
International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 9, March 2014 

15 

Kalman Filter Tracking  

 
Nasser H. Ali 

Ministry of Electricity 
Department of Communication 

Baghdad, Iraq 

 

Ghassan M. Hassan 
Al-Mustansiriyah University 

Computer Department 
Baghdad, Iraq 

 
 

 

ABSTRACT 
Kalman filter estimates the state of a dynamic system, even if 

the precise form of the system is unknown. The filter is very 

powerful in the sense that it supports estimations of past and 

even future states. The description of the standard Kalman 

filter and its algorithms with the two main steps, the 

prediction step and the correction step. Furthermore the 

extended Kalman filter is discussed, which represents the 

conversion of the Kalman filter to nonlinear systems. Finally 

these filter was tested on aircraft tracking,  and sinus wave 

using MATLAB. 
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1. INTRODUCTION 
Navigation system becomes standard, practically in aerospace, 

marine, demographic modeling, weather science 

manufacturing, new cars and many others[4]. Most of these 

navigation systems use no longer only the global positioning 

system (GPS) but also an inertial navigation system (INS) to 

help for finding the true way. Together the two systems 

complement each other and permit improved navigation 

accuracy and reliability especially when GPS is degraded or 

interrupted because of buildings or tunnels[4,5,6]. And for 

this application the kalman filter provides the basis. It 

constitutes a tool for correcting the predicted INS trajectory 

with GPS measurements. 

2. KALMAN FILTER 
The kalman filter is a recursive predictive filter that is based 

on the use of state space techniques and recursive 

algorithms[7]. It estimates the state of dynamic system. This 

dynamic system can be disturbed by some noise, mostly 

assumed as white noise. To improve the estimated state the 

kalman filter uses measurements that are related to the state 

but disturbed as well. Thus the kalman filter consists of two 

steps[7]; 

1-The prediction state, which predict with the dynamic model 

2-The correction step, which is corrected with the observation 

model, so that the error covariance of the estimator is 

minimized it as an optimal estimator[7]. 

3. STATE VECTOR 
The state vector contains the variables of interest (such as 

position, velocity, orientation angle, ….etc.). It describes the 

state of dynamic system and represent its degrees of freedom. 

The variables in the state vector cannot be measured directly, 

but they can be inferred from values that are measurable.  

4. DYNAMIC MODEL 

The dynamic model describes the transformation of the state 

vector with respect to time. It can usually be represented by 

system differential equation; 

  

 

  and in the linear case; 

 

 
 

Where F is the dynamic matrix and it is constant, n(t) is the 

dynamic noise with covariance matrix Q(t) [6,8]. 

 

5. OBSRVATION MODEL 
The observation model represents the relationship between the 

state and the measurements. In the linear case, the 

measurements can be described by a system linear equations, 

which depend on the state variable; 

 

 
 
 So the vector form of this system is 

 

 
 
Where l(ti) is the vector of the observation at the epoch ti, H is 

the observation matrix, and w(ti) is the noise of the 

measurement process with the covariance matrix R(ti). Like 

the dynamic matrix, in a linear system,  the observation matrix 

H is a constant matrix. 

6. KALMAN FILTER PREDICTION 
Prediction is the first step of kalman filter. The predicted state 

is calculated by neglecting the dynamic noise, and solving 

equation 2. The covariance matrix P(ti) of the predicted state 

vector is obtained with the law of error propagation; 

 

Where ø is called the state transition matrix, which transform 

any initial state x(to) to its corresponding state x(t) at time t. 

Also the covariance matrix of noise Q is a function of 

time[9,10]. 

7. KALMAN FILTEER CORRECTION 
In the correction step, the predicted state vector x-(ti) is 

improved with observations made at the epoch ti, thus the  

posteriori state has the form. 
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With the covariance matrix  

As a kalman filter is an optimal filter, this means that the state 

variances in the state covariance matrix P+ are minimized. 

From the prediction step, P- is already known, it follows that 

ΔP is minimized. 

 

 
 
The corrected state is obtained by  

 

 
 
Where K is called the gain matrix. The difference term is 

called the measurement residual. It reflects the discrepancy 

between the predicted measurement  and the 

actual measurement . 

The covariance matrix of the a posteriori state is given with 

the law of error propagation. 

 

 
 

8. EXTENDED KALMAN FILTER 
This type of filter is used for nonlinear model. The 

disadvantage of this model is to need more time-consuming 

calculations. The implementation for linear systems can be 

made more efficient by pre-computing the dynamic matrix F, 

the state transition matrix ø, and the observation matrix H. But 

for nonlinear systems, these are the functions of the state, and 

change consequently  with every time step, so they cannot be 

pre-computed. 

 

9. EKF PREDICTION  
In the nonlinear case the prediction can be calculated as in 

linear case, but it should be noted that, the use of matrices are 

not constant like in linear case, but depend on time step; 

 

 
 

10. EKF CORRECTION 
Like the differential equation in the prediction step, the 

corresponding nonlinear observation equations are linearized 

with the Taylor series about the predicted state , and 

higher order terms are neglected. 

Thus the approximation observation matrix is 

 

 
In this case the predicted measurement  for calculating 

the measurement residual is , the same 

formula is used  to calculate the corrected state, and its 

covariance matrix like in the linear, but with time dependent 

matrices[11,12]. 

 

 
 

With  

 

 
 

11. RESULT 
The KF was tested for latitude, longitude of true trajectory, 

and velocity north of true trajectory with INS, and INS/GPS, 

while EKF was tested for position, and velocity of true 

trajectory. The result was shown in figure 1 through figure 5. 

Figure 6 shows the behavior of EKF when it is tested on sinus 

wave. 
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Fig 1 : Comparison between Latitude of true trajectory  

by GPS and trajectory by GPS/INS with KF 
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Fig 2 : Comparison between Longitudes of true trajectory  

by GPS and trajectory by GPS/INS with KF 
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Fig 3: Comparison between Velocity North of true 

trajectory by GPS and trajectory by GPS/INS with KF 
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Fig 4:  Position of true trajectory by GPS and trajectory  

by INS with EKF. 
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Fig  5: Velocity of true trajectory by GPS and trajectory   

by GPS/INS with EKF 

Fig  6:  EKF tested on sinus wave 

12. CONCLUSION  
In this paper, compares between  Kalman and extended 

Kalman filtering of aircraft tracking for orientation data 

represented with quaternions. The results indicate that, 

although the KF and EKF have roughly the same accuracy, 

the KF is better choice for liner system applications, and the 

quasi-linear nature of the quaternion dynamics makes the EKF 

a better choice for the task of improving tracking of noisy 

quaternion signals in virtual reality applications. 
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