
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

32

A Comparative Study: Modified Particle Swarm

Optimization and Modified Genetic Algorithm for Global

Mobile Robot Navigation

Nadia Adnan Shiltagh

Computer Department
College of Engineering
University of Baghdad

Lana Dalawr Jalal
Computer and Automation Department

College of Engineering
University of Sulaimani

ABSTRACT

In this paper, Modified Genetic Algorithm (MGA*1) and

Modified Particle Swarm Optimization (MPSO*1) are

developed to increase the capability of the optimization

algorithms for a global path planning which means that

environment models have been known already. The proposed

algorithms read the map of the environment which expressed

by grid model and then creates an optimal or near optimal

collision free path. The effectiveness of these optimization

algorithms for mobile robot path planning is demonstrated by

simulation studies. This paper investigates the application of

efficient optimization algorithms, MGA* and MPSO* to the

problem of mobile robot navigation.

Despite the fact that Genetic Algorithm (GA) has rapid search

and high search quality, infeasible paths and high

computational cost problems are exist associated with this

algorithm. To address these problems, the MGA* is presented.

Adaptive population size without selection and mutation

operators are used in the proposed algorithm. In this thesis,

Distinguish Algorithm (DA) is used to check the paths,

whether the path is feasible or not, in order to come out with

all feasible paths in the population.

Improvements presented in MPSO* are mainly trying to

address the problem of premature convergence associated

with the original PSO. In the MPSO* an error factor is

modelled to ensure that the PSO converges. MPSO* try to

address another problem which is the population may contain

many infeasible paths. A modified procedure is carrying out

in the MPSO* to solve the infeasible path problem.

According to the simulation done using MATLAB version

R2012 (m-file), both algorithms (MGA* and MPSO*) are

tested in different environments and the results are compared.

The results demonstrate that these two algorithms have a great

potential to solve mobile robot path planning with satisfactory

results in terms of minimizing distance and execution time.

The simulation results illustrate that the path obtained by

MGA* is the shortest path, however the execution time based

on MPSO* is significantly smaller than the execution time of

MGA*. Thus, the proposed MPSO* is computationally faster

than the MGA* in finding optimal path.

1 The (*) used to distinguish the proposed modified algorithms

(MGA and MPSO) from the previous modified algorithms.

Keywords
Modified Genetic Algorithm (MGA*), Modified Particle

Swarm Optimization (MPSO*), path planning, mobile robot

navigation.

1. INTRODUCTION
A robot is a controlled manipulator capable of performing a

variety of tasks and decision-making like human beings, and

may be either fixed in place or mobile. Mobility is an

important consideration for modern robots [1]. As new

technological achievements take place in the robotic hardware

field, an increased level of intelligence is required as well.

The most fundamental intelligent task for a mobile robot is the

ability to plan a valid path from its initial to terminal

configuration while avoiding all obstacles located on its way

which is known as robot path planning [2].

The efficiency of the mobile robot path planning is considered

as an important matter since one of the main concerns is to

find the destination in a short time. Accordingly, a desirable

path should result from not letting the robot waste time taking

unnecessary steps or becoming stuck in local minimum

positions. Furthermore, a desirable path should avoid all

known obstacles in the area [3].

There are so many methods that have been developed to

overcome the path planning problem for mobile robots. Each

method differs in its effectiveness depending on the type of

application environment and each one of them has its own

strengths and weaknesses. The choice of a good heuristic

algorithm is necessary in order to achieve both quality and

efficiency of a search. Generally, some optimization criteria

with respect to time and distance must be satisfied. Other

constraints with respect to velocity and acceleration of mobile

robots should also be taken into consideration [4].

2. RELATED WORKS
Mohanty and Parhi, described the various techniques applied

for navigation of an intelligent mobile robot. They showed

that the heuristic approaches such as Fuzzy logic (FL),

Artificial Neural Networks (ANN), Neuro-Fuzzy (NF),

Genetic Algorithm (GA), Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO) and Artificial Immune

System, gave suitable and effective results for mobile robot

navigation as a target reaching and obstacle-avoidance. These

techniques are also helpful for the solution of the local

minima problem. Each method has its own strength over the

others in certain aspects, researchers have been seeking for

more efficient ways to solve this problem. In this section, the

recent works on robot’s navigation and path planning are

reviewed [5].

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

33

(Dutta, 2010) deal with the obstacle avoidance of a wheeled

mobile robot in structured environment by using PSO based

neuro-fuzzy approach, and three layer neural networks with

PSO were used as learning algorithm to determine the optimal

collision-free path [6].

 (Tamilselvi et al., 2011) suggested navigation strategy using

GA for path planning of a mobile robot. The most important

modification applied to the algorithm is the fitness evaluation.

The efficiency of the algorithm is analysed with respect to

execution time and path cost to reach the destination. Path

planning, collision avoidance and obstacle avoidance are

achieved in both static and dynamic environment [7].

 (Ragavan et al., 2011) presented two optimization algorithms

to solve path planning problem for robot navigation. The PSO

and Genetic Algorithm - Artificial Immune System (GA-AIS)

were developed and implemented for the path optimization.

They concluded that the PSO algorithm has much faster

computational time than GA-AIS algorithm for small

network, while GA-AIS shows improvement and appears to

perform better for large networks [8].

(Raja and Pugazhenthi, 2012) provided an overview of the

research progress in path planning of a mobile robot for off-

line as well as on-line environments. Commonly used classic

and evolutionary approaches of path planning of mobile

robots have been discussed, and they showed that the

evolutionary optimization algorithms are computationally

efficient. Also, challenges involved in developing a

computationally efficient path planning algorithm are

addressed [9].

(Ahmadzadeh and Ghanavati, 2012) presented an intelligent

approach for the navigation of a mobile robot in unknown

environments, the navigation problem becomes an

optimization problem, and then it is solved by PSO algorithm.

Based on position of goal, an evaluation function for every

particle in PSO is calculated. It’s assumed that robot can

detect only obstacles in a limited radius of surrounding with

its sensors. Environment is supposed to be dynamic and

obstacles can be fixed or movable [10].

(Habeeb, 2012) presented a modified genetic algorithm and

showed that it has good results in the path planning of mobile

robots in terms of minimizing distance and execution time.

Also they illustrated that the modified genetic algorithm leads

to a very quick generation of a path solution because no

mutation operation was used which leads to consuming the

time [11].

(Yu-qin and Xiao-peng, 2012) provided an Immune Particle

Swarm Optimization (IPSO) algorithm for path planning of

the mobile robot which based on the biological mechanism of

the immune system. They compared the simulation results

with Dijkstra algorithm and PSO optimization results. They

concluded that the optimal path and the execution time based

on IPSO algorithm are reduced separately, and the improved

PSO algorithm enhances the convergence speed and

robustness of time-varying parameters [12].

 (Gigras and Gupta, 2012) proposed the use of ACO algorithm

for robot motion control such as navigation and obstacle

avoidance in an efficient manner. They showed that by using

this algorithm, money can be saved and reliability can be

increased by allowing them to adapt themselves according to

the environment without further programming [13].

From the above literature review for the recently published

paper, the following points are highlighted and emphasized:

1. The simulation and experimental results from

previous researches show that algorithms play an

important role to produce an optimal path for mobile

robot navigation.

2. Various works of research have been successfully

applied PSO to solve the mobile robot path planning

problem due to its simplicity and efficiency in

navigating large search spaces for optimal solutions.

3. Many researchers have been worked in the field of

path planning using GA to generate the optimal path

by taking the advantage of its strong optimization

capability.

4. A GA is more efficient than the fuzzy logic and

neural networks. This is due to the capability of

genetic algorithms to optimize both discrete and

continuous mappings.

3. MODIFIED GENETIC

ALGORITHMS (MGA*)
In this paper, a modified genetic algorithm is proposed based

on the traditional genetic algorithm. Path planning using

MGA* does not require any encoding scheme because it uses

the real representation which reduces calculation time. The

MGA* starts with generation of initial population; which may

contain feasible and infeasible paths. To generate the initial

population and verify that the generated path in the initial

population is feasible or not, Distinguish Algorithm (DA) is

used, and also, the MGA* leads to quick generation of a path

solution because no selection and mutation operations are

used which leads to decrease the execution time. The goal of

MGA* is to minimize the total distance from the starting

position to the desired position without colliding with any of

the obstacles in the environment with satisfied time. The

flowchart of the modified genetic algorithm is illustrated in

Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

34

Fig 1: Flowchart of the Modified Genetic Algorithm*

The process of modified genetic algorithm is illustrated in the

following steps:

3.1 Creating the Environment, and

Obstacles in the Algorithm
To verify the effectiveness of the MGA*, the simulation has

been applied for different grid settings and different number

of obstacles. Different known working environments are used,

which are presented in Figure 2 to Figure 3. As displayed in

the figures, the blue grids represent obstacle free areas where

mobile robot can move freely. There is no unit used to

measure the path length because each cell in the environments

can represent any unit. The circle sign in the environment is

the robot’s starting and goal location. The grid size, the

coordinate of the start and target points, and the number of

obstacles for each environment are shown in Table 1.

Table 1: Grid size, start and target point, number of

obstacles

As the number of obstacles increases, the algorithm needs

more generations to find the best solution. Obstacle areas in

the working environment are represented by blue squares

which contain red grid and has an average area of 1 × 1 unit.

Boundaries for obstacles area are formed by their actual

boundaries plus a safety distance that is defined with

consideration to the size of the mobile robot which is treated

as a point in the environment. In each environment the

obstacles are randomly put but carefully placed in such a way

that they keep some distance from the starting point to the

target point to make sure that the robot has some space to

move.

Fig 2: First working environment

Fig 3: Second working environment

3.2 Generating the Initial Population in the

Algorithm
All individuals of the initial population are assumed to be

generated randomly. This leads to generate large numbers of

infeasible paths which intersect an obstacle, and infeasible

paths should be avoided. If there is/are obstacle(s) either in

the vertical direction or horizontal direction, the mobile robot

has to keep itself away from the obstacles.

Initial population stored in a single matrix of size c × m,

where c is the number of individuals in the population and m

is the length of the individuals. Each row corresponds to a

particular solution. After generating the initial population, and

start

Input: population size , number of desired iteration (ite) , number of intermediate points , start & target points

$&and target points point

create environment & obstacles

calculate fitness value for each individual

n=n+1

keep elitist individual

crossover (generate new population)

display the results, draw best solution

end

generate population

feasible path?

Yes

No

Required no. of feasible path?

Yes

No

add (elitist individual) for the new generation

n< ite

Yes

No

generate new

population

iteration account, n=0

Distinguish Algorithm (DA) is used to check the paths

calculate fitness value for each individual and select the best solution

Distinguish Algorithm (DA) is used to check the paths

Environments
grid size

[unit]

Start

point

[unit]

target

point

[unit]

number

of

obstacles

1st environment 31 × 23
x=1 ,

y=1

x=22 ,

y=30
76

2nd environment 20 × 20
x=1 ,

y=1

x=7 ,

y=6
94

The 3rd environment represents the two previous

environments which turned to closed environments.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

35

to allow the robot to move between its current and final

configurations without any collision within the surrounding

environment, each individual must be checked whether it

intersects an obstacle or not, as explained in the next step.

3.3 Distinguish Algorithm (DA)
Because there are both feasible path and infeasible path in the

population, the Distinguish Algorithm (DA) is used to check

the paths, whether the path is feasible or not, in order to come

out with all feasible individuals in the population. After

applying this algorithm, feasible path will be used for next

generation and infeasible path will be deleted.

The details of the DA are as follows [4]:

a. Generate the line equation of a(x1, y1) and b(x2, y2)

by:

 (1)

 (2)

Then, find the intermediate points between point a to point b,

when the value of x is increase with 0.5. For each intermediate

point, substitute the corresponding x value in equation3-2 and

calculate the y value.

b. Check if the coordinate of the intermediate point lies

within the obstacle area or obstacle free area by

checking the particular intermediate point and

obstacle list.

c. If the particular intermediate point lies within

obstacle free area, repeat Step 2 until all

intermediate points between point a and point b are

explored. In case where any of the intermediate

points lies inside obstacle area, DA is terminated

and that particular path will be categorized as

infeasible path.

d. If none of the intermediate points lie in the obstacle

area, Step 1 to Step 3 are repeated until all points in

the particular path are explored. This explored path

is categorized as feasible path.

3.4 Fitness Function
The length of the feasible path is compute as:

 (3)

 is the distance between two points, xi and yi are robot’s

current horizontal and vertical positions, xi+1 and yi+1 are

robot’s next horizontal and vertical positions. The objective

function of the overall path can be expressed as:

 (4)

where dist(j) is the distance of the jth path in the environment,

and h is the number of links that consist the path.

The fitness function is the inverse of the total distance which

is Euclidean distance. The Euclidean distance between

starting and target point is the length of the line segment

connecting them. The fitness function used in this thesis is

(Yun et al., 2010):

 (5)

where F(j) is the fitness function and j represents the jth path.

It is obvious that the best individual will have the maximum

fitness value. At each generation, iteration, all the

chromosomes will be updated by their fitness.

3.5 Elitism
In order to keep the best chromosome from each generation,

the elitism method is employed. In elitism it is obvious that

the best individual will have maximum fitness value. The

main goal of the elitism rule is to keep the best chromosome

from the current generation. Thus, under this rule, the best

chromosome from each generation will not undergo any

mutation or crossover event and will safely move to the next

generation. Since the best or elite member between

generations is never lost, the performance of GA can

significantly be improved.

The remaining chromosomes are then sorted according to

their fitness. Since small population sizes lose diversity very

fast, therefore in the proposed algorithm no selection operator

is used, and all the remaining chromosomes will be selected to

undergo the crossover operator. Using this approach will

increase the expectation of maintaining diversity in the

population.

3.6 Crossover Operator
After selection of the elite member, crossover operator stage

starts. In crossover a group of chromosomes undergoes

crossover at each generation. All the crossover events are

controlled by a certain crossover probability Pc, which is

equal to 0.5. The algorithm creates a random number in range

[0 1] for each chromosome. If the generated number is less

than Pc, the chromosome is a candidate for the crossover

event, otherwise the chromosome proceed without crossover.

The left most genes and the right most genes will avoid the

crossover event since these two points are the start and target

points and cannot be eliminated. For the purpose of diversity,

the crossover point is randomly selected in each generation.

Single-point crossover operator is used in proposed algorithm.

The genes of two parents’ individuals before or after the

crossover point are swapped, then the individual of the father

replaced by individual of the offspring. Finally, the DA is used

to check the paths of the newly generated offsprings. There is

no mutation operator in the proposed MGA*. After crossover

operator has been applied to the initial population, a new

population will be formed.

3.7 Generation Algorithm
Commonly in the complex environment along with high

density of obstructions the number of generated paths is

inefficient. Generation algorithm is used to increase the

population and help to prevent the stagnating at local optima,

and then the new generated population must be checked for

infeasibility. If the number of generated paths is still

insufficient a new population is generated. This process is

repeated over again until the desired number of feasible path

is reached. So, the proposed method will not use fixed

population size but adaptive population size. Generated

population formed in this way increase the efficiency of the

proposed algorithm, and will not lose the overall genetic

algorithm searching capabilities. In the next iteration,

generation algorithm generates paths continuously instead of

infeasible paths.

http://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
http://en.wikipedia.org/wiki/Line_segment

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

36

Genetic algorithm is terminated when the maximum number

of iteration exceeds a certain limit, and also terminated when

it does not find a path from the start point to the target point.

4. MODIFIED PARTICLE SWARM

OPTIMIZATION (MPSO*)
Basically the MPSO*, just like the PSO, consists of a

population of particles that collectively search in the search

space for the global optimum. Improvements are mainly

trying to address the problem of premature convergence

associated with the standard PSO. These improvements

usually try to solve this problem by increasing the diversity of

solutions in the swarm. In the MPSO* an error factor is

modelled to ensure that the PSO converges. The MPSO* tries

to address another problem which is population may include

many infeasible paths which have undesirable effect on the

performance of the algorithm. In the MPSO*, the infeasible

paths are not discarded but can be modified to be feasible

path. For example, if the particle path falls with an obstacle

boundary, it is relocated to a position outside the obstacle. The

process of MPSO* is demonstrated in the following

subsections

4.1 Modeling the Environment, and

Obstacles in the Algorithm
The flowchart of the proposed MPSO* is illustrated in Figure

4.

Fig 4: Flowchart of the Modified Particle Swarm

Optimization

4.2 Particle swarm initialization
The starting position for each particle is the starting point of

the path, then the first position and velocity of each particle is

generated randomly but limited to the boundaries of the

search space. The particle’s position stored in a matrix with

size of 2 × l, where l is the number of particles. The first and

if gbest = target

Yes

No

start

Input: number of particles, number of iteration (ite), start and target points,
weighing factors, inertia weighing, scaling factors

generate initial position

Create the environment & the obstacles

Calculate the fitness value for each particle, p_fitness1

find particle & global best location (pbest & gbest)

n=n+1

Calculate the new velocity and position for each particle

store
gbest

Calculate the fitness value for each particle, p_fitness2

find particle & global best location (pbest & gbest)

update velocity, position and fitness values

display the results, draw gbest

end

generate random value of first position & velocity for each particle

check the paths & modify infeasible paths if exist

iteration account, n=0

n>ite

print: sorry there is
no path to the target

No

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

37

second row of the matrix correspond the x and y-coordinate

for all particles, respectively.

4.3 Fitness Function Evaluation
The particle’s paths are evaluated during each step.

Evaluation function is used to provide a measure of how

particles have performed in the problem domain. In the

MPSO*, two parameters, the distance between points and

travel time, indicated by the particles are used to calculate the

particle fitness (p_fitness). Since the fitness should increase as

the distance and time decrease, the fitness function for each

particle of a feasible path is turned out to be a minimization

problem and it is evaluated as:

 (6)

where and are weighing factor for distance and travel

time respectively, denotes Euclidean distance

between point to the next point for the same particle

and denotes time taken by the particle to cover

from to :

 (7)

 (8)

where xi and yi are particle’s current horizontal and vertical

positions, xi+1 and yi+1 are particle’s next horizontal and

vertical positions, and denotes the velocity of the particle

when traveling from to . The calculation of the fitness

value is illustrated by the flowchart shown in Figure 5.

Fig 5: Flowchart for fitness calculation

4.4 Particle position and velocity update
The MPSO* algorithm is initialized with a number of particles

and then searches for optimal. The position of a particle is

influenced by the best position visited by itself which is

referred to as particle best “pbest”, and the best position in the

whole swarm which is referred to as a global best “gbest”. A

particle updates its position and velocity using the following

equations [14]:

 (9)

 (10)

where the cognitive component, , represents the

particle's own experience as to where the best solution is and

the social component, represents the belief of

the entire swarm as to where the best solution is. Both

and are the updated particle’s velocity , , x1 and

y1 are current particle’s velocity and position along x and y-

direction respectively. Updating velocities is the way that

enables the particle to search around its individual best

position and global best position.

Self-confidence factor, and swarm-confidence factor,

makes particles have the function of self-summary and learn

to the best of the swarm, and get close to the best position of

its own as well as within the swarm.

The inertia weight (w) was first introduced by [15]. This term

serves as a memory of previous velocities and it employed to

control the impact of the previous velocity on the current

velocity .The value of inertia factor (w) is in the range of [0

1]. and are random numbers within the interval of [0 1].

These parameters have considerable effects on performance of

PSO.

In the basic concept of PSO algorithm no error model is used

for updating the position. However, in the MPSO* these

errors are modelled to ensure that the PSO converges, the

modified position update equation for each particle with the

error is determined as follow:

 (11)

 (12)

where x2 and y2 are the updated positions along x and y-

direction, is a random number, large values of this

parameter leads to global search, while small values leads to

fine and local search which is suitable when algorithm

converges. and are position error along x and

y-coordinate for all particles, respectively, and it’s between

current particle position and the target position. These errors

are used to change the particle’s direction to head toward the

target.

 (13)

 (14)

The error value is determined for each particle where &

are the current coordinates of the individual particle and &

 are the target coordinates. Based on the above equations,

the next possible velocity and position of each particle is
determined. If the next possible position resides within the

obstacle space, the obstacle avoidance part of the algorithm is
employed and the Distinguish Algorithm (DA) is used to

check the paths.

4.5 Generation of Feasible Paths
As the particles move through the search space from current

position to new position, a conditional statement is used to

check all the particles paths to see if the particles are passing

through obstacles. If this condition is true, the path is

considered to be infeasible and the obstacle avoidance section

of the algorithm is initiated. If particle path does not interfere

with the position of the obstacle, the path is considered to be

feasible. In the MPSO*, the infeasible paths are not discarded

but can be modified in a way that the selected path would be a

collision free by using the proposed algorithm, which is

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

38

illustrated by the flowchart in Figure 6. As shown in the

figure, if the particle path falls with an obstacle boundary, it is

relocated to a position outside of the obstacle.

Fig 6: Flowchart for modifying the infeasible paths

position

As the next step, the particle’s fitness value is compared

between current and new location at each iteration to

determine the best position pbest for each particle, and the

particle with the best fitness value is assigned as the global

best gbest, as illustrated by the flowchart shown in Figure 7.

Fig 7: Flowchart for finding the particle and global

best location

The MPSO* algorithm has a main nested loop terminated

when the total number of iterations exceeds a certain limit or

solution convergence; otherwise the program is terminated

when the program could not find the path from start position

to the target position. The path generated by MPSO* is a

group of “gbest” points, including start and target points. In

all cases, an optimal path is formed by line segment which is

connecting the global best position “gbest” falling on the grids

of the working environment.

5. SIMULATION RESULTS
The simulation results of mobile robot path planning using

Modified Genetic Algorithm (MGA*) and Modified Particle

Swarm Optimization (MPSO*) are presented to find the

optimal path along the obstacle-free directions. To illustrate its

wide applicability and their effectiveness, the proposed

algorithms are implemented to solve the path planning

problem through the computer simulation for different

working environments. For comparison and validation

purpose, the results obtained from the MPSO* algorithm are

compared with results obtained by MGA*. The programs are

written by MATLAB R2012a and run on a computer with 2.5

GHz Intel Core i5 and 6 GB RAM.

5.1 The Implementation of Modified Genetic

Algorithm (MGA*) in Path Planning
The implementation of the MGA* to solve path planning

problem is demonstrated to different types of working

environments. These environments are large in size and

complex which have been presented to test the performance of
this algorithm to find the optimal or near optimal path with

satisfied time. For the proposed algorithm the simulation

parameters are set as: population size =100, crossover

probability (Pc = 0.5). In all cases, an optimal path is formed

 p_fitness1(k) >p_fitness2(k)

No

start

Input: number of particles, fitness value (p_fitness1, p_fitness2), current & next position

end

counter, k= 0

Yes

pbest=next position of the particle (k)

 k= k+1

pbest=current position of the particle (k)

 k > number of particles

Yes

No

gbest=pbest with minimum fitness value

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

39

by line segments which are connecting the points falling on

the grids of the working environment.

5.1.1 Implementation of MGA* for the First

Environment
The performance of the MGA* is tested by applying this

algorithm to find the optimal or near optimal path for the 1st

environment shown in Figure (2). As illustrated in the figure,

this working environment is a very complex environment. The

best results obtained from the implementation of the MGA*

are shown in table 1, and the best path found is illustrated by

Figure (7) to Figure (12).

Table 1: The simulation results for the 1th environment

using MGA*

Simulation Results

Initial

Population

Iterations Distance Elapsed time [s]

100 20 36.6815 14.0

100 10 36.7174 9.5

100 5 37.9303 5.63

100 3 38.6729 4.5

100 2 38.9300 4.4

100 1 39.4776 3.0

The best solution obtained by MGA* shown that the elapsed

time is 5.63 seconds to find shortest generated path with the

length of 37.9303. However, the length of the path for 10 and

20 iterations is a bit shorter than 5 iterations but the

computation time is much larger. From these results, one can

concluded that, the required time to find optimal path is small.

Fig 7: Path generated for the 1st environment using

MGA* (20 iterations)

Fig 8: Path generated for the 1st environment using

MGA* (10 iterations)

Fig 9: Path generated for the 1st environment using

MGA* (5 iterations)

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

40

Fig 10: Path generated for the 1st environment using

MGA* (3 iterations)

Fig 11: Path generated for the 1st environment using

MGA* (2 iterations)

Fig 12: Path generated for the 1st environment using

MGA* (1 iteration)

5.1.2 Implementation of MGA* for the Second

Environment
The performance of the MGA* is examined by applying a

simulation for the 2nd environment as illustrated in Figure 3 .

The best simulations obtained by applying the MGA* to the

2nd environment are shown in Table 2, and also the best path

obtained is illustrated by Figure 13 and Figure 14.

Table 2: The simulation results for the 2th environment

using MGA*

Simulation Results

Initial

Population
Iterations Distance Elapsed time [s]

100 2 19 67.76

100 1 20.099 44.10

Based on this result, it can be concluded that, the global

optimal path obtained by the MGA* is the optimal solution.

Fig 13: Path generated for the 2nd environment using

MGA* (2 iterations)

Fig 14: Path generated for the 2nd environment using

MGA* (1 iteration)

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

41

5.1.3 Implementation of MGA* for the Third

Environment (Closed Environments)
In order to show that the algorithm does not converge when

there is no path to the target; the algorithm has been

implemented to the two previous environments which turned

to closed environments. Table 3 shows the elapsed time for

the closed environments with different number of population

size. For the environments the elapsed time is increased by

increasing the number of population gradually because the

large number of population requires larger computations.

Table 3: The simulation results for the 3th environment

using MGA*

Maximum

population

size

1st Environment

elapsed time [s]

2nd Environment

elapsed time [s]

500 4.663363 0.390006

1000 5.202287 0.560971

2000 7.287891 1.357995

5000 20.430164 6.895290

10000 67.191626 26.559073

Fig 15: First closed environment using MGA*

Fig 16: Second closed environment using MGA*

The simulation results shown in Figure 15 and Figure 16. The

Figures show that if the MGA* could not find a path between

the start point and the target point for the five working

environments, an error message is returned so that the mobile

robot could not find the target.

5.2 The Implementation of Modified

Particle Swarm Optimization (MPSO*)

in Path Planning
To study the performance of the MPSO*, the proposed

algorithm have been applied to different types of working

environments presented from Figure 2 to Figure 3. To

investigate the effect of different swarm size on the

performance of the MPSO*, different number of particles has

been taking into account (i.e., 5, 10, 50, and 100). The

particle’s size has been selected on the base of trial and error,

because there has been no recommendation in the literature

regarding swarm size in PSO.

In the MPSO* various combinations of parameters were

tested and the best obtained result are the values of weighing

factors in fitness function and , inertia

weighing factor . The swarms with small initial

inertia weight converged relatively fast at the beginning of

optimization. The chosen values of cognitive scaling and

social scaling factors are . Usually equals

and ranges from 0 to 4 (Raja and Pugazhenthi, 2009).

5.2.1 Implementation of MPSO* for the First

Environment
The performance of the MPSO* algorithm is examined by

applying it to the 1st environment shown in Figure 2 to find

the optimal path. The best obtained simulation results with

various numbers of particles, swarm size, for the 1st

environment is shown in Table 4.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

42

Table 5: The simulation results for the 1st environment

using MPSO*

Simulation Results

No. of

Particle

Iterations Distance Elapsed time [s]

5 33 39.4558 0.95

10 31 39.4558 0.97

50 30 39.4558 1.14

100 31 39.4558 1.41

The best solution obtained after running the MPSO* algorithm

to this environment is shown in Figure 17 to Figure 20.

Fig 17: Path generated for the 1st environment using

MPSO* (5 particles)

Fig 18: Path generated for the 1st environment using

MPSO* (10 particles)

Fig 19: Path generated for the 1st environment using

MPSO* (50 particles)

Fig 20: Path generated for the 1st environment using

MPSO* (100 particles)

It can be observed from the above figures that no

improvement is achieved for more than 5 particles in term of

the path length; therefore 5 particles are sufficient to find the

optimal path with length of 39.4558 in 0.95 second.

5.2.2 Implementation of MPSO* for the Second

Environment
The capability of the MPSO* algorithm is examined by

applying it to the 2nd working environment, as shown in

Figure 3, to find the optimal path with satisfied time. The

simulation results obtained are shown in Table 5, and the

results are demonstrated by Figure 21 to Figure 25 Fig.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

43

Table 5: The simulation results for the 2nd environment

using MPSO*

Simulation Results

No. of

Particle

Iterations Distance Elapsed time [s]

2 26 27 1.19

3 29 25 1.23

5 20 23 1.25

7 23 21 1.35

10 20 19 1.41

Fig 21: Path generated for the 2nd environment using

MPSO* (2 particles)

Fig 22: Path generated for the 2nd environment using

MPSO* (3 particles)

Fig 23: Path generated for the 2nd environment using

MPSO* (5 particles)

Fig 24: Path generated for the 2nd environment using

MPSO* (7 particles)

Fig 25: Path generated for the 2nd environment using

MPSO* (10 particles)

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

44

This algorithm has been examined with various swarm size to

investigate the behavior of MPSO* algorithm in each case.

This will also help in showing that MPSO* algorithm will

converge to the optimal solution, optimal path, in each run.

Through the simulation results, it is shown that the MPSO*

can find out an optimal path very quickly.

5.2.3 Implementation of MPSO* for the Third

Environment (Closed Environments)
The MPSO* algorithm has been carried out to the five

previous environments which turned to closed environments,

in order to demonstrate that the proposed algorithm does not

converge when there is no path to the target Table 6. shows

the elapsed time for the five closed environments with various

number of particles and different number of iterations. As

shown in the table, for all closed environments the elapsed

time is increased by increasing the number of particles and the

number of iterations because of that the large number of

particle and iteration require larger computations.

Table 6: The simulation results for the 3rd environment

using MPSO*

No. of Particle 1st

Environment

Elapsed time

[sec]

2nd

Environment

Elapsed time

[sec]

 10 iteration

5 0.567463 0.348209

10 0.624700 0.350721

50 0.661831 0.674306

100 0.682113 0.946107

 50 iteration

5 0.639178 0.385743

10 0.696363 0.578581

50 1.223272 1.856159

100 1.636615 2.946691

 100 iteration

5 0.669309 0.460107

10 0.753709 0.709233

50 1.656838 2.655063

100 2.893451 3.499064

The results illustrated in Figure 26 to Figure 30 showed that if

the proposed algorithm could not find a path between the start

point and the target point for the five working environments

an error message is returned. In all cases, the MPSO*

algorithm succeeded to avoid the obstacle, even a collision

free path did not exist in the closed environments.

Fig 26: First closed environment using MPSO*

Fig 27: Second closed environment using MPSO*

Fig 28: Third closed environment using MPSO*

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

45

Fig 29: Fourth closed environment using MPSO*

Fig 30: Fifth closed environment using MPSO*

5.3 Comparative Study between MGA* and

MPSO*
This section describes comparison results between the MGA*

and the MPSO*. The achieved simulation results of both

algorithms for path length and travel time for the five working

environments are shown in Table 7 and Table 8, respectively.

The results showed the performance of the proposed

algorithms to find a feasible path for a mobile robot to move

from a starting point to the target point in static environments.

Results of these simulations are very encouraging and they

indicate important contributions to the areas of path planning

in mobile robots.

Table 7: Comparison of path length between MGA* and

MPSO*

 1st Environment 2nd Environment

MGA* 37.9303 19

MPSO* 39.4558 19

Diff1 1.5255 0

Diff1= path length (MPSO*) - path length (MGA*)

Table 8: Comparison of calculation time [second] between

MGA* and MPSO*

 4th Environment 5th Environment

MGA* 5.63 67.76

MPSO* 0.95 1.41

Diff2 4.68 66.35

Diff2= travel time (MGA*) - travel time (MPSO*)

6. CONCLUSIONS
From the simulation results one can conclude that the

proposed algorithms, MGA* and MPSO*, are capable of

effectively guiding a robot moving from start position to the

goal position in different working environments and find

optimal/shortest path without colliding any obstacle in the

environments. Also the simulation results show that the

MGA* and the MPSO* algorithms have the capability of

finding global optimum path in complex environment which

is clearly observed in the first environment. The using

adaptive population size without selection and mutation

operators in the proposed MGA* led to improve the execution

time. Adaptive population size grows depending on the size,

structure and the number of obstacles in the environment

which led to improve the execution time. In the MPSO* an

error factor is modeled to ensure that the PSO converges.

These errors are used to change the particle’s direction to head

toward the target. A modified procedure carried out in the

MPSO* to solve the infeasible path problem. When the

particle path falls with an obstacle boundary, it is relocated to

a position outside of the obstacle. The results obtained from

the implementation of the MGA* and the MPSO* to find the

optimal path for mobile robot show that the MGA* is more

efficient than the MPSO* in term of minimizing distance,

while the MPSO* is more efficient than the MGA* in terms

of minimizing the execution time.The MGA* and the MPSO*

algorithms didn’t converge in the closed environments in

which there is no path between the start point and the target,

as observed in the closed environment. However, the MPSO*

is faster to discover that the environment is closed. The

MPSO* can rightfully be regarded as a good choice due to its

convergence speed and robustness in global search

7. REFERENCES
[1] Patnaik, S., Jain, L. C., Tzafestas, S. G., Resconi,

G., Konar, A. 2005 Innovations in Robot Mobility and

Control, Springer, Netherlands.

[2] Kolski, S. 2007. Mobile Robots Perception and

Navigation, Advanced Robotic Systems International and

pro literatur Verlag, Germany.

[3] Han, K. M., 2007. Collision free path planning

algorithms for robot navigation problem, Master Thesis,

University of Missouri-Columbia.

[4] Yun, S.C., Ganapathy, V., Chong, L.O. 2010. Improved

genetic algorithms based optimum path planning for

mobile robot, International Conference on Control,

Automation, Robotics and Vision, ICARCV, pp. 1565-

1570.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 9, March 2014

46

[5] Mohanty, P. K., and Parhi D. R. 2013, Controlling the

Motion of an Autonomous Mobile Robot Using Various

Techniques: a Review, Journal of Advance Mechanical

Engineering, Vol. 1: pp.24-39.

[6] Dutta, S., 2010. Obstacle Avoidance of Mobile Robot

using PSO-based Neuro Fuzzy Technique, International

Journal of Computer Science and Engineering, Vol. 2,

Issue, (2): pp. 301-304.

[7] Tamilselvi, D., shalinie, M., Hariharasudan. 2011.

Optimal Path Selection for Mobile Robot Navigation

Using Genetic Algorithm”, International Journal of

Computer Science Issues, Vol. 8, Issue, (4): pp.433-440.

[8] Ragavan, S.V., Ponnambalam, S.G., Sumero, C. 2011.

Waypoint-based Path Planner for Mobile Robot

Navigation Using PSO and GA-AIS”, Recent Advances in

Intelligent Computational Systems (RAICS), pp. 756-760

[9] Raja, P., Pugazhenthi, S. 2012 .Optimal path planning of

mobile robots: A review, International Journal of

Physical Sciences, Vol. 7, Issue, (9): pp. 1314 – 1320

[10] Ahmadzadeh, S., Ghanavati, M. 2012. Navigation of

Mobile Robot Using the PSO Particle Swarm

Optimization, Journal of Academic and Applied Studies

(JAAS), Vol. 2, Issue, (1): pp. 32-38.

[11] Habeeb, Z. Q., 2012. A Simulation for Optimal Path

Planning for Mobile Robot Using Modified Genetic

Algorithm, Master Thesis, University of Baghdad.

[12] Yu-qin, W., Xiao-peng, Y. 2012. Research for the Robot

Path Planning Control Strategy Based on the Immune

Particle Swarm Optimization Algorithm, 2nd

International Conference on Intelligent System Design

and Engineering Application, pp. 724-727.

[13] Gigras, Y., Gupta, K. 2012. Artificial Intelligence in

Robot Path Planning”, International Journal of Soft

Computing and Engineering (IJSCE), Vol. 2, Issue, (2):

pp.471-474.

[14] Jatmiko, W., Sekiyama K., and Fukuda, T. 2006.

Modified Particle Swarm Robotic for Odor Source

Localization in Dynamic Environment, the International

Journal of Intelligent Control and Systems: Special Issue

on Swarm Robotic, Vol. 11, Issue, (3): pp.176-184.

[15] Eberhart, R., and Shi, Y. 1998. Comparison between

Genetic Algorithms and Particle Swarm Optimization.

In Proceedings of the Seventh Annual Conference on

Evolutionary Programming, Springer-Verlag, pp. 611-

619.

IJCATM : www.ijcaonline.org

