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ABSTRACT 
A genetic algorithm is used together with calculus of variations 

to optimize an interplanetary trajectory for the Bryson-Ho 

Earth-to-Mars orbit transfer problem. The global search 

properties of genetic algorithm combine with the local search 

capabilities of calculus of variations to produce solutions that 

are superior to those generated with the calculus of variations 

alone, and these solutions require less user interaction than 

previously possible. The genetic algorithm is not hampered by 

ill-behaved gradients and is relatively insensitive to problems 

with a small radius of convergence, allowing it to optimize 

trajectories for which solutions had not yet been obtained. The 

use of the calculus of variations within the genetic algorithm 

optimization routine increased the precision of the final solution 

to levels uncommon for a genetic algorithm.   
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1. INTRODUCTION 
Techniques for optimizing spaceflight trajectories problems 

have become increasingly important as pressure to reduce the 

costs of space missions has increased. Both direct and indirect 

methods, known as “hill-climbing” methods, have been used to 

optimize space trajectories; however, for some scenarios, 

convergence to optimal solution is time-consuming, tedious, 

and sometimes not even possible. Direct methods that solve for 

controls to optimize the objective function directly, often via a 

gradient-based search, suffer from two major drawbacks. First, 

because search direction is ultimately driven by the local value 

of the gradient vector, the solution can converge on local, rather 

than global, minima, resulting in a final solution that is not 

globally optimal and cannot be further optimized [1]. Second, 

the optimal solution often has a small radius of convergence, 

requiring that the guesses for the initial parameters be close to 

the optimal answer [2]. Indirect methods, such as the calculus of 

variations, obtain optimal results by solving for the costates of a 

related boundary value problem and not for the controls 

directly. Although indirect methods are generally more likely to 

find a true, rather than local, optimum both direct and indirect 

approaches share many of the same drawbacks, most notably a 

small radius of convergence [3]. The “hill-climbing” methods 

exploit all local information in an efficient way, provided that 

certain conditions are fulfilled and, in particular, that the 

function to be minimized is “well-conditioned” in the 

neighborhood of the unique optimum [4]. Such a high level of 

exploitation requires a lot of local information to be known 

(gradient and, sometimes, Hessian matrix): the more intensive 

the exploitation, the stronger the need of specialized 

information about the function to be minimized. Moreover, if 

the basic requirements are not satisfied, the reliability of the 

“hill-climbing” methods is greatly jeopardized. 

Therefore, it is vital to choose initial parameter values 

intelligently; failure to do so will either dramatically increase 

the required computation or preclude obtaining a solution 

entirely. When indirect methods are used, where the 

optimization parameters are generally not related to the 

trajectory in an intuitive or straightforward manner, there may 

not be knowledge of the parameter bounds or their sensitivity. A 

common strategy to improve initial parameter selection uses 

previously optimized parameter values from a similar problem 

as an initial guess [1]. If no closely related solutions exist, initial 

values are found by optimization of an entire series of 

intermediate problems relating the new scenario to one with a 

known solution, a procedure known as homotopy analysis [5]. 

In recent years many techniques have been suggested for the 

avoidance of these shortcomings. A survey of these methods 

can be found in [6]. Evolutionary algorithms (EAs) are the best 

known. The usefulness of the genetic algorithms (GAs), well 

known of them, for solving impulsive trajectories is well 

documented [7, 8, 9]. The purpose of this study was to 

investigate the GA's effectiveness at determining a near optimal 

trajectory.   

2. PROBLEM DEFINITION 
The Bryson-Ho Earth-to-Mars orbit transfer problem [10] is a 

case that many authors use for demonstrating efficiency of 

diverse numerical methods, see, e.g., [11, 12, 13]. This problem 

is summarized as follows:  

“Given a constant-thrust rocket engine, T = thrust, operating for 

a given length of time, t , the thrust-direction history, (t) must 

be found, to transfer a rocket vehicle from a given initial 

circular orbit to the largest possible circular orbit.”  

The orbits of the planets are assumed to be circular and 

coplanar, and the total transfer time is about 193 days. The 

geometry of orbit transfer is illustrated in Figure 1. The 

attracting center is the sun. The dashed circles represent the 

orbits of Earth and Mars.  

Because the spacecraft begins in the Earth's orbit, r(0) is equal 

to 1 astronomical unit (AU) for this simplified case. The 

parameters of the problem have been transformed to canonical 

units. The actual parameters for the orbits can be found in a 

standard orbital mechanics book [14]. 

The first-order, two-dimensional coupled nonlinear differential 

equations of motion for this problem are given in [10] as   
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Fig 1: Max Radius Orbit Transfer in a Given Time (or Min 

Time for a Given Final Radius)[12]. 






cos
m

T

r

uv

dt

dv
v

sin
m

T

rr

v

dt

du
u

u
dt

dr
r

2

2













                                                   (1) 

where 

r = radial position;       m = spacecraft mass; 

u = radial velocity;        = thrust angle; 

v = transverse velocity;      = gravitational 

constant; 

T = propulsive thrust; 

The thrust angle is defined relative to the “local horizontal” or 

tangential direction at the spacecraft’s position. It is measured 

positive above the local horizontal plane and negative below. 

The in-plane thrust angle  is the single control variable for this 

problem. Given the control input of the trajectory, the equations 

can be integrated. The spacecraft mass at any elapsed time t is 

determined from  

)tm1(m)t(m 0                                                (2) 

where m  is the propellant flow rate of the propulsive device 

and 0m  is the initial mass.  

The flight conditions of the spacecraft in its initial circular orbit 

corresponding to the Earth's orbit are:  
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where r(0) is in AU and u(0) and v(0) are in AU/time unit (TU). 

The boundary conditions that create a circular orbit at the final 

time tf are given by  
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The final angular displacement, (tf), is free to be chosen since 

an orbit-to-orbit transfer is being modeled in this problem.The 

initial mass and propulsive characteristics for the orbit transfer 

are as follows [12]: 

  • Initial thrust T = 3.781 N  

• Initial spacecraft mass m0= 4535.9 kg  

• Propellant flow rate m  = 5.85 kg/day  

The non-dimensional acceleration due to thrusting is given by  
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The canonical-dimensional acceleration unit is 
2

0r/  and the 

canonical-dimensional total flight time is given by the 

following expression:  
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The canonical-dimensional value of the gravitational constant µ 

is 1. The value of the Sun's gravitational constant is 

132712441933 km3/sec2. The canonical-dimensional value of 

the initial distance r0 is 1. Finally, the value of the radius of the 

Earth's circular orbit is 149597870.691 km or one Astronomical 

Unit.   

From the propellant flow rate and other equations the 

canonical-dimensional propellant flow rate can be determined 

which is equal to 0.07487. This interplanetary mission requires 

about 1129 kg of propellant. For this test case, the propulsion 

system modeled contains a fixed power source such as a nuclear 

electric engine. 

For this study, maximum radius of the final circular orbit in a 

given time is sought (or by dual definition, min time for a given 

final radius). Therefore the objective function is J = -rf. 

3. GENETIC ALGORITHMS  
The use of simulated natural evolution as a search or 

optimization method [15] has produced a group of so-called 

EAs. GAs are the main paradigms within EAs. These methods 

belong to a larger group called heuristic methods. GAs were 

developed by John Holland and his student in the 1970s [16], 

and a detailed description can be found in [17]. GAs are not 

guaranteed to reach the global optimum, but they are generally 

good at finding an acceptable solution during an acceptable 

amount of time [18].  

Whereas “hill-climbing” methods proceed by deterministically 

improving an iteration point, GAs use a random “population” of 

solution candidates, called “individuals,” over the entire search 

space. The features of the best candidates are used for 

generating new populations, called a “generation,” with the 

intent of producing new and better candidates. The search aims 

to optimize a user-defined function (the function to be 

optimized) called the fitness function. This new generation 

generally consists of individuals which fit better than the 

previous ones into the external environment as represented by 

the fitness function. As the population iterates through 

successive generations, the individuals will in general tend 

toward the optimum of the fitness function. This process iterates 

until one condition in a set of convergence criteria is met. To 

generate a new population on the basis of previous one, GA 

performs three steps [19]: a) it evaluates the fitness score of 

each individual of the old population, b) it selects individuals on 
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the basis of their fitness score, and c) it recombines these 

selected individuals using “genetic operators” such as mutation, 

and crossover, which can be considered respectively as means 

to change locally the current solutions and to combine them. 

Three important features distinguish the GA approach [19]: a) 

GA works in parallel on a number of search points and not on a 

unique solution, which means that the search method is not 

local in scope but rather global over the search space; b) GA 

requires from the environment only an objective function 

measuring the fitness score of  each individual and no other 

information nor assumptions such as derivatives and 

differentiability; and c) both selection and recombination steps 

are performed by using probability rules rather than 

deterministic ones; this aims to maintain the global explorative 

properties of the search. 

The convergence of the repeated selection – crossover – 

mutation procedure to the optimal solution is based on the 

schema theorem, see, e.g., [15]. A schema is a similarity 

template fixing some values of the elements of the decision 

variable vector and leaving others free. The schema theorem 

states that the number of candidates in the population matching 

a schema increases if those candidates are above average. 

However, the convergence of GAs is slow, compared to “hill-

climbing” methods, when the problem is sufficiently smooth for 

“hill-climbing” methods to be applicable. This has led to the 

idea of combining the methods, see e.g., [19]. The GA can be 

used for generating a starting point for the “hill-climbing” 

search. Alternatively, the genetic search can be enhanced by 

performing local “hill-climbing” searches on the members of 

the population. 

Carin et al. [20] used a GA in series with a gradient based 

optimization technique, by feeding GA's results to a recursive 

quadratic programming (RQP) module to increase solution 

precision efficiently. Wuerl et al. [1] extended the serial GA-

RQP technique by combining a GA with the Daviden-Flecher-

Powell (DFP) penalty function and calculus of variations 

(COV) method to optimize low-thrust, Mars-to-Earth 

trajectories. 

A similar GA and COV-based technique was implemented by 

Hartmann et al. [21] to find families of Pareto optimal solutions. 

Rauwolf et al. [13] investigated a simple GA's effectiveness at 

determining low-thrust trajectories, in order to, dual to this 

study, minimum time for a given final radius.  

4. GA INITIALIZATION 
For solving of the above optimization problem the variant of the 

floating-point or real-coded Gas will used. Floating-point GAs 

are a compromise between binary-coded GAs and Evolution 

strategies [22], since they use most of the classical Genetic 

Algorithms mechanisms whereas they work directly at the 

phenotypic level like Evolution Strategies. This real-coded GA 

generally offers the advantages of being better adapted to 

numerical optimization for continuous problems, of speeding up 

the search and of making easier the development of approaches 

“hybridized” with other methods; but it requires the 

development of new “genetic-inspired” operators that can be 

found in [19, 23]. 

Then, the number of nodes, N, for control vector i i=1, …, N 

through entire trajectory must be defined. As [12] has assumed, 

N=21 is choosen. The GA task is to find i to maximize fitness 

function. 

4.1 Fitness Function 
To evaluate the fitness of the individual, a fitness function must 

be defined so that all of the constraints must be satisfied. During 

the last few years several methods were proposed for handling 

constraints by GAs for parameter optimization problems. An 

excellent review of these can be found in [24]. In this study, the 

penalty function method was used for handling constraints 

defined in (4). The GA fitness function is a combination of the 

radial distance and final boundary conditions as: 
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The term wi are nonnegative penalty factors that chosen by trial 

and error to be w0=1, w1=2, and w2=2. The basic idea is to 

assign individuals that have small gi(x) a small fitness (or higher 

|r(tf)|), thereby providing them more opportunity to survive. 

4.2 Selection of the GA parameters 
The Genetic Algorithm Toolbox in MATLAB 8 is used with 

setting parameters as:  

 Population size : 100 

 Chromosome length : 21 

 Initial range : [0.2;6] from [12] 

 Fitness scaling : rank 

 Selection function : Stochastic uniform 

 Elite count : 1 

 Crossover fraction : 0.8 

 Mutation function : Uniform 

 Rate : 0.1 

 Crossover function : Scattered 

 Generations : 200 

The fitness scaling converts the raw fitness scores that are 

returned by the fitness function to values in a range that is 

suitable for the selection function. Rank method, scales the raw 

scores based on the rank of each individual instead of its score. 

The rank of an individual is its position in the sorted scores. The 

rank of the fittest individual is 1, the next fittest is 2, and so on. 

Rank fitness scaling removes the effect of the spread of the raw 

scores. 

Selection determines the individuals that will be allowed to pass 

their genetic information onto future generations. The selection 

function as Stochastic uniform lays out a line in which each 

parent corresponds to a section of the line of length proportional 

to its scaled value. The algorithm moves along the line in steps 

of equal size. At each step, the algorithm allocates a parent from 

the section it lands on. The first step is a uniform random 

number less than the step size. 

After parents are selected, their genetic data is crossed-over to 

create a child individual. The Scattered crossover creates a 

random binary vector and selects the genes where the vector is a 

1 from the first parent, and the genes where the vector is a 0 

from the second parent, and combines the genes to form the 

child. The crossover fraction specifies the fraction of the next 

generation, other than elite children, that are produced by 

crossover. 
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After a new generation of children has been created, there is a 

low probability that each new bit will be mutated. Mutation 

prevents genetic diversity from being weeded out prematurely 

and increases the chances of a global minimum that has a small 

radius of convergence being found. The uniform mutation is a 

two-step process. First, the algorithm selects a fraction of the 

vector entries of an individual for mutation, where each entry 

has a probability Rate of being mutated. In the second step, the 

algorithm replaces each selected entry by a random number 

selected uniformly from the range for that entry.  

The operator known as elitism copies the best individual from 

the previous generation into the new generation if a better 

individual was not created in the new generation, i.e., elitism 

was chosen to prevent the current best solution from being lost. 

If the individual with the largest value of f in the new generation 

does not outperform the preceding generation's elite individual, 

then the old elite individual is copied over the worst performing 

member of the new generation. The elite count specifies the 

number of individuals that are guaranteed to survive to the next 

generation. 

The Generations, stopping criteria, Specifies the maximum 

number of iterations the genetic algorithm will perform. 

5. HYBRIDIZATION 
GA convergence typically occurred in fewer than 50 

generations. After convergence, a good initial guess for 

beginning any gradient methods such as FOPC (Function 

Optimization with terminal Constraints) algorithm [12] will be 

available. FOPC program performs additional calculations to 

refine the GA's solution and more precisely define the optimal 

trajectory. This optimization technique consisted of the GA and 

FOPC program working together to find the approximate 

location of the global minimum, which was further refined by 

the FOPC program to determine a precise solution. It is not 

possible to prove that the final solution obtained is a true global 

minimum [1], but the result can be compared against one 

obtained with different optimization routines, especially the 

FOPC algorithm with the assumption that a very good initial 

guess is available, to show that they are superior or at least 

equally optimal solution. 

6. RESULTS 
The optimal trajectories for hybrid and gradient methods are 

shown in Figure 2. The thrust angle histories obtained from 

Hybrid method and FOPC algorithm are compared and shown 

in Figure 3. This comparison was repeated for state histories in 

Figure 3. A good harmony can be seen from these figures. Both 

methods reach the same orbit at the same time and satisfy final 

constraints. Notice that the radial distance and velocities are in 

canonical units.    

 

 
Fig 2: Comparison of optimal trajectories found by hybrid 

and gradient methods. 

 

 
Fig 3: Comparison of Thrust Direction Angle Histories. 

 

 
Fig 4: Comparison of States Histories. 
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7. CONCLUSIONS 
A GA was used in conjunction with a gradient method (FOPC 

algorithm) to optimize an interplanetary trajectory. The reliance 

of the gradient method on earlier solutions and its sensitivity to 

the quality of the initial guesses were eliminated by relying on 

the GA to search the parameter space to find the location of the 

globally optimal solution. The FOPC algorithm was used to 

refine the parameter set found by the GA, improving the 

precision of the final answer beyond what would be possible by 

the use of the GA alone. To prove that the final solution 

obtained by hybrid method is a true global minimum, the result 

was compared against one obtained with the FOPC algorithm 

with assumption that a very good initial guess is available. Both 

methods reached the same orbit at the same time, satisfied final 

constraints, and had similar control and state histories. Hybrid 

method proposed is efficient and robust in achieving optimal 

solution when boundary conditions were treated as equality 

constraints.  
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