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ABSTRACT 

In this paper, Modified Genetic Algorithm (MGA*1) and 

Modified Particle Swarm Optimization (MPSO*1 ) are 

developed to increase the capability of the optimization 

algorithms for a global path planning which means that 

environment models have been known already. The proposed 

algorithms read the map of the environment which expressed 

by grid model and then creates an optimal or near optimal 

collision free path. The effectiveness of these optimization 

algorithms for mobile robot path planning is demonstrated by 

simulation studies. This paper investigates the application of 

efficient optimization algorithms, MGA* and MPSO* to the 

problem of mobile robot navigation. 

Despite the fact that Genetic Algorithm (GA) has rapid search 

and high search quality, infeasible paths and high 

computational cost problems are exist associated with this 

algorithm. To address these problems, the MGA* is presented. 

Adaptive population size without selection and mutation 

operators are used in the proposed algorithm. In this thesis, 

Distinguish Algorithm (DA) is used to check the paths, 

whether the path is feasible or not, in order to come out with 

all feasible paths in the population.  

Improvements presented in MPSO* are mainly trying to 

address the problem of premature convergence associated 

with the original PSO. In the MPSO* an error factor is 

modelled to ensure that the PSO converges.  MPSO* try to 

address another problem which is the population may contain 

many infeasible paths. A modified procedure is carrying out 

in the MPSO* to solve the infeasible path problem. 

According to the simulation done using MATLAB version 

R2012 (m-file), both algorithms (MGA* and MPSO*) are 

tested in different environments and the results are compared. 

The results demonstrate that these two algorithms have a great 

potential to solve mobile robot path planning with satisfactory 

results in terms of minimizing distance and execution time. 

The simulation results illustrate that the path obtained by 

MGA* is the shortest path, however the execution time based 

on MPSO* is significantly smaller than the execution time of 

MGA*. Thus, the proposed MPSO* is computationally faster 

than the MGA* in finding optimal path. 

 

 

                                                           
1 The (*) used to distinguish the proposed modified algorithms 

(MGA and MPSO) from the previous modified algorithms. 

Keywords 
Modified Genetic Algorithm (MGA*), Modified Particle 
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1. INTRODUCTION 
A robot is a controlled manipulator capable of performing a 

variety of tasks and decision-making like human beings, and 

may be either fixed in place or mobile. Mobility is an 

important consideration for modern robots [1]. As new 

technological achievements take place in the robotic hardware 

field, an increased level of intelligence is required as well. 

The most fundamental intelligent task for a mobile robot is the 

ability to plan a valid path from its initial to terminal 

configuration while avoiding all obstacles located on its way 

which is known as robot path planning [2].   

The efficiency of the mobile robot path planning is considered 

as an important matter since one of the main concerns is to 

find the destination in a short time. Accordingly, a desirable 

path should result from not letting the robot waste time taking 

unnecessary steps or becoming stuck in local minimum 

positions. Furthermore, a desirable path should avoid all 

known obstacles in the area [3]. 

There are so many methods that have been developed to 

overcome the path planning problem for mobile robots. Each 

method differs in its effectiveness depending on the type of 

application environment and each one of them has its own 

strengths and weaknesses. The choice of a good heuristic 

algorithm is necessary in order to achieve both quality and 

efficiency of a search.  Generally, some optimization criteria 

with respect to time and distance must be satisfied. Other 

constraints with respect to velocity and acceleration of mobile 

robots should also be taken into consideration [4]. 

2. RELATED WORKS 
Mohanty and Parhi, described the various techniques applied 

for navigation of an intelligent mobile robot. They showed 

that the heuristic approaches such as Fuzzy logic (FL), 

Artificial Neural Networks (ANN), Neuro-Fuzzy (NF), 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 

Ant Colony Optimization (ACO) and Artificial Immune 

System, gave suitable and effective results for mobile robot 

navigation as a target reaching and obstacle-avoidance. These 

techniques are also helpful for the solution of the local 

minima problem. Each method has its own strength over the 

others in certain aspects, researchers have been seeking for 

more efficient ways to solve this problem. In this section, the 

recent works on robot’s navigation and path planning are 

reviewed [5]. 
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(Dutta, 2010) deal with the obstacle avoidance of a wheeled 

mobile robot in structured environment by using PSO based 

neuro-fuzzy approach, and three layer neural networks with 

PSO were used as learning algorithm to determine the optimal 

collision-free path [6]. 

 (Tamilselvi et al., 2011) suggested navigation strategy using 

GA for path planning of a mobile robot. The most important 

modification applied to the algorithm is the fitness evaluation. 

The efficiency of the algorithm is analysed with respect to 

execution time and path cost to reach the destination. Path 

planning, collision avoidance and obstacle avoidance are 

achieved in both static and dynamic environment [7]. 

 (Ragavan et al., 2011) presented two optimization algorithms 

to solve path planning problem for robot navigation. The PSO 

and Genetic Algorithm - Artificial Immune System (GA-AIS) 

were developed and implemented for the path optimization. 

They concluded that the PSO algorithm has much faster 

computational time than GA-AIS algorithm for small 

network, while GA-AIS shows improvement and appears to 

perform better for large networks [8]. 

(Raja and Pugazhenthi, 2012) provided an overview of the 

research progress in path planning of a mobile robot for off-

line as well as on-line environments.  Commonly used classic 

and evolutionary approaches of path planning of mobile 

robots have been discussed, and they showed that the 

evolutionary optimization algorithms are computationally 

efficient. Also, challenges involved in developing a 

computationally efficient path planning algorithm are 

addressed [9]. 

(Ahmadzadeh and Ghanavati, 2012) presented an intelligent 

approach for the navigation of a mobile robot in unknown 

environments, the navigation problem becomes an 

optimization problem, and then it is solved by PSO algorithm. 

Based on position of goal, an evaluation function for every 

particle in PSO is calculated. It’s assumed that robot can 

detect only obstacles in a limited radius of surrounding with 

its sensors. Environment is supposed to be dynamic and 

obstacles can be fixed or movable [10]. 

(Habeeb, 2012) presented a modified genetic algorithm and 

showed that it has good results in the path planning of mobile 

robots in terms of minimizing distance and execution time. 

Also they illustrated that the modified genetic algorithm leads 

to a very quick generation of a path solution because no 

mutation operation was used which leads to consuming the 

time [11].  

(Yu-qin and Xiao-peng, 2012) provided an Immune Particle 

Swarm Optimization (IPSO) algorithm for path planning of 

the mobile robot which based on the biological mechanism of 

the immune system. They compared the simulation results 

with Dijkstra algorithm and PSO optimization results. They 

concluded that the optimal path and the execution time based 

on IPSO algorithm are reduced separately, and the improved 

PSO algorithm enhances the convergence speed and 

robustness of time-varying parameters [12].   

 (Gigras and Gupta, 2012) proposed the use of ACO algorithm 

for robot motion control such as navigation and obstacle 

avoidance in an efficient manner. They showed that by using 

this algorithm, money can be saved and reliability can be 

increased by allowing them to adapt themselves according to 

the environment without further programming [13]. 

From the above literature review for the recently published 

paper, the following points are highlighted and emphasized:  

1. The simulation and experimental results from 

previous researches show that algorithms play an 

important role to produce an optimal path for mobile 

robot navigation. 

2. Various works of research have been successfully 

applied PSO to solve the mobile robot path planning 

problem due to its simplicity and efficiency in 

navigating large search spaces for optimal solutions.  

3. Many researchers have been worked in the field of 

path planning using GA to generate the optimal path 

by taking the advantage of its strong optimization 

capability.  

4.  A GA is more efficient than the fuzzy logic and 

neural networks.  This is due to the capability of 

genetic algorithms to optimize both discrete and 

continuous mappings. 

3. MODIFIED GENETIC 

ALGORITHMS (MGA*)  
In this paper, a modified genetic algorithm is proposed based 

on the traditional genetic algorithm. Path planning using 

MGA* does not require any encoding scheme because it uses 

the real representation which reduces calculation time. The 

MGA* starts with generation of initial population; which may 

contain feasible and infeasible paths. To generate the initial 

population and verify that the generated path in the initial 

population is feasible or not, Distinguish Algorithm (DA) is 

used, and also, the MGA* leads to quick generation of a path 

solution because no selection and mutation operations are 

used which leads to decrease the execution time. The goal of 

MGA* is to minimize the total distance from the starting 

position to the desired position without colliding with any of 

the obstacles in the environment with satisfied time. The 

flowchart of the modified genetic algorithm is illustrated in 

Figure 1. 
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Fig 1: Flowchart of the Modified Genetic Algorithm* 

The process of modified genetic algorithm is illustrated in the 

following steps: 

3.1 Creating the Environment, and 

Obstacles in the Algorithm 
To verify the effectiveness of the MGA*, the simulation has 

been applied for different grid settings and different number 

of obstacles. Different known working environments are used, 

which are presented in Figure 2 to Figure 3. As displayed in 

the figures, the blue grids represent obstacle free areas where 

mobile robot can move freely. There is no unit used to 

measure the path length because each cell in the environments 

can represent any unit. The circle sign in the environment is 

the robot’s starting and goal location. The grid size, the 

coordinate of the start and target points, and the number of 

obstacles for each environment are shown in Table 1. 

Table 1: Grid size, start and target point, number of 

obstacles 

 

As the number of obstacles increases, the algorithm needs 

more generations to find the best solution. Obstacle areas in 

the working environment are represented by blue squares 

which contain red grid and has an average area of 1 × 1 unit. 

Boundaries for obstacles area are formed by their actual 

boundaries plus a safety distance that is defined with 

consideration to the size of the mobile robot which is treated 

as a point in the environment.  In each environment the 

obstacles are randomly put but carefully placed in such a way 

that they keep some distance from the starting point to the 

target point to make sure that the robot has some space to 

move.  

 

Fig 2: First working environment 

 

Fig 3: Second working environment 

3.2 Generating the Initial Population in the 

Algorithm 
All individuals of the initial population are assumed to be 

generated randomly. This leads to generate large numbers of 

infeasible paths which intersect an obstacle, and infeasible 

paths should be avoided. If there is/are obstacle(s) either in 

the vertical direction or horizontal direction, the mobile robot 

has to keep itself away from the obstacles.  

Initial population stored in a single matrix of size c × m, 

where c is the number of individuals in the population and m 

is the length of the individuals. Each row corresponds to a 

particular solution. After generating the initial population, and 

 

start 

 

Input: population size , number of desired iteration (ite) , number of intermediate  points , start & target points 

$&and target points point 

create environment & obstacles 

calculate fitness value for each individual 

n=n+1 

keep elitist individual 

crossover (generate new population) 

display the results, draw best solution 

 

end 
 

generate population 

feasible path? 
 

Yes 

No 

Required no. of feasible path? 
 

Yes 

No 

add (elitist individual) for the new generation 

n< ite 
 

Yes 

No 

generate new 

population 

iteration account, n=0 

Distinguish Algorithm (DA) is used to check the paths 

calculate fitness value for each individual and select the best solution  

Distinguish Algorithm (DA) is used to check the paths 

Environments 
grid size 

[unit] 

Start 

point 

[unit] 

target 

point 

[unit] 

number 

of 

obstacles 

1st environment 31 × 23 
x=1 , 

y=1 

x=22 , 

y=30 
76 

2nd environment 20 × 20 
x=1 , 

y=1 

x=7  ,  

y=6 
94 

The 3rd environment represents the two previous 

environments which turned to closed environments. 
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to allow the robot to move between its current and final 

configurations without any collision within the surrounding 

environment, each individual must be checked whether it 

intersects an obstacle or not, as explained in the next step. 

3.3 Distinguish Algorithm (DA) 
Because there are both feasible path and infeasible path in the 

population, the Distinguish Algorithm (DA) is used to check 

the paths, whether the path is feasible or not, in order to come 

out with all feasible individuals in the population. After 

applying this algorithm, feasible path will be used for next 

generation and infeasible path will be deleted.  

The details of the DA are as follows [4]: 

a. Generate the line equation of a(x1, y1) and b(x2, y2) 

by: 

                              

                           (1) 

                           

                          (2) 

Then, find the intermediate points between point a to point b, 

when the value of x is increase with 0.5. For each intermediate 

point, substitute the corresponding x value in equation3-2 and 

calculate the y value.  

b. Check if the coordinate of the intermediate point lies 

within the obstacle area or obstacle free area by 

checking the particular intermediate point and 

obstacle list. 

c. If the particular intermediate point lies within 

obstacle free area, repeat Step 2 until all 

intermediate points between point a and point b are 

explored. In case where any of the intermediate 

points lies inside obstacle area, DA is terminated 

and that particular path will be categorized as 

infeasible path. 

d. If none of the intermediate points lie in the obstacle 

area, Step 1 to Step 3 are repeated until all points in 

the particular path are explored. This explored path 

is categorized as feasible path. 

3.4 Fitness Function 
The length of the feasible path is compute as:  

                            

                             (3) 

     is the distance between two points, xi and yi are robot’s 

current horizontal and vertical positions, xi+1 and yi+1 are 

robot’s next horizontal and vertical positions. The objective 

function of the overall path can be expressed as: 

             
 

   
                      (4)                                                                                                                                

where dist(j) is the distance of the jth path in the environment, 

and h is the number of links that consist the path.  

The fitness function is the inverse of the total distance which 

is Euclidean distance. The Euclidean distance between 

starting and target point is the length of the line segment 

connecting them. The fitness function used in this thesis is 

(Yun et al., 2010):  

                                 (5) 

where F(j) is the fitness function and j represents the jth path.  

It is obvious that the best individual will have the maximum 

fitness value. At each generation, iteration, all the 

chromosomes will be updated by their fitness.  

3.5 Elitism 
In order to keep the best chromosome from each generation, 

the elitism method is employed. In elitism it is obvious that 

the best individual will have maximum fitness value. The 

main goal of the elitism rule is to keep the best chromosome 

from the current generation. Thus, under this rule, the best 

chromosome from each generation will not undergo any 

mutation or crossover event and will safely move to the next 

generation. Since the best or elite member between 

generations is never lost, the performance of GA can 

significantly be improved.  

The remaining chromosomes are then sorted according to 

their fitness. Since small population sizes lose diversity very 

fast, therefore in the proposed algorithm no selection operator 

is used, and all the remaining chromosomes will be selected to 

undergo the crossover operator. Using this approach will 

increase the expectation of maintaining diversity in the 

population.  

3.6 Crossover Operator 
After selection of the elite member, crossover operator stage 

starts. In crossover a group of chromosomes undergoes 

crossover at each generation. All the crossover events are 

controlled by a certain crossover probability Pc, which is 

equal to 0.5. The algorithm creates a random number in range 

[0 1] for each chromosome. If the generated number is less 

than Pc, the chromosome is a candidate for the crossover 

event, otherwise the chromosome proceed without crossover. 

The left most genes and the right most genes will avoid the 

crossover event since these two points are the start and target 

points and cannot be eliminated. For the purpose of diversity, 

the crossover point is randomly selected in each generation.  

Single-point crossover operator is used in proposed algorithm. 

The genes of two parents’ individuals before or after the 

crossover point are swapped, then the individual of the father 

replaced by individual of the offspring. Finally, the DA is used 

to check the paths of the newly generated offsprings. There is 

no mutation operator in the proposed MGA*. After crossover 

operator has been applied to the initial population, a new 

population will be formed. 

3.7 Generation Algorithm 
Commonly in the complex environment along with high 

density of obstructions the number of generated paths is 

inefficient. Generation algorithm is used to increase the 

population and help to prevent the stagnating at local optima, 

and then the new generated population must be checked for 

infeasibility. If the number of generated paths is still 

insufficient a new population is generated. This process is 

repeated over again until the desired number of feasible path 

is reached. So, the proposed method will not use fixed 

population size but adaptive population size. Generated 

population formed in this way increase the efficiency of the 

proposed algorithm, and will not lose the overall genetic 

algorithm searching capabilities. In the next iteration, 

generation algorithm generates paths continuously instead of 

infeasible paths.  

http://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
http://en.wikipedia.org/wiki/Line_segment
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Genetic algorithm is terminated when the maximum number 

of iteration exceeds a certain limit, and also terminated when 

it does not find a path from the start point to the target point.  

4. MODIFIED PARTICLE SWARM 

OPTIMIZATION (MPSO*)  
Basically the MPSO*, just like the PSO, consists of a 

population of particles that collectively search in the search 

space for the global optimum. Improvements are mainly 

trying to address the problem of premature convergence 

associated with the standard PSO. These improvements 

usually try to solve this problem by increasing the diversity of 

solutions in the swarm. In the MPSO* an error factor is 

modelled to ensure that the PSO converges.  The MPSO* tries 

to address another problem which is population may include 

many infeasible paths which have undesirable effect on the 

performance of the algorithm. In the MPSO*, the infeasible 

paths are not discarded but can be modified to be feasible 

path. For example, if the particle path falls with an obstacle 

boundary, it is relocated to a position outside the obstacle. The 

process of MPSO* is demonstrated in the following 

subsections  

4.1 Modeling the Environment, and 

Obstacles in the Algorithm 
The flowchart of the proposed MPSO* is illustrated in Figure 

4. 

 

 

Fig 4: Flowchart of the Modified Particle Swarm 

Optimization 

4.2 Particle swarm initialization 
The starting position for each particle is the starting point of 

the path, then the first position and velocity of each particle is 

generated randomly but limited to the boundaries of the 

search space. The particle’s position stored in a matrix with 

size of 2 × l, where l is the number of particles. The first and 

 

if gbest = target 
 

Yes 

No 

start 
 

Input: number of particles, number of iteration (ite), start and target points, 
weighing factors, inertia weighing, scaling factors 

 

generate initial position 

Create the environment &  the obstacles 

Calculate the fitness value for each particle, p_fitness1 

find particle & global best location (pbest & gbest) 

n=n+1  

Calculate the new velocity and position for each particle 

store 
gbest  

Calculate the fitness value for each particle, p_fitness2 

find particle & global best location (pbest & gbest) 

update velocity, position and fitness values 

display the results, draw gbest 
 

end 
 

generate random value of first position & velocity for each particle 
 

check the paths & modify infeasible paths if exist 
 

iteration account, n=0 

n>ite  

print: sorry there is 
no path to the target  
 

No 

Yes 
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second row of the matrix correspond the x and y-coordinate 

for all particles, respectively.  

4.3 Fitness Function Evaluation 
The particle’s paths are evaluated during each step. 

Evaluation function is used to provide a measure of how 

particles have performed in the problem domain. In the 

MPSO*, two parameters, the distance between points and 

travel time, indicated by the particles are used to calculate the 

particle fitness (p_fitness). Since the fitness should increase as 

the distance and time decrease, the fitness function for each 

particle of a feasible path is turned out to be a minimization 

problem and it is evaluated as:  

          
                                

                                                                      (6) 

where    and    are weighing factor for distance and travel 

time respectively,            denotes Euclidean distance 

between point    to the next point      for the same particle 

and             denotes time taken by the particle to cover 

from    to      : 

                     
           

   

                                                              (7) 

                            

                                              (8) 

where xi and yi are particle’s current horizontal and vertical 

positions, xi+1 and yi+1 are particle’s next horizontal and 

vertical positions, and    denotes the velocity of the particle 

when traveling from    to     . The calculation of the fitness 

value is illustrated by the flowchart shown in Figure 5. 

 

Fig 5: Flowchart for fitness calculation 

4.4 Particle position and velocity update 
The MPSO* algorithm is initialized with a number of particles 

and then searches for optimal. The position of a particle is 

influenced by the best position visited by itself which is 

referred to as particle best “pbest”, and the best position in the 

whole swarm which is referred to as a global best “gbest”. A 

particle updates its position and velocity using the following 

equations [14]: 

                              
                                                        (9) 

                              
                                                      (10) 

where the cognitive component,           , represents the 

particle's own experience as to where the best solution is and 

the social component,            represents the belief of 

the entire swarm as to where the best solution is. Both     

and     are the updated particle’s velocity    ,    , x1 and 

y1 are current particle’s velocity and position along x and y-

direction respectively. Updating velocities is the way that 

enables the particle to search around its individual best 

position and global best position. 

Self-confidence factor,    and swarm-confidence factor,    

makes particles have the function of self-summary and learn 

to the best of the swarm, and get close to the best position of 

its own as well as within the swarm.  

The inertia weight (w) was first introduced by [15]. This term 

serves as a memory of previous velocities and it employed to 

control the impact of the previous velocity on the current 

velocity .The value of inertia factor (w) is in the range of [0 

1].     and    are random numbers within the interval of [0 1]. 

These parameters have considerable effects on performance of 

PSO.  

In the basic concept of PSO algorithm no error model is used 

for updating the position. However, in the MPSO* these 

errors are modelled to ensure that the PSO converges, the 

modified position update equation for each particle with the 

error is determined as follow: 

                     

                                         (11) 

                     

                                         (12) 

where x2  and y2  are the updated positions along x and y-

direction,    is a random number, large values of this 

parameter leads to global search, while small values leads to 

fine and local search which is suitable when algorithm 

converges.        and        are position error along x and 

y-coordinate for all particles, respectively, and it’s between 

current particle position and the target position. These errors 

are used to change the particle’s direction to head toward the 

target. 

                

                          (13) 

                

                         (14) 

The error value is determined for each particle where    &    

are the current coordinates of the individual particle and    & 

   are the target coordinates. Based on the above equations, 

the next possible velocity and position of each particle is 
determined. If the next possible position resides within the 

obstacle space, the obstacle avoidance part of the algorithm is 
employed and the Distinguish Algorithm (DA) is used to 

check the paths. 

4.5 Generation of Feasible Paths 
As the particles move through the search space from current 

position to new position, a conditional statement is used to 

check all the particles paths to see if the particles are passing 

through obstacles. If this condition is true, the path is 

considered to be infeasible and the obstacle avoidance section 

of the algorithm is initiated. If particle path does not interfere 

with the position of the obstacle, the path is considered to be 

feasible. In the MPSO*, the infeasible paths are not discarded 

but can be modified in a way that the selected path would be a 

collision free by using the proposed algorithm, which is 
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illustrated by the flowchart in Figure 6. As shown in the 

figure, if the particle path falls with an obstacle boundary, it is 

relocated to a position outside of the obstacle.  

 

Fig 6: Flowchart for modifying the infeasible paths 

position 

As the next step, the particle’s fitness value is compared 

between current and new location at each iteration to 

determine the best position pbest for each particle, and the 

particle with the best fitness value is assigned as the global 

best gbest, as illustrated by the flowchart shown in Figure 7.  

 

Fig 7: Flowchart for finding the particle and global 

best location 

The MPSO* algorithm has a main nested loop terminated 

when the total number of iterations exceeds a certain limit or 

solution convergence; otherwise the program is terminated 

when the program could not find the path from start position 

to the target position. The path generated by MPSO* is a 

group of “gbest” points, including start and target points. In 

all cases, an optimal path is formed by line segment which is 

connecting the global best position “gbest” falling on the grids 

of the working environment. 

5. SIMULATION RESULTS 
The simulation results of mobile robot path planning using 

Modified Genetic Algorithm (MGA*) and Modified Particle 

Swarm Optimization (MPSO*) are presented to find the 

optimal path along the obstacle-free directions. To illustrate its 

wide applicability and their effectiveness, the proposed 

algorithms are implemented to solve the path planning 

problem through the computer simulation for different 

working environments. For comparison and validation 

purpose, the results obtained from the MPSO* algorithm are 

compared with results obtained by MGA*. The programs are 

written by MATLAB R2012a and run on a computer with 2.5 

GHz Intel Core i5 and 6 GB RAM. 

5.1 The Implementation of Modified Genetic 

Algorithm (MGA*) in Path Planning 
The implementation of the MGA* to solve path planning 

problem is demonstrated to different types of working 

environments. These environments are large in size and 

complex which have been presented to test the performance of 
this algorithm to find the optimal or near optimal path with 

satisfied time. For the proposed algorithm the simulation 

parameters are set as: population size =100, crossover 

probability (Pc = 0.5). In all cases, an optimal path is formed 
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by line segments which are connecting the points falling on 

the grids of the working environment. 

5.1.1 Implementation of MGA* for the First 

Environment 
The performance of the MGA* is tested by applying this 

algorithm to find the optimal or near optimal path for the 1st 

environment shown in Figure (2). As illustrated in the figure, 

this working environment is a very complex environment. The 

best results obtained from the implementation of the MGA* 

are shown in table 1, and the best path found is illustrated by 

Figure (7) to Figure (12). 

Table 1: The simulation results for the 1th environment 

using MGA* 

Simulation Results 

Initial 

Population 

Iterations Distance Elapsed time [s] 

100 20 36.6815 14.0 

100 10 36.7174 9.5 

100 5 37.9303 5.63 

100 3 38.6729 4.5 

100 2 38.9300 4.4 

100 1 39.4776 3.0 

 
The best solution obtained by MGA* shown that the elapsed 

time is 5.63 seconds to find shortest generated path with the 

length of 37.9303. However, the length of the path for 10 and 

20 iterations is a bit shorter than 5 iterations but the 

computation time is much larger. From these results, one can 

concluded that, the required time to find optimal path is small. 

 

 

Fig 7: Path generated for the 1st environment using 

MGA* (20 iterations) 
 

 

Fig 8: Path generated for the 1st environment using 

MGA* (10 iterations) 

 

Fig 9: Path generated for the 1st environment using 

MGA* (5 iterations) 
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Fig 10: Path generated for the 1st environment using 

MGA* (3 iterations) 

 

Fig 11: Path generated for the 1st environment using 

MGA* (2 iterations) 
 

 

Fig 12: Path generated for the 1st environment using 

MGA* (1 iteration) 

5.1.2 Implementation of MGA* for the Second 

Environment 
The performance of the MGA* is examined by applying a 

simulation for the 2nd environment as illustrated in Figure 3 . 

The best simulations obtained by applying the MGA* to the 

2nd environment are shown in Table 2, and also the best path 

obtained is illustrated by Figure 13 and Figure 14.  

Table 2: The simulation results for the 2th environment 

using MGA* 

Simulation Results 

Initial 

Population 
Iterations Distance Elapsed time [s] 

100 2 19 67.76 

100 1 20.099 44.10 

 

Based on this result, it can be concluded that, the global 

optimal path obtained by the MGA* is the optimal solution. 

 
Fig 13: Path generated for the 2nd environment using 

MGA* (2 iterations) 

 
Fig 14: Path generated for the 2nd  environment using 

MGA* (1 iteration) 
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5.1.3 Implementation of MGA* for the Third 

Environment (Closed Environments)  
In order to show that the algorithm does not converge when 

there is no path to the target; the algorithm has been 

implemented to the two previous environments which turned 

to closed environments.  Table 3 shows the elapsed time for 

the closed environments with different number of population 

size. For the environments the elapsed time is increased by 

increasing the number of population gradually because the 

large number of population requires larger computations. 

Table 3: The simulation results for the 3th environment 

using MGA* 

Maximum 

population 

size 

1st  Environment 

elapsed time [s] 

2nd  Environment 

elapsed time [s] 

500 4.663363 0.390006 

1000 5.202287 0.560971 

2000 7.287891 1.357995 

5000 20.430164 6.895290 

10000 67.191626 26.559073 

 

 

Fig 15: First closed environment using MGA* 

 

Fig 16: Second closed environment using MGA* 

The simulation results shown in Figure 15 and Figure 16. The 

Figures show that if the MGA* could not find a path between 

the start point and the target point for the five working 

environments, an error message is returned so that the mobile 

robot could not find the target. 

5.2 The Implementation of Modified 

Particle Swarm Optimization (MPSO*) 

in Path Planning 
To study the performance of the MPSO*, the proposed 

algorithm have been applied to different types of working 

environments presented from  Figure 2 to Figure 3. To 

investigate the effect of different swarm size on the 

performance of the MPSO*, different number of particles has 

been taking into account (i.e., 5, 10, 50, and 100). The 

particle’s size has been selected on the base of trial and error, 

because there has been no recommendation in the literature 

regarding swarm size in PSO.  

In the MPSO* various combinations of parameters were 

tested and the best obtained result are the values of weighing 

factors in fitness function        and     , inertia 

weighing factor       . The swarms with small initial 

inertia weight converged relatively fast at the beginning of 

optimization. The chosen values of cognitive scaling and 

social scaling factors are        . Usually    equals    

and ranges from 0 to 4 (Raja and Pugazhenthi, 2009).   

5.2.1 Implementation of MPSO* for the First 

Environment 
The performance of the MPSO* algorithm is examined by 

applying it to the 1st environment shown in Figure 2 to find 

the optimal path. The best obtained simulation results with 

various numbers of particles, swarm size, for the 1st 

environment is shown in Table 4. 
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Table 5: The simulation results for the 1st environment 

using MPSO* 

Simulation Results 

No. of  

Particle 

Iterations Distance Elapsed time [s] 

5 33 39.4558 0.95 

10 31 39.4558 0.97 

50 30 39.4558 1.14 

100 31 39.4558 1.41 

 
The best solution obtained after running the MPSO* algorithm 

to this environment is shown in Figure 17 to Figure 20.  

 

Fig 17: Path generated for the 1st environment using 

MPSO* (5 particles) 

 

Fig 18: Path generated for the 1st environment using 

MPSO* (10 particles) 

 

Fig 19: Path generated for the 1st environment using 

MPSO* (50 particles) 

 

Fig 20: Path generated for the 1st environment using 

MPSO* (100 particles) 

It can be observed from the above figures that no 

improvement is achieved for more than 5 particles in term of 

the path length; therefore 5 particles are sufficient to find the 

optimal path with length of 39.4558 in 0.95 second. 

5.2.2 Implementation of MPSO* for the Second 

Environment 
The capability of the MPSO* algorithm is examined by 

applying it to the 2nd working environment, as shown in  

Figure 3, to find the optimal path with satisfied time. The 

simulation results obtained are shown in Table 5, and the 

results are demonstrated by Figure 21 to Figure 25 Fig.  
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Table 5: The simulation results for the 2nd environment 

using MPSO* 

Simulation Results 

No. of  

Particle 

Iterations Distance Elapsed time [s] 

2 26 27 1.19 

3 29 25 1.23 

5 20 23 1.25 

7 23 21 1.35 

10 20 19 1.41 

 

 
Fig 21: Path generated for the 2nd environment using 

MPSO* (2 particles) 

 
 

 

 

 

 

Fig 22: Path generated for the 2nd environment using 

MPSO* (3 particles) 

 
Fig 23: Path generated for the 2nd environment using 

MPSO* (5 particles) 

 
Fig 24: Path generated for the 2nd environment using 

MPSO* (7 particles) 

 
Fig 25: Path generated for the 2nd environment using 

MPSO* (10 particles) 
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This algorithm has been examined with various swarm size to 

investigate the behavior of MPSO* algorithm in each case.  

This will also help in showing that MPSO* algorithm will 

converge to the optimal solution, optimal path, in each run. 

Through the simulation results, it is shown that the MPSO* 

can find out an optimal path very quickly. 

5.2.3 Implementation of MPSO* for the Third 

Environment (Closed Environments)  
The MPSO* algorithm has been carried out to the five 

previous environments which turned to closed environments, 

in order to demonstrate that the proposed algorithm does not 

converge when there is no path to the target Table 6.  shows 

the elapsed time for the five closed environments with various 

number of particles and different number of iterations. As 

shown in the table, for all closed environments the elapsed 

time is increased by increasing the number of particles and the 

number of iterations because of that the large number of 

particle and iteration require larger computations. 

Table 6: The simulation results for the 3rd environment 

using MPSO* 

No. of Particle 1st  

Environment 

Elapsed time 

[sec] 

2nd 

Environment 

Elapsed time 

[sec] 

 10 iteration  

5 0.567463 0.348209 

10 0.624700 0.350721 

50 0.661831 0.674306 

100 0.682113 0.946107 

 50 iteration  

5 0.639178 0.385743 

10 0.696363 0.578581 

50 1.223272 1.856159 

100 1.636615 2.946691 

 100 iteration  

5 0.669309 0.460107 

10 0.753709 0.709233 

50 1.656838 2.655063 

100 2.893451 3.499064 

The results illustrated in Figure 26 to Figure 30 showed that if 

the proposed algorithm could not find a path between the start 

point and the target point for the five working environments 

an error message is returned. In all cases, the MPSO* 

algorithm succeeded to avoid the obstacle, even a collision 

free path did not exist in the closed environments. 

 

 
Fig 26: First closed environment using MPSO* 

 

 

Fig 27: Second closed environment using MPSO* 

 

Fig 28: Third closed environment using MPSO* 
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Fig 29: Fourth closed environment using MPSO* 

 
Fig 30: Fifth closed environment using MPSO* 

5.3 Comparative Study between MGA* and 

MPSO* 
This section describes comparison results between the MGA* 

and the MPSO*. The achieved simulation results of both 

algorithms for path length and travel time for the five working 

environments are shown in Table 7 and Table 8, respectively. 

The results showed the performance of the proposed 

algorithms to find a feasible path for a mobile robot to move 

from a starting point to the target point in static environments. 

Results of these simulations are very encouraging and they 

indicate important contributions to the areas of path planning 

in mobile robots.  

Table 7: Comparison of path length between MGA* and 

MPSO* 

 1st Environment 2nd  Environment 

MGA* 37.9303 19 

MPSO* 39.4558 19 

Diff1 1.5255 0 

Diff1= path length (MPSO*) - path length (MGA*) 

 

Table 8: Comparison of calculation time [second] between 

MGA* and MPSO* 

 4th  Environment 5th  Environment 

MGA* 5.63 67.76 

MPSO* 0.95 1.41 

Diff2 4.68 66.35 

Diff2= travel time (MGA*) - travel time (MPSO*) 

6. CONCLUSIONS 
From the simulation results one can conclude that the 

proposed algorithms, MGA* and MPSO*, are capable of 

effectively guiding a robot moving from start position to the 

goal position in different working environments and find 

optimal/shortest path without colliding any obstacle in the 

environments.  Also the simulation results show that the 

MGA* and the MPSO* algorithms have the capability of 

finding global optimum path in complex environment which 

is clearly observed in the first environment. The using 

adaptive population size without selection and mutation 

operators in the proposed MGA* led to improve the execution 

time. Adaptive population size grows depending on the size, 

structure and the number of obstacles in the environment 

which led to improve the execution time. In the MPSO* an 

error factor is modeled to ensure that the PSO converges. 

These errors are used to change the particle’s direction to head 

toward the target. A modified procedure carried out in the 

MPSO* to solve the infeasible path problem. When the 

particle path falls with an obstacle boundary, it is relocated to 

a position outside of the obstacle.  The results obtained from 

the implementation of the MGA* and the MPSO* to find the 

optimal path for mobile robot show that the MGA* is more 

efficient than the MPSO* in term of minimizing distance, 

while the MPSO* is more efficient than the MGA* in terms 

of minimizing the execution time.The MGA* and the MPSO* 

algorithms didn’t converge in the closed environments in 

which there is no path between the start point and the target, 

as observed in the closed environment. However, the MPSO* 

is faster to discover that the environment is closed. The 

MPSO* can rightfully be regarded as a good choice due to its 

convergence speed and robustness in global search 
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