Strong Split Geodetic Number of a Graph

Ashalatha K.S

Research Scholar,Sri Gauthama Research Center, (Affiliated to Kuvempu university),Government First Grade College, Gubbi, Tumkur,Karnataka.India

Venkanagouda M Goudar

Sri Gauthama Research Center, Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India Venkatesha

Department of Mathematics, Kuvempu University Shankarghatta, Shimoga, Karnataka, India.

ABSTRACT

A set $S \subseteq V(G)$ is a strong split geodetic set of G, if S is a geodetic set and $\langle V - S \rangle$ is totally disconnected. The strong split geodetic number of a graph G, is denoted by $g_{ss}(G)$, is the minimum cardinality of a strong split geodetic set of G. In this paper we investigate many bounds on strong split geodetic number in terms of elements of G and covering number of G, further the relationship between strong split geodetic number and split geodetic number.

Keywords:

Cartesian product, Distance, Edge covering number, Split geodetic number, Vertex covering number.

1. INTRODUCTION

In this paper we follow the notations of [1]. As usual n = |V| and m = |E| denote the number of vertices and edges of a graph G respectively.

The graphs considered here have at least one component which is not complete or at least two non trivial components.

The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. It is well known that this distance is a metric on the vertex set V(G). For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is radius, rad G, and the maximum eccentricity is the diameter, diam G. A u - v path of length d(u, v) is called a u - v geodesic. We define I[u, v] to the set (interval) of all vertices lying on some u - v geodesic of G and for a nonempty subset S of V(G), $I[S] = \bigcup_{u,v \in S} I[u, v]$.

A set S of vertices of G is called a geodetic set in G if I[S] = V(G), and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we denote it by g(G).

Split geodetic number of a graph was studied by in [4]. A geodetic set S of a graph G = (V, E) is a split geodetic set if the induced subgraph $\langle V-S \rangle$ is disconnected. The split geodetic number $g_s(G)$ of G is the minimum cardinality of a split geodetic set. Now we define strong split geodetic number of a graph. A set S' of vertices

of G = (V, E) is called the strong split geodetic set if the induced subgraph $\langle V - S' \rangle$ is totally disconnected and a strong split geodetic set of minimum cardinality is the strong split geodetic number of G and is denoted by $g_{ss}(G)$.

A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbors is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the vertex covering number $\alpha_0(G)$ of G. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the vertices of G. The edge covering number $\alpha_1(G)$ of a graph G is the minimum cardinality of an edge cover of G.

For any undefined term in this paper, see [1] and [2].

2. PRELIMINARY NOTES

We need the following results to prove further results.

THEOREM 2.1. [3] Every geodetic set of a graph contains its extreme vertices.

THEOREM 2.2. [3] For any path P_n , with n vertices, $g(P_n) = 2$.

Theorem 2.3. [3] For integers $r, s \ge 2$, $g(K_{r,s}) = min\{r, s, 4\}$.

THEOREM 2.4. [3] Let G be a connected graph of order at least 3. If G contains a minimum geodetic set S with a vertex x such that every vertex of G lies on some x - w geodesic in G for some $w \in S$, then $g(G) = g(G \times K_2)$.

THEOREM 2.5. [2] For any graph G, $\alpha_0 + \beta_0 = \alpha_1 + \beta_1$.

PROPOSITION 2.6. For any graph G, $g_s(G) \leq g_{ss}(G)$.

PROPOSITION 2.7. For any tree T of order n and number of cut vertices c_i then the number of end edges is $n - c_i$.

3. MAIN RESULTS

THEOREM 3.1. Let T be a tree that has at least three

internal vertices. If T has k end-vertices, then $g_{ss}(T) = k + \left\lceil \frac{n-(k+1)}{2} \right\rceil$.

Proof. Let $F = \{v_1, v_2, ..., v_k\}$ be the set of all end vertices in T, |F| = k. Consider $S = F \cup H$, where $H \subseteq V(T) - F$, such that H contains a vertex of maximum degree and a minimum set of alternating vertices in V - F, $|H| = \lceil \frac{n - (k+1)}{2} \rceil$. Now S be the minimal set of vertices which covers all the vertices in T. Clearly set of vertices of a subgraph $\langle V - S \rangle$ is totally disconnected, then by the above argument S is a minimal strong split geodetic set of T. Clearly it follows that, $|S| = |F \cup H| = k + \lceil \frac{n - (k+1)}{2} \rceil$. Therefore $g_{ss}(T) = k + \lceil \frac{n - (k+1)}{2} \rceil$.

COROLLARY 3.2. For any path P_n , $n \ge 5$, $g_{ss}(P_n) = 2 + \lfloor \frac{n-3}{2} \rfloor$.

Proof. Proof follows from the above theorem.

THEOREM 3.3. For cycle C_n of order n > 3

$$g_{ss}(C_n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. Let n > 3, we have the following cases.

Case 1: Let n be even.

Consider $\{v_1, v_2, ..., v_n, v_1\}$ be a cycle with n vertices where n is even, let $S = \{v_1, v_3, ..., v_n\}$ be the set of alternating vertices which covers all the vertices of C_n and for any $v_i \in V - S$, $degv_i = 0$. Clearly S forms minimal strong split geodetic set of C_n , it follows that $|S| = \frac{n}{2}$. Therefore $g_{ss}(C_n) = \frac{n}{2}$. Case 2: Let n be odd.

Consider $\{v_1, v_2, ..., v_n\}$ be a cycle with n vertices where n is odd, let $S = (v_1, v_n) \cup \{v_3, v_5, ..., v_{n-2}\}$ which covers all the vertices of C_n and for any $v_i \in V - S$, $degv_i = 0$. Clearly S forms minimal strong split geodetic set of C_n , it follows that $|S| = \frac{n+1}{2}$. Therefore $g_{ss}(C_n) = \frac{n+1}{2}$.

COROLLARY 3.4. For any cycle C_n of order n > 3,

 $g_{ss}(C_n) = \alpha_0(C_n).$

Proof. We have the following cases.

Case 1: Let *n* be even.

Let n > 3 be the number of vertices which is even and α_0 is the vertex covering number of C_n . We have by Case 1 of Theorem 3.3, $g_{ss}(C_n) = \frac{n}{2}$. Also for even cycle, vertex covering number is $\alpha_0(C_n) = \frac{n}{2}$. Hence $g_{ss}(C_n) = \alpha_0(C_n)$. Case 2: Let n be odd.

Let n > 3 be the number of vertices which is odd and α_0 is the vertex covering number of C_n . We have by Case 2 of Theorem 3.3, $g_{ss}(C_n) = \frac{n+1}{2}$. Also for odd cycle, vertex covering number is $\alpha_0(C_n) = \frac{n+1}{2}$. Hence $g_{ss}(C_n) = \alpha_0(C_n)$.

THEOREM 3.5. For the wheel $W_n = K_1 + C_{n-1}$ $(n \ge 6)$,

$$g_{ss}(W_n) = \begin{cases} \frac{n+2}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Volume 89 - No. 4, March 2014

Proof. Let $W_n = K_1 + C_{n-1}(n \ge 6)$ and let $V(W_n) = \{x, u_1, u_2, ..., u_{n-1}\}$, where deg(x) = n - 1 > 3 and $deg(u_i) = 3$ for each $i \in \{1, 2, ..., n - 1\}$. We have the following cases

Case 1. Let n be even. Consider geodesic $P : \{u_1, u_2, u_3\}, Q : \{u_3, u_4, u_5\}, ..., R : \{u_{2n-1}, u_{2n}, u_{2n+1}, x\}$. It is clear that the vertices $u_2, u_4, ..., u_{2n}$ lies on the geodesics P, Q, ..., R. Also $S = \{u_1, u_3, u_5, ..., u_{2n-1}, u_{2n+1}, x\}$ is a minimal strong split geodesic set such that V - S is totally disconnected and it has $\frac{n}{2} + 1$ vertices.

Hence $g_{ss}(W_n) = \frac{n+2}{2}$.

Case 2. Let n be odd. Consider geodesic P : $\{u_1, u_2, u_3\}$, Q : $\{u_3, u_4, u_5\},..., R$: $\{u_{2n-1}, u_{2n}, u_{2n+1}, x\}$. It is clear that the vertices $u_2, u_4...u_{2n}$ lies on the geodesic P, Q,...,R. Also $S = \{u_1, u_3, u_5, ..., u_{2n-1}, u_{2n+1}, x\}$ is a minimal strong split geodesic set such that V - S is totally disconnected and it has $\frac{n-1}{2} + 1$ vertices.

Hence $g_{ss}(W_n) = \frac{n+1}{2}$.

COROLLARY 3.6. For the wheel $W_n = K_1 + C_{n-1}$ $(n \ge 6)$,

$$g_{ss}(W_n) = \begin{cases} \frac{\Delta + \delta}{2} & \text{if } n \text{ is even} \\ \frac{\Delta + \delta - 1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. Let $W_n = K_1 + C_{n-1}(n \ge 6)$ and let $V(W_n) = \{x, u_1, u_2, ..., u_{n-1}\}$, where deg(x) = n-1 > 3 and $deg(u_i) = 3$ for each $i \in \{1, 2, ..., n-1\}$. Maximum degree (Δ) of W_n is n-1 and minimum degree (δ) of W_n is 3. We have the following cases

Case 1: Let *n* be even. We have from Case 1 of Theorem 3.5 $g_{ss}(W_n) = \frac{n+2}{2}$

- $\Rightarrow g_{ss}(W_n) = \frac{(n-1)+3}{\Delta + \delta}$
- $\begin{array}{l} \Rightarrow g_{ss}(W_n) = \frac{\Delta + \tilde{\delta}}{2}.\\ \text{Case 2: Let } n \text{ be odd. We have from Case 2 of Theorem 3.5}\\ g_{ss}(W_n) = \frac{n+1}{2}\\ \Rightarrow g_{ss}(W_n) = \frac{(n-1)+3-1}{2}\\ \Rightarrow g_{ss}(W_n) = \frac{\Delta + \delta^{-1}}{2}. \end{array}$

 $\frac{1}{2}$

THEOREM 3.7. Let G be a connected graph of order n and diameter d. Then $g_{ss}(G) \leq n - d + 2$, except for tree.

Proof. Let u and v be vertices of G for which d(u, v) = d and let $u = v_0, v_1, ..., v_d = v$ be the u - v path of length d. Now let $S = V(G) - \{v_1, v_2, ..., v_{d-1}\}$. Then $I[S] = V(G), V - (S \cup \{v_i\})$ is totally disconnected and thus $g_{ss}(G) \leq |S| + 1 = n - d + 2$.

THEOREM 3.8. For any tree T with at least three internal vertices and order n, diameter d. Then $g_{ss}(G) \leq n - d + k$, where k be the number of end vertices.

Proof. Let u and v be vertices of G for which d(u, v) = d and let $u = v_0, v_1, ..., v_d = v$ be the u - v path of length d. Now let $S = V(G) - \{v_1, v_2, ..., v_{d-1}\}$. Then $I[S] = V(G), V - (S \cup \{v_2, v_3, ..., v_{k-2}\})$ is totally disconnected and thus $g_{ss}(G) \leq |S| + k - 1 = n - d + k$.

Volume 89 - No. 4, March 2014

THEOREM 3.9. For any integers $r, s \ge 2 g_{ss}(K_{r,s}) = min\{r, s\}$.

Proof. Let $G = K_{r,s}$, such that $U = \{u_1, u_2, ..., u_r\}$, $W = \{w_1, w_2, ..., w_s\}$ are the partite sets of G, where $r \leq s$ and also $V = U \cup W$.

Consider S = U, for every w_k , $1 \le k \le s$ lies on the $u_i - u_j$ geodesic for $1 \le i \ne j \le r$. Since V - S is totally disconnected, we have S is a strong split geodetic set of G.

Let $X = \{u_1, u_2, ..., u_{r-1}\}$ be any set of vertices such that |X| < |S|, then X is not a geodetic set of G, since $u_r \notin I[X]$. It is clear that S is a minimum strong split geodetic set of G. Hence $g_{ss}(K_{r,s}) = |S| = r$.

THEOREM 3.10. For any connected graph G of order n, $g_s(G) + g_{ss}(G) < 2n.$

Proof. Suppose $S = \{v_1, v_2, ..., v_n\} \subseteq V(G)$ be the set of vertices which covers all the vertices in G and V - S is disconnected. Then S is a minimal split geodetic set of G. Further if the subgraph $\langle V - S \rangle$ contains the set of vertices $v_i, 1 \leq i \leq n$, such that $degv_i = 0$. Then S itself is an strong split geodetic set of G. Otherwise, $S' = S_1 \cup I$, where $S_1 \subseteq S$ and $I \subseteq V(G) - S$ is the minimum set of alternate vertices, S' forms a minimal strong split geodetic set of G. Since V - S' contains isolated vertices, it follows that $|S| \cup |S'| < 2n$. Therefore, $g_s(G) + g_{ss}(G) < 2n$.

The following corollaries are immediate consequence of above Theorem and Theorem 2.5.

COROLLARY 3.11. For any connected graph G of order n, $g_s(G) + g_{ss}(G) < 2(\alpha_0(G) + \beta_0(G)).$

COROLLARY 3.12. For any connected graph G of order n, $g_s(G) + g_{ss}(G) < 2(\alpha_1(G) + \beta_1(G)).$

4. ADDING AN END EDGE

For an edge e = (u, v) of a graph G with deg(u) = 1 and deg(v) > 1, we call e an end-edge and u an end-vertex.

THEOREM 4.1. G' be the graph obtained by adding an end edge (u, v) to a cycle $C_n = G$ of order n > 3, with $u \in G$ and $v \notin G$. Then

$$g_{ss}(G^{'}) = \left\{ \begin{array}{l} \frac{n+2}{2} \ \ \textit{for even cycle} \\ \frac{n+3}{2} \ \ \textit{for odd cycle.} \end{array} \right.$$

Proof. Let $\{u_1, u_2, ..., u_n, u_1\}$ be a cycle with n vertices. Let G' be the graph obtained from $G = C_n$ by adding an end-edge (u, v) such that $u \in G$ and $v \notin G$.

We have the following cases.

Case 1: Let G be an even cycle.

Let $S = \{v, u_i\} \subseteq V(G')$, where $v \notin G$ is an end vertex of G' and u_i is an antipodal vertex of u. Consider $S' = S \cup H$, where $H \subseteq V(G') - S$ is a minimum set of non-adjacent vertices, $|H| = \frac{n}{2} - 1$. Now S' be the minimal set of vertices which covers all the vertices of G'. Clearly for any $u_i \in V - S'$, $degu_i = 0$,

by the above argument it follows that S' is a minimal strong split geodetic set of G'. Clearly $|S'| = |S \cup H| = 2 + \frac{n}{2} - 1 = \frac{n+2}{2}$. Therefore $g_{ss}(G') = \frac{n+2}{2}$. Case 2: Let G be an odd cycle.

(a) When n = 5

Let $S = \{v, a, b\}$ be a geodetic set, where $v \notin G$, is an end-vertex of G' and $a, b \in G$, such that 2d(u, a) = d(u, b) and d(a, b) = 2. Thus I[S] = V(G') and V - S is an induced subgraph which has two components. Let $S' = S \cup H$ where $H \subseteq V - S$ such that H contains minimum alternate vertices from both the components having $\frac{n-3}{2}$ vertices. Clearly S' forms the minimal strong split geodetic set of G', since V - S' forms an independent set. Clearly $|S'| = |S \cup H| = 3 + \frac{n-3}{2} = \frac{n+3}{2}$. Therefore $g_{ss}(G') = \frac{n+3}{2}$. (b) When n > 5

Let $S = \{v, a, b\}$ be a geodetic set where $v \notin G$ is an end-vertex of G' and $a, b \in G$, such that d(u, a) = d(u, b) and d(a, b) is the diameter of G. Thus I[S] = V(G') and V - S is an induced subgraph which has two components. Let $S' = S \cup H$ where $H \subseteq V - S$ such that H contains minimum alternate vertices from both the components having $\frac{n-3}{2}$ vertices. Clearly S' forms the minimal strong split geodetic set of G', since V - S' forms an independent set. Clearly $|S'| = |S \cup H| = 3 + \frac{n-3}{2} = \frac{n+3}{2}$. Therefore $g_{ss}(G') = \frac{n+3}{2}$.

THEOREM 4.2. Let G' be the graph obtained by adding end edge (u_i, v_i) , i = 1, 2, ..., n, to each vertex of $G = C_n$ of order n > 3 such that $u_i \in G$, $v_j \notin G$. Then

$$g_{ss}(G^{'}) = \begin{cases} k + \frac{n}{2} & \text{for even cycle} \\ k + \frac{n+1}{2} & \text{for odd cycle.} \end{cases}$$

Proof. Let $G = C_n = \{u_1, u_2, ..., u_n, u_1\}$ be a cycle with n vertices. Let G' be the graph obtained by adding an end-edge $(u_i, v_i), i = 1, 2, ..., n = k$ to each vertex of G such that $u_i \in G$, $v_i \notin G$.

Case 1: Let G be an even cycle.

Let $F = \{v_1, v_2, ..., v_k\}$ is the k number of end-vertices of G' and $H \subseteq V(G') - F$ is an even cycle. Let $S = F \cup H_1$, where $H_1 \subseteq H$ such that $H_1 \notin E(H)$. Now S be the minimal set of vertices which covers all the vertices in G'. Clearly for any $u_i \in G'$, $deg(u_i) = 0$. Then by the above argument S is the minimal strong split geodetic set of G', it follows that $|S| = |F \cup H_1| = k + \frac{n}{2}$. Therefore $g_{ss}(G') = k + \frac{n}{2}$.

Case 2: Let G be odd cycle.

Let $F = \{v_1, v_2, ..., v_k\}$ is the k number of end-vertices of G' and $H \subseteq V(G') - F$ is an odd cycle. Let $S = F \cup (u_1, u_n) \cup H_1$, where $H_1 \subseteq H$ such that $H_1 \notin E(H)$. Now S be the minimal set of

vertices which covers all the vertices in G'. Clearly for any $u_i \in G'$, $deg(u_i) = 0$. Then by the above argument S is the minimal strong split geodetic set of G', it follows that $|S| = |F \cup (u_1, u_n) \cup H_1| = k + 2 + \frac{n-3}{2}$. Therefore $g_{ss}(G') = k + \frac{n+1}{2}$.

Volume 89 - No. 4, March 2014

5. CARTESIAN PRODUCT

The cartesian product of the graphs H_1 and H_2 , written as $H_1 \times H_2$, is the graph with vertex set $V(H_1) \times V(H_2)$, two vertices u_1, u_2 and v_1, v_2 being adjacent in $H_1 \times H_2$ if and only if either $u_1 = v_1$ and $(u_2, v_2) \in E(H_2)$, or $u_2 = v_2$ and $(u_1, v_1) \in E(H_1)$.

THEOREM 5.1. For any path P_n of order n, $g_{ss}(K_2 \times P_n) =$

n.

Proof. Consider $G = P_n$. Let $K_2 \times P_n$ be graph formed from two Copies G_1 and G_2 of G. Let $V = \{v_1, v_2, ..., v_n\}$ be the vertices of $G_1, W = \{w_1, w_2, ..., w_n\}$ be the vertices of G_2 and $U = V \cup W$. Case 1. Let n be even.

Consider $S = H_1 \cup H_2$, where $H_1 = \{v_1, v_3, v_5, ..., v_{n-1}\} \subseteq V$ having $\frac{n}{2}$ vertices, $H_2 = \{w_2, w_4, w_6, ..., w_n\} \subseteq W$ having $\frac{n}{2}$ vertices. Now S be the minimal set of vertices which covers all the vertices in $K_2 \times P_n$. Such that set of vertices of a subgraph U - Sis isolated, then by the above argument S is a

minimal strong split geodetic set of $K_2 \times P_n$. Clearly it follows that, $|S| = |H_1 \cup H_2 = \frac{n}{2} + \frac{n}{2} = n$. Therefore $g_{ss}(K_2 \times P_n) = n$. Case 2. Let *n* be odd.

Consider $S = H_1 \cup H_2$, where $H_1 = \{v_2, v_4, v_6, ..., v_{n-1}\} \subseteq V$ having $\frac{n-1}{2}$ vertices, $H_2 = \{w_1, w_3, w_5, ..., w_n\} \subseteq W$ having $\frac{n+1}{2}$ vertices. Now S be the minimal set of vertices which covers all the vertices in $K_2 \times P_n$. Such that set of vertices of a subgraph U - S is isolated, then by the above argument S is a

minimal strong split geodetic set of $K_2 \times P_n$. Clearly it follows that, $|S| = |H_1 \cup H_2 = \frac{n-1}{2} + \frac{n+1}{2} = n$. Therefore $g_{ss}(K_2 \times P_n) = n$. The following Corollaries are immediate consequence of above Theorem and Theorem 2.5.

COROLLARY 5.2. For any path P_n of order n, $g_{ss}(K_2 \times P_n) = \alpha_0 + \beta_0$.

COROLLARY 5.3. For any path P_n of order n, $g_{ss}(K_2 \times P_n) = \alpha_1 + \beta_1$.

THEOREM 5.4. For any complete graph of order n, $g_{ss}(K_2 \times K_n) = 2n - 2.$

Proof. Let G_1 and G_2 be disjoint copies of $G = K_n, n \ge 2$. Let $V = \{v_1, v_2, ..., v_n\}$ and $W = \{w_1, w_2, ..., w_n\}$ be the vertex set of G_1 and G_2 respectively and let $v_i w_i \in E(K_2 \times K_n)$ for $i \in \{1, 2, ..., n\}$. Let S be the minimum geodetic set of $K_2 \times K_n$ by Theorem 2.4 $g(K_2 \times K_n) = g(K_n) = n$. Consider $S' = S \cup H$, where $H \subseteq U - S$ having n - 2 vertices, since U - S has two components which are complete graphs. Now S' be the minimal set of vertices of subgraph U - S' are isolated, then by the above argument S' is a minimal strong split geodetic set of $K_2 \times K_n$. Clearly it follows that $|S'| = |S \cup H| = n + n - 2 = 2n - 2$.

OBSERVATION 5.5. For any complete graph of order n, $g(K_3 \times K_n) = g(K_n)$.

THEOREM 5.6. For any complete graph of order n, $g_{ss}(K_3 \times K_n) = 3n - 3.$

Proof. Let G_1 and G_2 be disjoint copies of $G = K_n, n \ge 2$. Let $X = \{x_1, x_2, ..., x_n\}, Y = \{y_1, y_2, ..., y_n\}$ and Z = $\{z_1, z_2, ..., z_n\}$ be the vertex set of G_1 , G_2 and G_3 respectively. Let S be the minimum geodetic set of $K_3 \times K_n$ by Observation 5.5 $g(K_3 \times K_n) = g(K_n) = n$. Consider $S' = S \cup H$, where $H \subseteq V - S$ having 2n - 3 vertices. Now S' be the minimal set of vertices which covers all the vertices in $K_3 \times K_n$, such that set of vertices of subgraph V - S' are isolated, then by the above argument S' is a minimal strong split geodetic set of $K_3 \times K_n$. Clearly it follows that $|S'| = |S \cup H| = n + 2n - 3 = 3n - 3$.

THEOREM 5.7. G' be the graph obtained by adding an end edge (u, v) to a cycle $C_n = G$ of order n > 3, with $u \in G$ and $v \notin G$. Then $g_{ss}(K_2 \times G') = n + 2$.

Proof. Let $\{u_1, u_2, ..., u_n, u_1\}$ be a cycle with n vertices. Let G' be the graph obtained from $G = C_n$ by adding an end-edge (u, v) such that $u \in G$ and $v \notin G$. We have the following cases.

Case 1: Let G be an even cycle.

Let S be the minimum geodetic set of $K_2 \times G'$, by Theorem 2.4 $g(K_2 \times G')=g(G') = 2$. Consider $S' = S \cup H$, where $H \subseteq V - S$ having n vertices. Now S' be the minimal set of vertices which covers all the vertices in $K_2 \times G'$, such that set of vertices of subgraph V - S' are totally disconnected. Then by the above argument S' is a minimal strong split geodetic set of $K_2 \times G'$. Clearly it follows that $|S'| = |S \cup H| = 2 + n$.

Case 2: Let G be an odd cycle.

Let S be the minimum geodetic set of $K_2 \times G'$, by Theorem 2.4 $g(K_2 \times G')=g(G') = 3$. Consider $S' = S \cup H$, where $H \subseteq V - S$ having n-1 vertices. Now S' be the minimal set of vertices which covers all the vertices in $K_2 \times G'$, such that set of vertices of subgraph V - S' are totally disconnected. Then by the above argument S' is a minimal strong split geodetic set of $K_2 \times G'$. Clearly it follows that $|S'| = |S \cup H| = 3 + n - 1 = n + 2$.

6. CONCLUSION

In this paper we establish many bounds on strong split geodetic number in terms of elements of G and covering number of G, further the relationship between strong split geodetic number and split geodetic number.

7. REFERENCES

[1] F.Harary, Graph Theory, Addison-Wesely, Reading, MA, (1969)

[2] G. Chartrand and P.Zhang, Introduction to Graph Theory, Tata McGraw Hill Pub.Co.Ltd. (2006).

[3] G. Chartrand, F. Harary, and P.Zhang, On the geodetic number of a graph.Networks.39, 1-6 (2002).

[4] Venkanagouda M.Goudar, K.S.Ashalatha, Venkatesha,

Split Geodetic Number of a Graph, Advances and

Applications in Discrete Mathematics (Paper accepted).