
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

27

Data Compression Considering Text Files

Kashfia Sailunaz

Department of Computer
Science and Engineering
Bangladesh University of

Engineering and Technology
Dhaka, Bangladesh

Mohammed Rokibul Alam
Kotwal

Department of Computer
Science and Engineering

United International University
Dhaka, Bangladesh

Mohammad Nurul Huda
Department of Computer
Science and Engineering

United International University
Dhaka, Bangladesh

ABSTRACT

Lossless text data compression is an important field as it

significantly reduces storage requirement and communication

cost. In this work, the focus is directed mainly to different file

compression coding techniques and comparisons between

them. Some memory efficient encoding schemes are analyzed

and implemented in this work. They are: Shannon Fano

Coding, Huffman Coding, Repeated Huffman Coding and

Run-Length coding. A new algorithm “Modified Run-Length

Coding” is also proposed and compared with the other

algorithms. These analyses show how these coding techniques

work, how much compression is possible for these coding

techniques, the amount of memory needed for each technique,

comparison between these techniques to find out which

technique is better in what conditions. It is observed from the

experiments that the repeated Huffman Coding shows higher

compression ratio. Besides, the proposed Modified run length

coding shows a higher performance than the conventional

one.

General Terms

Information Theory, Algorithms.

Keywords

Data compression; Lossless compression; Encoding;

Compression Ratio; Code length; Standard deviation.

1. INTRODUCTION
In computer science and information theory, text compression

is the process of encoding texts using fewer bits or symbols

than an original representation, by using specific encoding

techniques. Text data compression is useful because it helps to

reduce the consumption of expensive resources, such as hard

disk space or transmission bandwidth. But the problem is that

the decompression must be needed for further utilization and

this extra processing may be unfavorable to some

applications. The objectives of this work are efficient

representation and implementation of some text data

compression algorithm, proposing a new compression method

named “Modified Run-Length Coding”, computation of some

important compression factors for each of these algorithms,

comparison between different encoding techniques, and

improvement of performance of different data compression

techniques and selecting a suitable encoding technique for real

life system.

This paper is organized as follows: Section 2 discusses the

related works for data compression. Section 3 explains the

different algorithms of data compression techniques. Section 3

also analyzes the experimental results with proper reasons.

Section 4 concludes the paper with some future remarks.

2. RELATED WORKS
In 1949, C. Shannon and R. Fano devised a systematic way to

assign code words based on probabilities of blocks called the

Shannon Fano Coding. An optimal method for this was found

by D. Huffman in 1951 which is known as the Huffman

Algorithm [1]. Huffman Algorithm is being used for

compression since then.

A research in [7] showed that text data compression using

Shannon Fano algorithm has a same effectiveness with

Huffman algorithm when all character in string are repeated

and when the statement is short and just one character in the

statement is repeated, but the Shannon Fano algorithm is more

effective than Huffman algorithm when the data has a long

statement and data text have more combination character in

statement or in string or word. A variety of data compression

methods spanning almost forty years of research, from the

work of Shannon, Fano and Huffman in the late 40’s to a

technique developed in 1986 was surveyed in [10]. The

compression ratio, compression time and decompression time

for the Run Length Encoding (RLE) Algorithm, Huffman

Encoding Algorithm, Shannon Fano Algorithm, Adaptive

Huffman Encoding Algorithm, Arithmetic Encoding

Algorithm and Lempel Zev Welch (LZW) Algorithm using

random text files were compared in [2]. It showed that, the

compression time increased as file size increased. For Run

Length encoding it was a constant value and not affected by

the file size. Compression times were average values for two

Static Huffman approaches, and times of Shannon Fano

approach were smaller than the other algorithm. The LZW

Algorithm worked well for only small files. Compression

times of Adaptive Huffman algorithm were the highest.

Decompression times of all the algorithms were less than

500000 milliseconds except the Adaptive Huffman Algorithm

and LZW. The compression ratio were similar except the Run

Length coding and for small sized files, LZW gave the best

results.

The comparison between RLE, Huffman, Arithmetic

Encoding, LZ-77, LZW and LZH (first LZ applied, then

Huffman) on random .doc, .txt, .bmp, .tif, .gif, and .jpg files is

shown in [3]. It showed that, LZW and Huffman gave nearly

same results when used for compressing text files. Using LZH

compression to compress a text file gave an improved

compression ratio than the others. Different methods of data

compression algorithms such as: LZW, Huffman, Fixed-

length code (FLC), and Huffman after using Fixed-length

code (HFLC) on English text files were studied in [12] in

terms of compression Size, Ratio, Time (Speed), and Entropy.

LZW was the best algorithm in all of the compression scales,

then Huffman, Huffman after using Fixed length code

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

28

(HFLC), and Fixed-length code (FLC), with entropy 4.719,

4.855, 5.014, and 6.889 respectively. A similar work is found

in [12] which analyzed Huffman algorithm and compared it

with other common compression techniques like Arithmetic,

LZW and Run Length Encoding on the basis of their use in

different applications and their advantages and concluded that

arithmetic coding is very efficient for more frequently

occurring sequences of pixels with fewer bits and reduces the

file size dramatically. RLE is simple to implement and fast to

execute. LZW algorithm is better to use for TIFF, GIF and

Textual Files and is easy to implement, fast and lossless

algorithm whereas Huffman algorithm is used in JPEG

compression which produces optimal and compact code but

relatively slow.

Shannon Fano coding, Huffman coding, Adaptive Huffman

coding, RLE, Arithmetic coding, LZ77, LZ78 and LZW were

tested using the Calgary corpus in [4]. In the Statistical

compression techniques, Arithmetic coding technique

outperformed the rest with some identifiable improvements.

LZB outperformed LZ77, LZSS and LZH to show a marked

compression. LZ78 and LZW were outperformed in their

average BPC by LZFG. The entropy was calculated in [8] on

the same English text file for Shanon Fano coding, Huffman

Encoding, Run- Length Encoding (RLE), Lempel-Ziv-Welch

(LZW). The compression ratio was almost same for the

Shannon Fano and Huffman coding and 54.7% space could be

saved by those two algorithms. The compression ratio of Run

length encoding and Lempel-Ziv-Welch algorithms was low

as compared with the Huffman and Shannon Fano algorithms

and it concluded that, Huffman encoding algorithm is the best

result for the text files. Another comparison based work was

[13] which discussed Run Length based codes like Golomb

code, Frequency Directed run length code (FDR), Extended

FDR, Modified FDR, Shifted Alternate FDR, and OLEL

coding methodology; Huffman coding; Shannon Fano coding;

Lempel-Ziv-Welch coding; Arithmetic coding; Universal

coding like Elias Gamma code, Elias Delta code, Elias Omega

code and proposed double compression using Huffman code

technique to reduce the test data volume and area even further.

First, the data was compressed by any one of the run length

based codes like Golomb code, FDR code, EFDR, MFDR,

SAFDR, and OLEL coding and then from the compressed

data, another compression was made by Huffman code.

Double compression using Huffman code had compression

ratio of 50.8%. Better results were achieved for the data sets

with redundant data.

The execution times, compression ratio and efficiency of

compression methods in a client-server distributed

environment using four compression algorithms: Huffman

algorithm, Shannon Fano algorithm, Lempel-Ziv algorithm

and Run-Length Encoding algorithm were analyzed in [9].

The data from a client was distributed to multiple

processors/servers, subsequently compressed by the servers at

remote locations, and sent back to the client. Simgrid

Framework was used and results showed that the LZ

algorithm attains better efficiency/scalability and compression

ratio but it worked slower than other algorithms. Huffman

coding, LZW coding, LZW based Huffman coding and

Huffman based LZW were compared for multiple and single

compression in [6]. It showed that Huffman based LZW

Encoding can Compresses data more than all other three

cases, when in average case the Huffman based LZW

compression ratio is 4.41, where other maximum average

compression ratio is 4.17 in case of LZW compression. The

Huffman based LZW compression is better in some of the

cases than LZW Compression.

3. EXPERIMENTAL SETUP AND

ANALYSIS
In this work, some existing data compression algorithms [5]

are implemented and a new algorithm named modified run

length coding using a new idea is introduced. All of these

algorithms are also tested using the text files (alice29.txt,

asyoulik.txt, lcet10.txt, plrabn12.txt) of the Canterbury

corpus.

The computation of the compression ratio, average code

length and standard deviation for all the existing and new

approach and analysis of the results gives some ideas about

the performances of these algorithms with text files with

different contents and sizes.

3.1 Existing Algorithms
At first, the existing algorithms (Run-Length Coding,

Shannon Fano Coding, Huffman Coding and Repeated

Huffman Coding) are explained which are also been

implemented.

3.1.1 Run-Length Coding
Set Count = 0
Read two consecutive symbols from input file.

Current_Symbol = first symbol
Next_Symbol = second symbol

If Current_Symbol matches Next_Symbol
Increase the value of Count by 1
Make
 Current_Symbol = Next_Symbol

Next_Symbol = read next
symbol from input file

 Repeat
 Else

Write the value of Count
Write the value of Current_Symbol

 Set Count = 0
 Repeat
Show the compressed data

3.1.2 Shannon Fano Coding

Read the input file
Compute the frequencies for each used symbol
Sort the lists of symbols according to frequency

Place the most frequently occurring
symbols at the left and the least common
at the right

Divide the list into two parts
With the total frequency counts of the
left half being as close to the total of the
right as possible
Assign 0 to the left half of the list
Assign 1 to the right half of the list
Recursively repeat this for each of the
two halves until each symbol has become
a corresponding code leaf on the tree.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

29

 Generate the codeword for each symbol
Create a file by replacing each symbol of the input
file with their respective codewords
Take a set of eight digits from that file
 Convert into decimal value
 Convert the decimal value into a single
 symbol
 Write that symbol in output file
 Repeat for all the symbols of input file

3.1.3 Huffman Coding

Compute the frequencies for each used symbol
 Sort the list in ascending order
 Extract first two lowest frequencies
 Create a node as the parent of them

 Assign the new node a frequency equal
 to the sum of its children’s frequencies
 Insert the new node into the list
 Sort it again
 Repeat until there is only one parentless

node left
 Now the Huffman Tree is generated
 Assign 0 for the left child of each node
 Assign 1 for the right child of each node

 Generate the codeword for each symbol
Create a file by replacing each symbol of the input
file with their respective codewords
Take a set of eight digits from that file
 Convert into decimal value
 Convert the decimal value into a single
 symbol
 Write that symbol in output file
 Repeat for all the symbols of input file

3.1.4 Repeated Huffman Coding

Take an input text file.
Implement the Huffman algorithm on the input file
Obtain the compressed output file
If the size of the output file is less than the size of
the input file then

Take this output file as the new input
Repeat the process.

Else
Stop compressing
Show the final compressed file as
 output.

3.2 A New Approach: Modified Runlength

Coding Algorithm
A new approach by mixing up the Huffman Coding and Run-

Length coding is tried to see if a more compressed output is

possible or not. It is called the “Modified Runlength Coding”.

The algorithm is as follows:

Compute the frequencies for each used symbol
 Sort the list in ascending order
 Extract first two lowest frequencies
 Create a node as the parent of them

 Assign the new node a frequency equal
 to the sum of its children’s frequencies
 Insert the new node into the list
 Sort it again
 Repeat until there is only one parentless

node left
 Now the Huffman Tree is generated
 Assign 0 for the left child of each node
 Assign 1 for the right child of each node

 Generate the codeword for each symbol
Create a file by replacing each symbol of the input
file with their respective codewords
Set Count = 0
Read two consecutive symbols from the file.

Current_Symbol = first symbol
Next_Symbol = second symbol

If Current_Symbol matches Next_Symbol
Increase the value of Count by 1
Make
 Current_Symbol=Next_Symbol

Next_Symbol = read next
symbol from the file

 Repeat trying to match symbols
 Else

Write the value of Count
Write the value of Current_Symbol

 Set Count = 0
 Repeat trying to match symbols
Replace

10 by ‘a’,
11 by ‘A’,
20 by ‘b’,

 21 by ‘B’,
 30 by ‘c’,
 31 by ‘C’ and so on.
 Show the final compressed file.

3.3 Equations
For each input file, the compression ratio, average code length

and standard deviation are computed using each of the

different data compression algorithms. The formulae used for

the calculations are:

Compression Ratio = Compressed File / Original File

Average Code Length, μ = ∑Code Length / n

Standard Deviation, σ = ∑(Code Length- μ)2 /n

Where n = total number of symbols used in the input file.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

30

3.4 Results
Table 1 shows the comparison with respect to the

compression ratio, average code length and standard deviation

between five different data compression techniques.

The compression ratio depends on the output file size. The

more compressed the output file, the less the compression

ratio is. When the compression ratio exceeds 1, the output file

size is larger than the original input file size. Here, we can see

that, for most of the input files, the Runlength coding and the

Modified Runlength coding have compression ratio greater

than 1, which means, these algorithms expands the original

files instead of compressing them. The Runlength coding

works better for files with consecutive repetitions of symbols,

but normally data files does not have much consecutive

repetitions. That is why the compression ratio is greater than

1. The same idea is also applicable for Modified Runlength

coding. The table also shows that, Shannon Fano coding gives

better compression for most inputs than Huffman coding,

because, for some input files, the code lengths of symbols in

Huffman coding become so large that it expands the output

files than the original input files. We can say form the table

that, the Repeated Huffman coding gives the best compression

ratios for most of the files.

The algorithms occupy less memory if the code lengths are

smaller. Now, if we consider the average code length, we will

see that, for Runlength coding, we do not have any value for

average code length because, no codewords are generated in

Runlength coding. But, for other techniques, Shannon Fano

has smaller code length than Huffman coding and Modified

Runlength coding. Here also, the Repeated Huffman coding

gives the best average code length for most of the files.

Again, the algorithms occupy less memory if the standard

deviations are smaller. Here also, for Runlength coding, we do

not have any value for standard deviation because, no

codewords are generated in Runlength coding. But, for other

techniques, Shannon Fano has smaller standard deviation than

Huffman coding and Modified Runlength coding. Again, the

Repeated Huffman coding gives the best standard deviation

for most of the files.

Table 1. Comparison between different data compression techniques

Input

File

(.txt)

Input

File

Size

(KB)

Characteristics

Run

length

Coding

Shannon

Fano

Coding

Huffman

Coding

Repeated Huffman Coding Modified

Runlength

Coding Pass 1 Pass 2 Pass 3
Pass

4

Pass

5

alice29 148

Output File

Size

283

KB
3.96 KB 91.5 KB

91.5

KB
102 B 12 B 3 B 2 B 156 KB

Compression

Ratio
1.91 0.03 0.62 0.62 0.0011 0.12 0.25 0.67 1.05

Avg. Code

Length
- 6.22 9.78 9.78 6.32 4.32 2.4 1 9.78

Standard

Deviation
- 0.17 14.65 14.65 0.58 0.22 0.24 0 14.65

asyoulik 122

Output File

Size

233

KB
96.8 KB 81.8 KB

81.8

KB
361 B 3 B 2 B - 159 KB

Compression

Ratio
1.91 0.79 0.67 0.67 0.0043 0.0083 0.67 - 1.30

Avg. Code

Length
- 6.12 9.13 9.13 7.23 2.67 1 - 9.13

Standard

Deviation
- 0.10 12.82 12.82 1.12 0.22 0 - 12.82

lcet10 416

Output File

Size

387

KB
341 KB 651 KB

651

KB
297 B 20 B 4 B 2 B 574 KB

Compression

Ratio
0.93 0.82 1.56 1.56 0.00045 0.067 0.20 0.5 1.38

Avg. Code

Length
- 6.46 28.10 28.10 8.16 4.77 2.86 1.67 28.10

Standard

Deviation
- 0.25 401.79 401.79 4.10 0.18 0.12 0.22 401.79

plrabn12 470

Output File

Size

916

KB
366 KB 785 KB

785

KB

1.93

KB
4 B 2 B - 483 KB

Compression

Ratio
1.95 0.78 1.67 1.67 0.0025 0.0020 0.5 - 1.03

Avg. Code

Length
- 6.38 33.14 33.14 9.31 3 1 - 33.14

Standard

Deviation
- 0.24 449.86 449.86 5.62 0 0 - 449.86

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

31

Fig 1: Comparison based on Output File Size

Fig 2: Comparison based on Compression Ratio

Fig 3: Comparison based on Average Code Length

Fig 4: Comparison based on Standard Deviation

Fig 1, Fig 2, Fig 3 and Fig 4 show the comparisons between

different algorithms based on output file size, compression

ratio, average codelength and standard deviation respectively

for Shannon Fano Coding (SF), Huffman Coding (HM),

Repeated Huffman Coding (RH), Run-Length Coding (RL)

and Modified Run-Length Coding (MR) using the input text

files alice29.txt, asyoulik.txt, lcet10.txt and plrabn12.txt. In all

these Figures, the output file size, compression ratio, average

codelength and standard deviation of Repeated Huffman

coding is taken from the final pass of the algorithm. In Fig. 1,

it can be seen that the output file sizes of Shannon Fano and

Repeated Huffman are much less than the other algorithms

and a similar situation can be seen for the standard deviations

of these two algorithms in Fig. 4.

From the above analysis, it can be said that the Repeated

Huffman coding has the best results for most of the cases. It

has smaller compression ratio, average code length and

standard deviation. So, it seems the best algorithm among

them. But, it should also be considered that, for the best

results, it had to run through up to five passes of the

algorithm. It ultimately results in occupying less memory than

others for the output file after the final pass, but it has to go

through several passes for that, indicating more running time

than the others, which is a problem in many cases. It also

occupies more memory for the first several passes.

If the extra running time for Repeated Huffman coding is

considered, then Shannon Fano coding gives a quite good

result in less running time. The Runlength coding can be very

effective for files with consecutive repetitions. The Modified

Runlength coding can be very useful if the intermediate

temporary file, which can be generated after applying the

Huffman coding on the input file, have consecutive 0 and 1

repetitions.

Finally, it is clear that, each data compression technique has

its pros and cons. It depends on the content of the input files

that how much better compressions can be achieved.

4. CONCLUSION
After computing and comparing the compression ratio,

average code length and standard deviation for Shannon Fano

Coding, Huffman Coding, Repeated Huffman Coding, Run-

Length Coding and Modified Run-Length Coding, an idea is

generated about how much compression can be obtained by

each technique. So, now the most effective algorithm can be

used based on the input text file size, content type, available

memory and execution time to get the best result. A new

approach for data compression “Modified Run Length

algorithm” is also proposed here and which gives a lot better

compression than the existing Run-Length algorithm. Future

works can be carried on an efficient and optimal coding

technique using mixture of two or more coding techniques for

image file, exe file etc. to improve compression ratio and

reduce average code length.

5. REFERENCES
[1] M. N. Huda, “Study on Huffman Coding,” Graduate

Thesis, 2004.

[2] S.R. Kodituwakku and U. S. Amarasinghe, “Comparison

of Lossless Data Compression Algorithms for Text

Data,” Indian Journal of Computer Science and

Engineering, vol. I(4), 2007, pp. 416-426.

[3] M. Al-laham and I. M. M. E. Emary, “Comparative

Study between Various Algorithms of Data Compression

0

200

400

600

800

1000

alice29 asyoulik lcet10 plrabn12

RL

SF

HM

RH

MR

0

0.5

1

1.5

2

2.5

alice29 asyoulik lcet10 plrabn12

RL

SF

HM

RH

MR

0

5

10

15

20

25

30

35

alice29 asyoulik lcet10 plrabn12

SF

HM

RH

MR

0

50

100

150

200

250

300

350

400

450

alice29 asyoulik lcet10 plrabn12

SF

HM

RH

MR

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

32

Techniques,” International Journal of Computer Science

and Network Security, vol.7(4), April 2007, pp. 281-291.

[4] S. Shanmugasundaram and R. Lourdusamy, “A

Comparative Study of Text Compression Algorithms,”

International Journal of Wisdom Based Computing, vol.

I (3), December 2011, pp. 68–76.

[5] K. Sayood, “Introduction to Data Compression,” 4th ed.,

Elsevier, 2012.

[6] M. R. Hasan, M. I. Ibrahimy, S. M. A. Motakabber, M.

M. Ferdaus and M. N. H. Khan, “Comparative data

compression techniques and multicompression results,”

IOP Conference, 2013.

[7] C. Lamorahan, B. Pinontoan and N. Nainggolan, “ Data

Compression Using Shannon-Fano Algorithm,” JdC,

Vol. 2, No. 2, September, 2013, pp. 10-17.

[8] P. Yellamma and N. Challa, “Performance Analysis of

Different Data Compression Techniques On Text File,”

International Journal of Engineering Research &

Technology (IJERT), Vol. 1 Issue 8, October – 2012.

[9] M. A. Khan, “Evaluation of Basic Data Compression

Algorithms in a Distributed Environment,” Journal of

Basic & Applied Sciences, Vol. 8, 2012, pp. 362-365.

[10] D. A. Lelewer and D. S. Hirschberg, “Data

Compression,” Journal - ACM Computing Surveys

(CSUR), Vol. 19 Issue 3, September 1987, pp. 261-296.

[11] M. Sharma, “Compression Using Huffman Coding,”

International Journal of Computer Science and Network

Security, Vol.10 No.5, May 2010, pp. 133-141.

[12] H. Altarawneh and M. Altarawneh, “Data Compression

Techniques on Text Files: A Comparison Study,”

International Journal of Computer Applications (0975 –

8887) , Vol. 26 No.5, July 2011.

[13] R. S. Aarthi, D. Muralidharan and P. Swaminathan,

“Double Compression of Test Data Using Huffman

Code,” Journal of Theoretical and Applied Information

Technology, Vol. 39 No.2, 15 May 2012, pp. 104-113.

IJCATM : www.ijcaonline.org

