
International Journal of Computer Applications (0975 – 8887)  

Volume 90 – No 11, March 2014 

38 

Comparative Study on the Performance of Mel-

Frequency Cepstral Coefficients and Linear 

Prediction Cepstral Coefficients under different 

Speaker’s Conditions 

 
Kamil Ismaila Adeniyi 

Department of Electrical& Electronic Engineering 
University of Ibadan 

Ibadan, Nigeria 

Oyeyiola Abdulhamid K. 
Department of Electrical& Electronic Engineering 

University of Ibadan 
Ibadan, Nigeria

ABSTRACT 

This paper compares Mel-Frequency Cepstral Coefficients 

(MFCCs) and Linear Prediction Cepstral Coefficients 

(LPCCs) features under three speaker conditions: waking up, 

being fully awake and being tired, to determine which is 

better at handling the effect of these variations. A Gaussian 

Mixture Model (GMM) Classifier was used for both features. 

Experimental results show an identification rate of 83.3% in 

the MFCC based system when the speakers were just waking 

up, while the LPCC based system had a lower identification 

rate of 75%. Also, when the speakers were either fully awake 

or tired, the MFCC based system achieved an identification 

rate of 100%, while the LPCC based system had an 

Identification rate of 91.7%. In speaker verification, under the 

first condition (Waking Up), there is a significant difference 

between the equal error rates (EER), 7.9% for MFCC and 

22.0% for LPCC. Also, there is a significant difference 

between the total success rates (TSR) under this condition. 

82.5% for MFCC and 65.0% for LPCC. Overall, MFCC 

achieved a better total success rate under the three conditions 

studied. 

General Terms 

Speaker Recognition, intra-speaker variability, session 

variability. 
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1. INTRODUCTION 
Speaker Recognition is a multi-disciplinary technology which 

uses the vocal characteristics of speakers to deduce 

information about their identities [1]. In speaker recognition, 

the interest lies in answering the question who said it? Rather 

than understanding what is being said. The later is the focus of 

speech recognition technology. It is a branch of biometrics 

(behavioral biometrics) because a Speaker’s voice is unique. 

As a result, it may be used in Forensics and Access Control 

Applications. When there is something valuable that needs 

protection e.g. information in a bank’s database, there is a 

need for gate-keeping or access control. An automatic speaker 

recognition system can be used for such purpose. When used 

in gate-keeping applications, a speaker recognition system can 

be operated in two modes, speaker identification and speaker 

verification. During speaker identification, an unknown 

speaker only records his/her voice without supplying a user 

ID. The system performs a one-to-many comparison through 

its database and returns the ID of the closest match. In a 

situation where the test subject is not an “enrolled” Speaker, 

the returned ID would indicate a system failure. Speaker 

identification should therefore be performed on a closed-set or 

in applications where misidentification has a mild 

consequence. On the other hand, for verification a claimed 

Speaker Supplies an ID and also records his/her voice. The 

system performs a one-to-one comparison with the “voice 

print” of the speaker in its database and makes a decision 

based on the outcome. It is also called binary detection, 

because the decision is to either accept or reject the claimed 

speaker [2-5]. Speaker recognition is very important as a 

means of verification because unlike many other biometrics, it 

requires no special infrastructure. It can make use of existing 

ones such as the telephone network, and it is easily tested 

remotely over a network [1]. 

Mel-frequency Cepstral Coefficients (MFCCs) and Linear 

Prediction Cepstral Coefficients (LPCCs) are two spectral 

features widely used in implementing practical speaker 

recognition systems. They are extracted by mapping the 

frequency domain of the speech signal to that of either the 

speech production model or speech perception model, and are 

related to the spectrum of the log of spectrum of a speech 

signal. MFCC is inspired by human speech perception model. 

Results of psycho-acoustic experiments reveal that human 

perception of pitch is linear up to 1000 Hz and then becomes 

non-linear (logarithmic) for higher frequencies. MFCCs are 

computed by warping the frequency domain of the speech 

signal to the Melody (Mel) scale [1, 6, 7, 8], with the aid of a 

psycho-acoustically motivated filter bank, followed by 

logarithmic compression and discrete cosine transform (DCT) 

[6, 8]. On the other hand, LPCC has its origin in speech 

production model. In order to reflect the resonance properties 

of the supralaryngeal vocal tract, speech production is 

intuitively modeled as an all-pole filter, with complex poles 

capable of producing the resonant frequencies (Formant 

frequencies). By exploring the correlation property found in 

adjacent speech samples, the filter coefficients are estimated 

using linear prediction. These coefficients are rarely used as 

features but transformed into more robust and less correlated 

features [6], one of which are the LPCCs. 

An ideal voice feature must have small intra-speaker 

variability and an inter-speaker variability large enough to 

prevent overlap between speakers in the decision space. If 

intra-speaker variability becomes too large, significant 

overlap will occur, leading to identification errors. Intra-

speaker variabilities are unavoidable since it is virtually 
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impossible for a speaker to repeat the same set of phrase(s) 

exactly the same way on different occasions. This is further 

complicated by the ever changing channel properties. Some 

factors responsible for changes due to the speaker him/herself 

are state of health, mood, aging, alertness or awakeness etc. 

Changes in a speaker’s condition may be substance induced 

(foods or drugs) or physiological in nature. In this work we 

studied how three speaker states/conditions which are: waking 

up, being fully awake and being tired affect the performances 

of MFCCs and LPCCs when used in speaker recognition 

systems. 

2. TYPES OF SPEAKER RECOGNITION 
Speaker recognition systems fall into two categories: text-

dependent and text-independent [4, 5, 6, 8]. 

2.1 Text-dependent Speaker Recognition 
If the text must be the same for enrollment and verification 

this is called text-dependent recognition. In a text-dependent 

system, prompts can either be common across all speakers or 

unique [4]. Text is fixed during training and the same is used 

during testing. Therefore both instances of the utterance can 

be regarded as an imperfect replica of each other, and be 

aligned temporally so as to measure their degree of similarity. 

2.2 Text-independent Speaker Recognition 
Text-independent systems are most often used for speaker 

identification as they require very little if any cooperation by 

the speaker [4]. Text during training may bear no correlation 

to text during testing. Therefore any form of alignment 

between the two may be meaningless or devoid of any useful 

geometric interpretation. Text-independent speaker 

recognition uses more of acoustic features than speech 

dependent features. 

3. THE SYSTEM 
For this work we developed a text-dependent speaker 

recognition system based on MFCC and LPCC voice features 

using prompted digits (0-9). Figure 1, shows the flowchart of 

the system.  

3.1 Speech Database 
The database contains 15 speakers (5 males and 10 females), 

with 6 utterances from each speaker, each of spoken digits 0 

to 9. Since the purpose is to study how voice features MFCC 

and LPCC perform under three speaker conditions, waking 

up, being fully awake and being tired, a set of utterances were 

recorded under each of these conditions. The utterances were 

recorded in a low noise environment. The utterances were 

recorded in wav format with 16-bit per speech sample and at 8 

kHz sampling rate. 

3.2 Preprocessing 
This refers to all transformations performed on a speech 

signal before feature extraction. These include speech pre-

emphasis, voice activity detection, frame blocking and 

windowing. 

 

 

 

 

 

 

 

Fig 1: Flowchart of Speaker Recognition System 

Table 1. Spoken Digit Database 

Speakers 
15 (5 males and 10 

females) 

Sessions/Speaker 6 

Type of Speech Prompted digits(0 to 9) 

Microphone Standard Microphone 

Acoustic Environment Recording room (±55dB) 

Sample width 16 bit 

Sampling rate 8 kHz 

File format wav 

In our system we converted input signals to 20 millisecond 

frames with 50% overlap and used a Hamming window, 

before extracting feature vectors from each frame. On the 

average each utterance is 5 sec. in length, giving an average of 

996 frames per speaker per condition. 

3.3 Extraction of MFCCs 
MFCCs were extracted using a triangular filter-bank with 26 

filters and 257 points Discrete Fourier transform. The pre-

computed magnitude (frequency response) of our filters 

Hm[k], is given by [8, 9]: 

𝐻𝑚  𝑘 =

 
  
 

  
 

0,                          𝑘 < 𝑓 𝑚 − 1 

 𝑘 − 𝑓 𝑚 − 1  

 𝑓 𝑚 − 𝑓 𝑚 − 1  
, 𝑓 𝑚 − 1 ≤ 𝑘 ≤ 𝑓 𝑚 

 𝑓 𝑚 + 1 − 𝑘 

 𝑓 𝑚 + 1 − 𝑓 𝑚  
, 𝑓 𝑚 ≤ 𝑘 ≤ 𝑓 𝑚 + 1 

0,                           𝑘 > 𝑓 𝑚 + 1 

    (1) 

where m is the mth filter and k is the kth point of its DFT. The 

procedure for obtaining the various values of 𝑓 can be found 

in [8]. 
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Given a frame of preprocessed speech x[n], we used the 

following algorithm [8, 9] in calculating our MFCCs 

 Compute the frame DFT 

𝑋 𝑘 =  𝑥 𝑛 𝑒−
𝑗2𝜋𝑛𝑘
𝑁   ,       0 ≤ 𝑘 ≤ 𝑁             (2)

𝑁−1

𝑛=0

 

 Weight the power spectrum X[k]2 by the triangular 

filters 

𝑆 𝑚 =  𝑋[𝑘]2𝐻𝑚  𝑘  ,      0 ≤ 𝑚 ≤ 𝑀             (3)

𝑁

𝑘=1

 

 Compute the discrete cosine transform (DCT) of the 

logarithm of S[m] to form the MFCCs as 

𝑚𝑓𝑐𝑐 𝑖 =  𝑙𝑜𝑔 𝑆[𝑚] 𝑐𝑜𝑠  𝑖  𝑚 −
1

2
 
𝜋

𝑀
  ,   (4)

𝑀

𝑚=1

 

 

𝑖 = 1,2,……𝐿 

where 𝐿 is the number of cepstral coefficients. 

3.4 Extraction of LPCCs 
We extracted our LPCCs using a 10th order linear predictor. 

The predictor coefficients were transformed to LPCCs using 

the equations stated below [10]: 

𝑐𝑚 = −𝑎𝑚 −    1−
𝑘

𝑚
 . 𝑎𝑘 . 𝑐(𝑚−𝑘) , 1 ≤ 𝑚 ≤ 𝑝      (5)

𝑚−1

𝑘=1

 

𝑐𝑚 = −   1 −
𝑘

𝑚
 . 𝑎𝑘 . 𝑐(𝑚−𝑘) ,                 𝑚 > 𝑝          (6)

𝑝

𝑘=1

 

where p is the order and 𝑎𝑘  is the kth coefficient of the linear 

predictor. 𝑐𝑚  is mth cepstral coefficient. 

For each frame of speech with N samples, a set of predictor 

coefficients (𝑎𝑘𝑠) are computed using Linear Predictive 

Coding (LPC) [11]. The basic idea behind LPC is that the nth 

speech sample can be approximated as a weighted sum of p 

past samples. 

                                      𝑠 𝑛 =  𝑎𝑘

𝑝

𝑘=1

𝑠𝑛−𝑘                                     (7 ) 

The difference between the approximated or predicted sample 

given by (7) and the actual sample is called error signal and it 

is defined as: 

                      𝑒𝑛 = 𝑠𝑛 − 𝑠 𝑛 = 𝑠𝑛 − 𝑎𝑘

𝑝

𝑘=1

𝑠𝑛−𝑘                     (8) 

 

This error signal, or more importantly its energy E must be 

minimized to obtain the desired predictor coefficients. 

                             𝐸 = 𝑒𝑛
2 =  𝑠𝑛 − 𝑎𝑘

𝑝

𝑘=1

𝑠𝑛−𝑘 

2

                 (9) 

E is minimized by taking its partial derivatives with respect to 

𝑎𝑖  as given in the equation below: 

       
𝜕𝐸

𝜕𝑎𝑖
= 2 𝑠𝑛−𝑖

𝑁

𝑛=1

𝑠𝑛 − 2 𝑎𝑘  𝑠𝑛−𝑖𝑠𝑛−𝑘

𝑁

𝑛=1

𝑝

𝑘=1

= 0        (10) 

Rearranging the terms (10) becomes 

            𝑎𝑘  𝑠𝑛−𝑖𝑠𝑛−𝑘

𝑁

𝑛=1

𝑝

𝑘=1

=  𝑠𝑛

𝑁

𝑛=1

𝑠𝑛−𝑖     𝑖 = 1, . . , 𝑝        (11) 

A linear system with p equations is derived from (11) in terms 

of autocorrelation function as: 

                                          𝐴𝑖,𝑘𝑎𝑘 = 𝑏𝑖                                          (12) 

                                     𝐴𝑖,𝑘 =  𝑠𝑛𝑠𝑛+𝑖−𝑘

𝑁

𝑛=1

                              (13) 

                                         𝑏𝑖 =  𝑠𝑛

𝑁

𝑛=1

𝑠𝑛−𝑖                                   (14) 

Matrix A has two special properties, it is symmetric and the 

diagonal elements have the same value. It is thus called a 

toeplitz matrix. An efficient recursive algorithm known as 

Levinson-Durbin [12] is used to solve the system. 

3.5 Cepstral Mean Subtraction 
In order to make our feature extraction robust, we used a 

simple form of feature normalization known as cepstral mean 

subtraction (CMS) [6]. The mean vector is subtracted from 

each feature to ensure that two feature sets obtain from 

different channels will have zero-mean [6]. 

4. TRAINING 
It involves developing a parametric model for each speaker 

using features extracted from training speech samples. The 

condition whereby the speakers are awake was taken as their 

normal condition and the models were trained under this 

condition. 

4.1 Speaker Modeling 
For each speaker we trained a Gaussian mixture model 

(GMM) . A GMM is composed of a finite mixture of 

multivariate Gaussian components [6, 7]. Training involves 

estimating the parameters  = {𝑃𝑘 , µ𝑘 ,𝑘}𝑘=1
𝐾  using the 

extracted training features. 𝑃𝑘  is the prior probability (mixing 

weight) of the kth Gaussian component. µ𝑘  is the mean vector 

and 𝑘  is the covariance matrix. K is the number of Gaussian 

components. We used K-mean clustering [7, 13] algorithm to 

populate our Gaussian components. Our K was chosen to be 2 

due to limited number of available training samples. 

5. TESTING 

5.1 Probability Density Function 
During testing, test feature vectors were used to build 

probability density function(s) using the parameters of the 

model(s) obtained during training stage. Given a test vector 

x = x1 , . . xT  and a model, the probability density function is 

defined as (7) [6] 

                            𝑝 x  =  Pk𝑁 x µ
k

,k                        (15) 

K

k=1

 

where 

𝑁 x µ
𝑘

,𝑘 =  2𝜋 −
𝑑
2 |Σ|−

1
2exp  −

1

2
 x− 𝜇𝑘 

𝑇Σ𝑘
−1 x− 𝜇𝑘   

                  (16) 
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5.2 Average Log-likelihood 
It is a measure of the likelihood that an unknown vector X 

originates from a known model  and it is calculated from the 

probability density function as (9) [6, 7] 

              𝐿𝐿𝑎𝑣𝑔  𝑋, 𝜆 =
1

𝑇
 log 𝑃𝑘𝑁 x 𝜇𝑘 , Σ𝑘             (17)

𝐾

𝑘=1

𝑇

𝑡=1

 

The higher the value of this function, the higher the indication 

that the unknown vector originates from the model [6]. It is 

used as a modality for scoring models in speaker 

identification and verification and forms the basis for decision 

making. 

5.3 Speaker Identification 
Speaker identification is a 1:N matching between an unknown 

vector X and N known models. Average log-likelihood is 

computed for all N models and the model with the maximum 

log-likelihood is picked as the target model. 

5.4 Speaker Verification 
Speaker verification is a 1:1 matching between an unknown 

vector X and a target model. The average log-likelihood is 

computed for the model and compared against a threshold. 

Verification is successful if and only if the value is greater 

than the threshold. 

6. EXPERIMENTAL RESULTS 

6.1 Performance Criteria 
The performances of the Identification and Verification parts 

of the systems were measured separately. Identification rate is 

the criteria used for speaker identification. In speaker 

verification, there are two types of errors that can occur, false 

acceptance and false rejection. Therefore, the basic error 

measures of a verification system are false acceptance rate 

(FAR) and false rejection rate (FRR). Speaker verification 

systems are tuned to minimize both of these error rates by 

finding the “break-even” point where the two are equal and 

this point is referred to as equal error rate (EER). The Overall 

performance can be obtained by combining these two errors 

(FAR and FRR) into total success rate (TSR) [14]. 

    𝐹𝐴𝑅

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑐𝑙𝑎𝑖𝑚𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
𝑥100     (18) 

      𝐹𝑅𝑅

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑐𝑙𝑎𝑖𝑚𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑐𝑙𝑎𝑖𝑚𝑠
𝑥100       (19) 

    𝑇𝑆𝑅

= 100%−  
𝐹𝐴𝑅+ 𝐹𝑅𝑅

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 𝑥100      (20) 

6.2 Results and Discussion 
Table 2 shows the results of the Speaker Identification 

experiments performed. It shows the identification rate under 

the three conditions. The identification rate in the MFCC 

based system when the speakers are waking up is 83.3%, 

while that of the LPCC based system is 75%. The MFCC 

based system achieved a 100% Identification rate when 

speakers were either fully awake or tired, while the LPCC 

based system had a lower Identification rate of 91.7% under 

the same conditions. Table 3 shows the False Acceptance and 

False Rejection Rate for the MFCC and the LPCC systems 

under the three Conditions. The highest values of FAR and 

FRR were recorded in the LPCC based system, 12% and 30% 

respectively. Figure 2 and Figure 3 show the plot of Detection 

Error Tradeoff (DET) curves for MFCC and LPCC 

respectively. Under the first condition (Waking Up), there is a 

significant difference between the equal error rates, 7.9% for 

MFCC and 22.0% for LPCC. This is a difference of 14.1%. 

Also, there is significant difference of 17.5% between the 

total success rates under this condition as can be seen in Table 

4. 

Table 2. Identification Rates 

Conditions 
Identification rate 

MFCC LPCC 

Waking up 83.3% 75.0% 

Awake 100% 91.7% 

Tired 100% 91.7% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: DET curves for the conditions using LPCC 

 

 

Fig 1: DET curves for the conditions using MFCC 



International Journal of Computer Applications (0975 – 8887)  

Volume 90 – No 11, March 2014 

42 

Table 3. Speaker Verification Results 

Conditions 
MFCC LPCC 

FAR FRR FAR FRR 

Waking up 1.0% 20.0% 12.0% 30.0% 

Awake 3.0% 0.0% 7.0% 0.0% 

Tired 5.0% 5.0% 10.0% 10.0% 

 

Table 4. Equal Error Rates and Total Success Rates 

Conditions 
MFCC LPCC 

EER TSR EER TSR 

Waking up 7.9% 82.5% 22.0% 65.0% 

Awake 2.2% 97.5% 2.3% 94.2% 

Tired 4.3% 91.7% 3.1% 83.3% 

 

7. CONCLUSION 
This paper has shown that the effect of variations in speaker’s 

conditions can be significant on both MFCC and LPCC 

features used in speaker recognition systems, leading to 

significant variations in system performance. The lowest total 

success rates were recorded when the speakers were waking 

up, 82.5% for MFCC and 65.0% for LPCC. The highest total 

success rates were recorded when the speakers were awake, 

97.5% for MFCC and 94.2% for LPCC. Thus, allowing a 

significant range for the total success rate variation, 15% for 

MFCC and 29.2% for LPCC. Based on the recorded values 

for false rejection rates, it can be concluded that a speaker’s 

condition does affect his/her recognition by the system. This 

was most severe when the speakers were just waking up. 

These values suggest that in a system with a population of 100 

speakers, 20 and 30 speakers are likely to be falsely rejected 

due to the fact that they are just waking up using MFCC and 

LPCC respectively. But, based on the recorded values for 

TSR and EER, it can be concluded that MFCC will always 

produce a better performance than LPCC under the three 

conditions studied.  
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