etc. (see Table [1]). We have analyzed the memory references

according to the total no. of instruction executed (see Figure

5). Our model assumes two level data cache. Simplescalar

tool suite defines both little-ness and big-endian-ness (target)

of the architecture to improve the portability (the host

machine is the one that matches the endian-ness of the host).

A lot of features are available but we have used some limited

parameter for ASIP simulation.

Fig 4: SimpleScalar Simulation Results

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

35

Table1.Simplescalar Simulation Result

Benchmarks Total no. Of

 instruction

Sim-Memory-

Ref.

Sim –elapsed time

(sec)

Sim-inst-rate

(inst/sec)

ll1.c 5086757 1248274 3 1695585.6

llM.c 670697 162635 2 335348.5

llMx.c 7035 3936 1 7035.00

llCs.c 8339 4292 1 8339.0

ll12.c 8076 4263 1 8076.0

Fig 5: Simplescalar simulation analysis with total no. of instruction and memory references

3.3 Simplescalar limitation and features
Simplescalar tool set have following limitations.

 Simplescalar have no architectural delay slots :

loads,stores and controll transfer do not executes the

succeding instruction.

 Two level cache analysis.

 Target as little-endian and big-endian.

 Specific with host platform.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

36

4. VEX SIMULATOR

VEX [7] provides a parametric space of architecture that share

a common set of application and system resources, such as

registers and operation.VEX is a 32-bit clustered VLIW ISA

which is scalable and customizable to individual application.

VEX simulator is an architecture-level (function) simulator

that uses compiled simulator technology to achieve a speed of

many equivalent „MIPS‟. This simulation system used sets of

POSIX –like libc and libm libraries, VEX uses a cache

simulator (level-1 cache only), and an API that enables for

modeling the memory systems. VEX contains two qualifiers

that specify streaming access (access to object that only exhibit

spatial locality); and local access (access to object that exhibit

a strong temporal locality).

4.1 VEX Cluster architecture
VEX uses cluster architecture (see Figure 6): it provides

scalability of issue width and functionality using modular

execution clusters. Each cluster is a collection of register files

and a tightly coupled a set of functional units. Functional units

within a cluster directly access only cluster register files. Data

cache port and private memories are associated with each

cluster. VEX allow multiple memory access to executes

simultaneously.

4.2 Customization of VEX
VEX used load/store architecture, meaning that only load and

store operations can access memory, and that memory

operations only target general-purpose registers. VEX

generally uses a big-endian byte ordering target model.

4.2.1 VEX Cache customize
 We can easily choose the cache configuration according to

desire application. Vex contains various cache property such

as cache size, sets, line size, no. of cache line size, cache miss

penalty etc. (see Figure 7). In VEX compiled simulator we

can easily specify the execution –driven parameters, such as

clock and bus cycle, cache parameters (size, associativity,

refill latency).

Fig 6: VEX cluster structure

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

37

Fig 7: Customize Cache Parameter in vex.cfg file

4.2.2 Vex cluster customize
The Defaults VEX cluster contains two register files, four

integer ALUs, two 16x32-bit Multiply units, and a data cache

port. The register set consists of 64 general purposes 32-bit

registers (GRs) and 8 1bit branch register (BRs).

4.3 VEX VCG
 VEX contain Visualization tools are often a very useful in the

developemnt of various tunned application profiling and

optimization of a complex application. This profilling usually

necessary regardness of the target architecture. VEX have the

rgg utility that converts the standards gprof output intoa VCG

call graph (see Figure 8). Each Application can be

implementing with VEX VCG and eaisly optimized specific

application.

Fig 8: VEX VCG

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

38

4.4 VEX Cache Simulation
 VEX development system (VEX tool chain) provides the set

of tools that allow application benchmarks compiled for a VEX

target to be simulated on a host workstation. VEX tool chain is

mainly used for architecture exploration, application

development, and benchmarking. It includes very fast

architectural simulation that uses a form of binary translation to

convert VEX assembler files. When we simulate an application

with vex simulator it can generate assembly files (see Figure

9), Assembly files are simulated and we get execution statistics

including cache misses. The pcntl utility is used for this

purpose.

Fig 9: VEX assembly file

Fig 10: VEX D-CACHE and I-CACHE simulation analysis

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

39

Fig 11: Vex Cache level1 simulation results

VEX links with a simple cache simulation library, which

models a L1 instruction and data cache memory. The cache

simulator is really a trace simulator, which is embedded in the

same binary for performance reasons. The VEX simulator

supports for gprof, when invokes with the “-mas_G”. Gprof

running in the host environment. At the end of simulation,

four files are created, gmon.out containing profile data that

include cache simulation, gmon-nocache.out containing

profile data not include cache simulation, gmon-icache/gmon-

dcache containing data for respectively only instruction and

data cache statistcs (see Figure 10).VEX gmon-icache/gmon-

dcache file contains complete details of instruction and data

memory operations,stall cycles,cache hit rate, cache miss rate

etc.

VEX output file containing the complete statistcis, such as

cycles (total,execution,stall,operations,time), branch statistics

(execution, taken, condition, unconditions), instruction

memory statistics (estimated codesize, hits/misses) data

memory statistics (hits/misses, bus conflicts), bus statistics

(bandwidth usages fration), simulation speed (mips,simulation

time) (see Figure 11). In VEX cache simulation process we

have used various standard benchmarks applications and after

simulation we can get I-Cache & D-cache results according to

the total no. of instruction executed (see table(2,3)) and

analyzed the I-cache/ D-cache according to desire application

(see Figure 12).

Table 2. VEX cache simulation results with total no. of

instruction (I-CACHE/D-CACHE)

Benchmarks D-cache

values

(mips)

I-cache

values

(mips)

total no. of

instruction

(mips)

Rgb_to_cmyk 20.00 0.98 142.93

Dither 23.39 0.62 89.33

Interpolate_x 3.07 0.40 41.68

Interpolate_y 12.1662 0.231 34.70

Ycc_rgb_converter 1.818 0.057 24.57

Jpeg_idct_islow 0.51 0.02 5.54

H2v2_fancy_upsample 0.963 0.05 3.49

Decode_mcu 0.192 0.05 2.74

Jpeg_fill_bit_buffer 0.043 0.003 1.35

Imppipe 0.081 0.044 0.16

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

40

Table 3. VEX cache simulation results (I-CACHE/D-

CACHE)

Benchmarks D-cache values (%) I-cache values

(%)

Rgb_to_cmyk 13.9 0.6879664

Dither 26.1 0.6

Interpolate_x 7.3 0.9

Interpolate_y 35. 0.6

Ycc_rgb_converter 7 0.2

Jpeg_idct_islow 9.1 0.3

H2v2_fancy_upsample 27.5 1.5

Decode_mcu 7.0 1.9

Jpeg_fill_bit_buffer 3.1 0.2

Imppipe 48.2 26.4

Fig 12: Vex Cache Simulation result

4.5 Vex features
Vex has following features.

 Cluster architecture.

 Single level cache analysis.

 Custom memory processor configuration.

 VLIW InstructionSetArchitecture.

5. CONCLUSION
ASIP simulators allows as the simulation of the cache

memory design is an efficient manner. We have used ASIP

simulators like SimpleScalar and VEX simulator performs

target specific cache memory results. SimpleScalar is MIPS

based architecture used in design space exploration, perform

two level cache simulation.VEX defines a 32-bit clustered

VLIW ISA is scalable and customizable to specific

application and performs single level cache simulation. By the

use of these ASIP simulators we have customized the memory

configuration according to desire application and we can get

complete details of I-Cache & D-cache according to the total

no. of instructions executed.

6. ACKNOWLEDGMENTS
Our thanks to the SimpleScalar and VEX tool developer who

has developed these simulators.

7. REFERENCES
[1] Jain, M. K., Balakrishnan, M. and Kumar, A. 2005.

Integrated on-chip storage evaluation in ASIP synthesis.

VLSI Design, (2005), 274 - 279.

[2] Kin J., Gupta, M. And Mangione-Smith, W. H.

2000.Filtering memory references to increase energy

efficiency. IEEE transaction on computes .Vol. 49,

(2000), 1-15.

[3] Vivekanadarajah, K. and Thambipillai, K. 2011 .Custom

Instruction Filter Cache Synthesis for Low- Power

Embedded systems. (2011).

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 13, March 2014

41

[4] Shiue, W. T.1999. Data Memory Design and Exploration

for Low Power Embedded Systems. In proc of 36 th

annual ACM/IEEE Design automation conference.

(1999), 140-145.

[5] Prinkyl, Z. 2011 .Fast just in time translated simulator for

ASIP design. IEEE 14th International symposium.

(2011), 279-282.

[6] Simple scalar homepage: http://www.simplescalar.com

[7] Vex homepage: http://www.hpl.hp.com/downloads/vex/

[8] Gremzow, C.2007.Compiled Low-Level Virtual

Instruction Set Simulation and Profiling for Code

Partitioning and ASIP-Synthesis in Hardware/Software

Co-Design. (2007), 741-748.

[9] Fischer, D., Teich, J., Thies, M., Weper, R.

2002.Efficient Architecture/Compiler Co-Exploration for

ASIPs. (2002).

[10] Guzman, V. Bhattacharyya, S.S, Kellomaki, E. and

Takala, J. 2009. An Integrated ASIP Design Flow for

Digital Signal Processing Applications. (2009).

IJCATM : www.ijcaonline.org

