Strong Split Geodetic Number of a Graph

Ashalatha K.S
Research Scholar,Sri Gauthama Research Center, (Affiliated to Kuvempu university),Government First Grade College, Gubbi, Tumkur,Karnataka,India

Venkanagouda M Goudar
Sri Gauthama Research Center, Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

Department of Mathematics, Kuvempu University

Abstract

A set $S \subseteq V(G)$ is a strong split geodetic set of G, if S is a geodetic set and $\langle V-S\rangle$ is totally disconnected. The strong split geodetic number of a graph G, is denoted by $g_{s s}(G)$, is the minimum cardinality of a strong split geodetic set of G. In this paper we investigate many bounds on strong split geodetic number in terms of elements of G and covering number of G, further the relationship between strong split geodetic number and split geodetic number.

Keywords:

Cartesian product, Distance, Edge covering number, Split geodetic number, Vertex covering number.

1. INTRODUCTION

In this paper we follow the notations of [1]. As usual $n=|V|$ and $m=|E|$ denote the number of vertices and edges of a graph G respectively.
The graphs considered here have at least one component which is not complete or at least two non trivial components.
The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G . It is well known that this distance is a metric on the vertex set $V(G)$. For a vertex v of G , the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is radius, rad G , and the maximum eccentricity is the diameter, diam G. A $u-v$ path of length $\mathrm{d}(u, v)$ is called a $u-v$ geodesic. We define $I[u, v]$ to the set (interval) of all vertices lying on some $u-v$ geodesic of G and for a nonempty subset S of $V(G), I[S]=$ $\bigcup_{u, v \in S} I[u, v]$.
A set S of vertices of G is called a geodetic set in G if $I[S]=V(G)$, and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we denote it by $g(G)$.
Split geodetic number of a graph was studied by in [4]. A geodetic set S of a graph $G=(V, E)$ is a split geodetic set if the induced subgraph $\langle V-S\rangle$ is disconnected. The split geodetic number $g_{s}(G)$ of G is the minimum cardinality of a split geodetic set. Now we define strong split geodetic number of a graph. A set S^{\prime} of vertices
of $G=(V, E)$ is called the strong split geodetic set if the induced subgraph $\left\langle V-S^{\prime}\right\rangle$ is totally disconnected and a strong split geodetic set of minimum cardinality is the strong split geodetic number of G and is denoted by $g_{s s}(G)$.
A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbors is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the vertex covering number $\alpha_{0}(G)$ of G. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the vertices of G. The edge covering number $\alpha_{1}(G)$ of a graph G is the minimum cardinality of an edge cover of G.
For any undefined term in this paper, see [1] and [2].

2. PRELIMINARY NOTES

We need the following results to prove further results.
Theorem 2.1. [3] Every geodetic set of a graph contains its extreme vertices.

Theorem 2.2. [3] For any path P_{n}, with n vertices, $g\left(P_{n}\right)=2$.

Theorem 2.3. [3] For integers $r, s \geq 2, g\left(K_{r, s}\right)=$ $\min \{r, s, 4\}$.

THEOREM 2.4. [3] Let G be a connected graph of order at least 3. If G contains a minimum geodetic set S with a vertex x such that every vertex of G lies on some $x-w$ geodesic in G for some $w \in S$, then $g(G)=g\left(G \times K_{2}\right)$.

THEOREM 2.5. [2] For any graph G, $\alpha_{0}+\beta_{0}=\alpha_{1}+\beta_{1}$.
Proposition 2.6. For any graph G, $g_{s}(G) \leq g_{s s}(G)$.
Proposition 2.7. For any tree T of order n and number of cut vertices c_{i} then the number of end edges is $n-c_{i}$.

3. MAIN RESULTS

THEOREM 3.1. Let T be a tree that has at least three internal vertices. If T has k end-vertices, then $g_{s s}(T)=k+$ $\left\lceil\frac{n-(k+1)}{2}\right\rceil$.
Proof. Let $F=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the set of all end vertices in T, $|F|=k$. Consider $S=F \cup H$, where $H \subseteq V(T)-F$, such that H contains a vertex of maximum degree and a minimum set of alternating vertices in $V-F,|H|=\left\lceil\frac{n-(k+1)}{2}\right\rceil$. Now S be the minimal set of vertices which covers all the vertices in T. Clearly set of vertices of a subgraph $\langle V-S\rangle$ is totally disconnected, then by the above argument S is a minimal strong split geodetic set of T. Clearly it follows that, $|S|=|F \cup H|=k+\left\lceil\frac{n-(k+1)}{2}\right\rceil$. Therefore $g_{s s}(T)=k+\left\lceil\frac{n-(k+1)}{2}\right\rceil$.

COROLLARY 3.2. For any path $P_{n}, n \geq 5, g_{s s}\left(P_{n}\right)=2+$ $\left\lceil\frac{n-3}{2}\right\rceil$.
Proof. Proof follows from the above theorem.

THEOREM 3.3. For cycle C_{n} of order $n>3$

$$
g_{s s}\left(C_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $n>3$, we have the following cases.
Case 1: Let n be even.
Consider $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\}$ be a cycle with n vertices where n is even, let $S=\left\{v_{1}, v_{3}, \ldots, v_{n}\right\}$ be the set of alternating vertices which covers all the vertices of C_{n} and for any $v_{i} \in V-S$, $\operatorname{deg} v_{i}=0$. Clearly S forms minimal strong split geodetic set of C_{n}, it follows that $|S|=\frac{n}{2}$. Therefore $g_{s s}\left(C_{n}\right)=\frac{n}{2}$.
Case 2: Let n be odd.
Consider $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a cycle with n vertices where n is odd, let $S=\left(v_{1}, v_{n}\right) \cup\left\{v_{3}, v_{5}, \ldots, v_{n-2}\right\}$ which covers all the vertices of C_{n} and for any $v_{i} \in V-S, \operatorname{deg} v_{i}=0$. Clearly S forms
minimal strong split geodetic set of C_{n}, it follows that $|S|=\frac{n+1}{2}$. Therefore $g_{s s}\left(C_{n}\right)=\frac{n+1}{2}$.

COROLLARY 3.4. For any cycle C_{n} of order $n>3$, $g_{s s}\left(C_{n}\right)=\alpha_{0}\left(C_{n}\right)$.
Proof. We have the following cases.
Case 1: Let n be even.
Let $n>3$ be the number of vertices which is even and α_{0} is the vertex covering number of C_{n}. We have by Case 1 of Theorem 3.3, $g_{s s}\left(C_{n}\right)=\frac{n}{2}$. Also for even cycle, vertex covering number is $\alpha_{0}\left(C_{n}\right)=\frac{n}{2}$. Hence $g_{s s}\left(C_{n}\right)=\alpha_{0}\left(C_{n}\right)$.
Case 2: Let n be odd.
Let $n>3$ be the number of vertices which is odd and α_{0} is the vertex covering number of C_{n}. We have by Case 2 of Theorem 3.3, $g_{s s}\left(C_{n}\right)=\frac{n+1}{2}$. Also for odd cycle, vertex covering number is $\alpha_{0}\left(C_{n}\right)=\frac{n+1}{2}$. Hence $g_{s s}\left(C_{n}\right)=\alpha_{0}\left(C_{n}\right)$.

THEOREM 3.5. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 6)$,

$$
g_{s s}\left(W_{n}\right)= \begin{cases}\frac{n+2}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $W_{n}=K_{1}+C_{n-1}(n \geq 6)$ and let $V\left(W_{n}\right)=\left\{x, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$, where $\operatorname{deg}(x)=n-1>3$ and $\operatorname{deg}\left(u_{i}\right)=3$ for each $i \in\{1,2, \ldots, n-1\}$. We have the following cases
Case 1. Let n be even. Consider geodesic $P:\left\{u_{1}, u_{2}, u_{3}\right\}$, $Q:\left\{u_{3}, u_{4}, u_{5}\right\}, \ldots, R:\left\{u_{2 n-1}, u_{2 n}, u_{2 n+1}, x\right\}$. It is clear that the vertices $u_{2}, u_{4}, \ldots, u_{2 n}$ lies on the geodesics P, Q, \ldots, R. Also $S=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{2 n-1}, u_{2 n+1}, x\right\}$ is a minimal strong split geodesic set such that $V-S$ is totally disconnected and it has $\frac{n}{2}+1$ vertices.
Hence $g_{s s}\left(W_{n}\right)=\frac{n+2}{2}$.
Case 2. Let n be odd. Consider geodesic $P:\left\{u_{1}, u_{2}, u_{3}\right\}$, $Q:\left\{u_{3}, u_{4}, u_{5}\right\}, \ldots, R:\left\{u_{2 n-1}, u_{2 n}, u_{2 n+1}, x\right\}$. It is clear that the vertices $u_{2}, u_{4} \ldots u_{2 n}$ lies on the geodesic P, Q, \ldots, R. Also $S=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{2 n-1}, u_{2 n+1}, x\right\}$ is a minimal strong split geodesic set such that $V-S$ is totally disconnected and it has $\frac{n-1}{2}+1$ vertices.
Hence $g_{s s}\left(W_{n}\right)=\frac{n+1}{2}$.
COROLLARY 3.6. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq$ $6)$,

$$
g_{s s}\left(W_{n}\right)= \begin{cases}\frac{\Delta+\delta}{2} & \text { if } n \text { is even } \\ \frac{\Delta+\delta-1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $W_{n}=K_{1}+C_{n-1}(n \geq 6)$ and let $V\left(W_{n}\right)=$ $\left\{x, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$, where $\operatorname{deg}(x)=\bar{n}-1>3$ and $\operatorname{deg}\left(u_{i}\right)=3$ for each $i \in\{1,2, \ldots, n-1\}$. Maximum degree (Δ) of W_{n} is $n-1$ and minimum degree (δ) of W_{n} is 3 .
We have the following cases
Case 1: Let n be even. We have from Case 1 of Theorem 3.5 $g_{s s}\left(W_{n}\right)=\frac{n+2}{2}$
$\Rightarrow g_{s s}\left(W_{n}\right)=\frac{(n-1)+3}{2}$
$\Rightarrow g_{s s}\left(W_{n}\right)=\frac{\Delta+\delta^{2}}{2}$.
Case 2: Let n be odd. We have from Case 2 of Theorem 3.5 $g_{s s}\left(W_{n}\right)=\frac{n+1}{2}$
$\Rightarrow g_{s s}\left(W_{n}\right)=\frac{(n-1)+3-1}{2}$
$\Rightarrow g_{s s}\left(W_{n}\right)=\frac{\Delta+\delta-1}{2}$.

THEOREM 3.7. Let G be a connected graph of order n and diameter d. Then $g_{s s}(G) \leq n-d+2$, except for tree.

Proof. Let u and v be vertices of G for which $d(u, v)=d$ and let $u=v_{0}, v_{1}, \ldots, v_{d}=v$ be the $u-v$ path of length d. Now let $S=V(G)-\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}$. Then $I[S]=V(G), V-\left(S \cup\left\{v_{i}\right\}\right)$ is totally disconnected and thus $g_{s s}(G) \leq|S|+1=n-d+2$.

THEOREM 3.8. For any tree T with at least three internal vertices and order n, diameter d. Then $g_{s s}(G) \leq n-d+k$, where k be the number of end vertices.

Proof. Let u and v be vertices of G for which $d(u, v)=d$ and let $u=v_{0}, v_{1}, \ldots, v_{d}=v$ be the $u-v$ path of length d. Now let $S=V(G)-\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}$. Then $I[S]=V(G), V-$ $\left(S \cup\left\{v_{2}, v_{3}, \ldots, v_{k-2}\right\}\right)$ is totally disconnected and thus $g_{s s}(G) \leq$ $|S|+k-1=n-d+k$.

Volume 89-No. 4, March 2014
THEOREM 3.9. For any integers $r, s \geq 2 g_{s s}\left(K_{r, s}\right)=$ $\min \{r, s\}$.
Proof. Let $G=K_{r, s}$, such that $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}, W=$ $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ are the partite sets of G, where $r \leq s$ and also $V=U \cup W$.
Consider $S=U$, for every $w_{k}, 1 \leq k \leq s$ lies on the $u_{i}-u_{j}$ geodesic for $1 \leq i \neq j \leq r$. Since $V-S$ is totally disconnected, we have S is a strong split geodetic set of G.
Let $X=\left\{u_{1}, u_{2}, \ldots, u_{r-1}\right\}$ be any set of vertices such that $|X|<|S|$, then X is not a geodetic set of G , since $u_{r} \notin I[X]$. It is clear that S is a minimum strong split geodetic set of G. Hence $g_{s s}\left(K_{r, s}\right)=|S|=r$.

THEOREM 3.10. For any connected graph G of order n, $g_{s}(G)+g_{s s}(G)<2 n$.
Proof. Suppose $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V(G)$ be the set of vertices which covers all the vertices in G and $V-S$ is disconnected. Then S is a minimal split geodetic set of G. Further if the subgraph $\langle V-S\rangle$ contains the set of vertices $v_{i}, 1 \leq i \leq n$, such that $\operatorname{deg}_{i}=0$. Then S itself is an strong split geodetic set of G. Otherwise, $S^{\prime}=S_{1} \cup I$, where $S_{1} \subseteq S$ and $I \subseteq V(G)-S$ is the minimum set of alternate vertices, S^{\prime} forms a minimal strong split geodetic set of G. Since $V-S^{\prime}$ contains isolated vertices, it follows that $|S| \cup\left|S^{\prime}\right|<2 n$. Therefore, $g_{s}(G)+g_{s s}(G)<2 n$.

The following corollaries are immediate consequence of above Theorem and Theorem 2.5.

Corollary 3.11. For any connected graph G of order n, $g_{s}(G)+g_{s s}(G)<2\left(\alpha_{0}(G)+\beta_{0}(G)\right)$.

COROLLARY 3.12. For any connected graph G of order n, $g_{s}(G)+g_{s s}(G)<2\left(\alpha_{1}(G)+\beta_{1}(G)\right)$.

4. ADDING AN END EDGE

For an edge $e=(u, v)$ of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, we call e an end-edge and u an end-vertex.

THEOREM 4.1. G^{\prime} be the graph obtained by adding an end edge (u, v) to a cycle $C_{n}=G$ of order $n>3$, with $u \in G$ and $v \notin G$. Then

$$
g_{s s}\left(G^{\prime}\right)=\left\{\begin{array}{l}
\frac{n+2}{2} \text { for even cycle } \\
\frac{n+3}{2} \text { for odd cycle }
\end{array}\right.
$$

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right\}$ be a cycle with n vertices. Let G^{\prime} be the graph obtained from $G=C_{n}$ by adding an end-edge (u, v) such that $u \in G$ and $v \notin G$.
We have the following cases.
Case 1: Let G be an even cycle.
Let $S=\left\{v, u_{i}\right\} \subseteq V\left(G^{\prime}\right)$, where $v \notin G$ is an end vertex of G^{\prime} and u_{i} is an antipodal vertex of u. Consider $S^{\prime}=S \cup H$, where $H \subseteq V\left(G^{\prime}\right)-S$ is a minimum set of non-adjacent vertices, $|H|=\frac{n}{2}-1$. Now S^{\prime} be the minimal set of vertices which covers all the vertices of G^{\prime}. Clearly for any $u_{i} \in V-S^{\prime}, \operatorname{deg} u_{i}=0$,
by the above argument it follows that S^{\prime} is a minimal strong split geodetic set of G^{\prime}. Clearly $\left|S^{\prime}\right|=|S \cup H|=2+\frac{n}{2}-1=\frac{n+2}{2}$. Therefore $g_{s s}\left(G^{\prime}\right)=\frac{n+2}{2}$.
Case 2: Let G be an odd cycle.
(a) When $n=5$

Let $S=\{v, a, b\}$ be a geodetic set, where $v \notin G$, is an end-vertex of G^{\prime} and $a, b \in G$, such that $2 d(u, a)=d(u, b)$ and $d(a, b)=2$. Thus $I[S]=V\left(G^{\prime}\right)$ and $V-S$ is an induced subgraph which has two components. Let $S^{\prime}=S \cup H$ where $H \subseteq V-S$ such that H contains minimum alternate vertices from both the components having $\frac{n-3}{2}$ vertices. Clearly S^{\prime} forms the minimal strong split geodetic set of G^{\prime}, since $V-S^{\prime}$ forms an independent set. Clearly $\left|S^{\prime}\right|=|S \cup H|=3+\frac{n-3}{2}=\frac{n+3}{2}$. Therefore $g_{s s}\left(G^{\prime}\right)=\frac{n+3}{2}$.
(b) When $n>5$

Let $S=\{v, a, b\}$ be a geodetic set where $v \notin G$ is an end-vertex of G^{\prime} and $a, b \in G$, such that $d(u, a)=d(u, b)$ and $d(a, b)$ is the diameter of G. Thus $I[S]=V\left(G^{\prime}\right)$ and $V-S$ is an induced subgraph which has two components. Let $S^{\prime}=S \cup H$ where $H \subseteq V-S$ such that H contains minimum alternate vertices from both the components having $\frac{n-3}{2}$ vertices. Clearly S^{\prime} forms the minimal strong split geodetic set of G^{\prime}, since $V-S^{\prime}$ forms an independent set. Clearly $\left|S^{\prime}\right|=|S \cup H|=3+\frac{n-3}{2}=\frac{n+3}{2}$. Therefore $g_{s s}\left(G^{\prime}\right)=\frac{n+3}{2}$.

THEOREM 4.2. Let G^{\prime} be the graph obtained by adding end edge $\left(u_{i}, v_{i}\right), i=1,2, \ldots, n$, to each vertex of $G=C_{n}$ of order $n>3$ such that $u_{i} \in G, v_{j} \notin G$. Then

$$
g_{s s}\left(G^{\prime}\right)= \begin{cases}k+\frac{n}{2} & \text { for even cycle } \\ k+\frac{n+1}{2} & \text { for odd cycle }\end{cases}
$$

Proof. Let $G=C_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right\}$ be a cycle with n vertices. Let G^{\prime} be the graph obtained by adding an end-edge $\left(u_{i}, v_{i}\right), i=1,2, \ldots, n=k$ to each vertex of Guch that $u_{i} \in G$,$v_{i} \notin G$.
Case 1: Let G be an even cycle.
Let $F=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is the k number of end-vertices of G^{\prime} and $H \subseteq V\left(G^{\prime}\right)-F$ is an even cycle. Let $S=F \cup H_{1}$, where $H_{1} \subseteq H$ such that $H_{1} \notin E(H)$. Now S be the minimal set of vertices which covers all the vertices in G^{\prime}. Clearly for any $u_{i} \in G^{\prime}, \operatorname{deg}\left(u_{i}\right)=0$. Then by the above argument S is the minimal strong split geodetic set of G^{\prime}, it follows that $|S|=\left|F \cup H_{1}\right|=k+\frac{n}{2}$. Therefore $g_{s s}\left(G^{\prime}\right)=k+\frac{n}{2}$.
Case 2: Let G be odd cycle.
Let $F=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is the k number of end-vertices of G^{\prime} and $H \subseteq V\left(G^{\prime}\right)-F$ is an odd cycle. Let $S=F \cup\left(u_{1}, u_{n}\right) \cup H_{1}$, where $H_{1} \subseteq H$ such that $H_{1} \notin E(H)$. Now S be the minimal set of
vertices which covers all the vertices in G^{\prime}. Clearly for any $u_{i} \in G^{\prime}$, $\operatorname{deg}\left(u_{i}\right)=0$. Then by the above argument S is the minimal strong split geodetic set of G^{\prime}, it follows that $|S|=\left|F \cup\left(u_{1}, u_{n}\right) \cup H_{1}\right|=$ $k+2+\frac{n-3}{2}$. Therefore $g_{s s}\left(G^{\prime}\right)=k+\frac{n+1}{2}$.

Volume 89 - No. 4, March 2014

5. CARTESIAN PRODUCT

The cartesian product of the graphs H_{1} and H_{2}, written as $H_{1} \times H_{2}$, is the graph with vertex set $V\left(H_{1}\right) \times V\left(H_{2}\right)$, two vertices u_{1}, u_{2} and v_{1}, v_{2} being adjacent in $H_{1} \times H_{2}$ if and only if either $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in E\left(H_{2}\right)$, or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in E\left(H_{1}\right)$.

THEOREM 5.1. For any path P_{n} of order $n, g_{s s}\left(K_{2} \times P_{n}\right)=$ n.

Proof. Consider $G=P_{n}$. Let $K_{2} \times P_{n}$ be graph formed from two Copies G_{1} and G_{2} of G. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of $G_{1}, W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the vertices of G_{2} and $U=V \cup W$. Case 1. Let n be even.
Consider $S=H_{1} \cup H_{2}$, where $H_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-1}\right\} \subseteq V$ having $\frac{n}{2}$ vertices, $H_{2}=\left\{w_{2}, w_{4}, w_{6}, \ldots, w_{n}\right\} \subseteq W$ having $\frac{n}{2}$ vertices. Now S be the minimal set of vertices which covers all the vertices in $K_{2} \times P_{n}$. Such that set of vertices of a subgraph $U-S$ is isolated, then by the above argument S is a
minimal strong split geodetic set of $K_{2} \times P_{n}$. Clearly it follows that,
$|S|=\left\lvert\, H_{1} \cup H_{2}=\frac{n}{2}+\frac{n}{2}=n\right.$. Therefore $g_{s s}\left(K_{2} \times P_{n}\right)=n$.
Case 2. Let n be odd.
Consider $S=H_{1} \cup H_{2}$, where $H_{1}=\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{n-1}\right\} \subseteq V$ having $\frac{n-1}{2}$ vertices, $H_{2}=\left\{w_{1}, w_{3}, w_{5}, \ldots, w_{n}\right\} \subseteq W$ having $\frac{n+1}{2}$ vertices. Now S be the minimal set of vertices which covers all the vertices in $K_{2} \times P_{n}$. Such that set of vertices of a subgraph $U-S$ is isolated, then by the above argument S is a
minimal strong split geodetic set of $K_{2} \times P_{n}$. Clearly it follows that, $|S|=\left\lvert\, H_{1} \cup H_{2}=\frac{n-1}{2}+\frac{n+1}{2}=n\right.$. Therefore $g_{s s}\left(K_{2} \times P_{n}\right)=n$. The following Corollaries are immediate consequence of above Theorem and Theorem 2.5.

Corollary 5.2. For any path P_{n} of order $n, g_{s s}\left(K_{2} \times\right.$ $\left.P_{n}\right)=\alpha_{0}+\beta_{0}$.

Corollary 5.3. For any path P_{n} of order $n, g_{s s}\left(K_{2} \times\right.$ $\left.P_{n}\right)=\alpha_{1}+\beta_{1}$.

Theorem 5.4. For any complete graph of order n, $g_{s s}\left(K_{2} \times K_{n}\right)=2 n-2$.
Proof. Let G_{1} and G_{2} be disjoint copies of $G=K_{n}, n \geq 2$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ be the vertex set of G_{1} and G_{2} respectively and let $v_{i} w_{i} \in E\left(K_{2} \times K_{n}\right)$ for $i \in$ $\{1,2, \ldots, n\}$. Let S be the minimum geodetic set of $K_{2} \times K_{n}$ by Theorem $2.4 g\left(K_{2} \times K_{n}\right)=g\left(K_{n}\right)=n$. Consider $S^{\prime}=S \cup H$, where $H \subseteq U-S$ having $n-2$ vertices, since $U-S$ has two components which are complete graphs. Now S^{\prime} be the minimal set of vertices which covers all the vertices in $K_{2} \times K_{n}$, such that set of vertices of subgraph $U-S^{\prime}$ are isolated, then by the above argument S^{\prime} is a minimal strong split geodetic set of $K_{2} \times K_{n}$. Clearly it follows that $\left|S^{\prime}\right|=|S \cup H|=n+n-2=2 n-2$.

ObSERVATION 5.5. For any complete graph of order n, $g\left(K_{3} \times K_{n}\right)=g\left(K_{n}\right)$.

Theorem 5.6. For any complete graph of order n, $g_{s s}\left(K_{3} \times K_{n}\right)=3 n-3$.
Proof. Let G_{1} and G_{2} be disjoint copies of $G=K_{n}, n \geq 2$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $Z=$
$\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ be the vertex set of G_{1}, G_{2} and G_{3} respectively. Let S be the minimum geodetic set of $K_{3} \times K_{n}$ by Observation $5.5 g\left(K_{3} \times K_{n}\right)=g\left(K_{n}\right)=n$. Consider $S^{\prime}=S \cup H$, where $H \subseteq V-S$ having $2 n-3$ vertices. Now S^{\prime} be the minimal set of vertices which covers all the vertices in $K_{3} \times K_{n}$, such that set of vertices of subgraph $V-S^{\prime}$ are isolated, then by the above argument S^{\prime} is a minimal strong split geodetic set of $K_{3} \times K_{n}$. Clearly it follows that $\left|S^{\prime}\right|=|S \cup H|=n+2 n-3=3 n-3$.

THEOREM 5.7. G^{\prime} be the graph obtained by adding an end edge (u, v) to a cycle $C_{n}=G$ of order $n>3$, with $u \in G$ and $v \notin G$. Then $g_{s s}\left(K_{2} \times G^{\prime}\right)=n+2$.

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right\}$ be a cycle with n vertices. Let G^{\prime} be the graph obtained from $G=C_{n}$ by adding an end-edge (u, v) such that $u \in G$ and $v \notin G$.
We have the following cases.
Case 1: Let G be an even cycle.
Let S be the minimum geodetic set of $K_{2} \times G^{\prime}$, by Theorem 2.4 $g\left(K_{2} \times G^{\prime}\right)=g\left(G^{\prime}\right)=2$. Consider $S^{\prime}=S \cup H$, where $H \subseteq$ $V-S$ having n vertices. Now S^{\prime} be the minimal set of vertices which covers all the vertices in $K_{2} \times G^{\prime}$, such that set of vertices of subgraph $V-S^{\prime}$ are totally disconnected. Then by the above argument S^{\prime} is a minimal strong split geodetic set of $K_{2} \times G^{\prime}$. Clearly it follows that $\left|S^{\prime}\right|=|S \cup H|=2+n$.
Case 2: Let G be an odd cycle.
Let S be the minimum geodetic set of $K_{2} \times G^{\prime}$, by Theorem 2.4 $g\left(K_{2} \times G^{\prime}\right)=g\left(G^{\prime}\right)=3$. Consider $S^{\prime}=S \cup H$, where $H \subseteq$ $V-S$ having $n-1$ vertices. Now S^{\prime} be the minimal set of vertices which covers all the vertices in $K_{2} \times G^{\prime}$, such that set of vertices of subgraph $V-S^{\prime}$ are totally disconnected. Then by the above argument S^{\prime} is a minimal strong split geodetic set of $K_{2} \times G^{\prime}$. Clearly it follows that $\left|S^{\prime}\right|=|S \cup H|=3+n-1=n+2$.

6. CONCLUSION

In this paper we establish many bounds on strong split geodetic number in terms of elements of G and covering number of G, further the relationship between strong split geodetic number and split geodetic number.

7. REFERENCES

[1] F.Harary, Graph Theory,Addison-Wesely,Reading, MA, (1969)
[2] G. Chartrand and P.Zhang, Introduction to Graph Theory, Tata McGraw Hill Pub.Co.Ltd.(2006).
[3] G. Chartrand, F. Harary, and P.Zhang, On the geodetic number of a graph.Networks.39, 1-6 (2002).
[4] Venkanagouda M.Goudar, K.S.Ashalatha, Venkatesha,
Split Geodetic Number of a Graph, Advances and
Applications in Discrete Mathematics (Paper accepted).

