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ABSTRACT

Aset S C V(G) is a strong split geodetic set of G, if S is a geode-
tic set and (V' — S) is totally disconnected. The strong split geode-
tic number of a graph G, is denoted by gss(G), is the minimum
cardinality of a strong split geodetic set of G. In this paper we in-
vestigate many bounds on strong split geodetic number in terms of
elements of G and covering number of G, further the relationship
between strong split geodetic number and split geodetic number.
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1. INTRODUCTION

In this paper we follow the notations of [1]. As usual n = |V| and
m = |E| denote the number of vertices and edges of a graph G
respectively.

The graphs considered here have at least one component which is
not complete or at least two non trivial components.

The distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest « — v path in G. It is well known
that this distance is a metric on the vertex set V' (G). For a vertex
v of G, the eccentricity e(v) is the distance between v and a vertex
farthest from v. The minimum eccentricity among the vertices of
G is radius, rad G, and the maximum eccentricity is the diameter,
diam G. A u — v path of length d(u, v) is called a u — v geodesic.
We define I]u, v] to the set (interval) of all vertices lying on some
u — v geodesic of G and for a nonempty subset S of V/(G), I[S] =
Uu,'uES I[U, U}’

A set S of vertices of G is called a geodetic set in G if I[S] = V(G),
and a geodetic set of minimum cardinality is a minimum geodetic
set. The cardinality of a minimum geodetic set in G is called the
geodetic number of G, and we denote it by g(G).

Split geodetic number of a graph was studied by in [4]. A geodetic
set S of a graph G = (V, E) is a split geodetic set if the induced
subgraph (V —S) is disconnected. The split geodetic number g, (G)
of GG is the minimum cardinality of a split geodetic set. Now we
define strong split geodetic number of a graph. A set S’ of vertices
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of G = (V, E) is called the strong split geodetic set if the induced

subgraph (V-5 ’) is totally disconnected and a strong split geodetic
set of minimum cardinality is the strong split geodetic number of
G and is denoted by gss(G).

A vertex v is an extreme vertex in a graph G, if the subgraph
induced by its neighbors is complete. A vertex cover in a graph G is
a set of vertices that covers all edges of GG. The minimum number
of vertices in a vertex cover of GG is the vertex covering number
ao(@) of G. An edge cover of a graph G without isolated vertices
is a set of edges of GG that covers all the vertices of GG. The edge
covering number «; (G) of a graph G is the minimum cardinality
of an edge cover of G.

For any undefined term in this paper, see [1] and [2].

2. PRELIMINARY NOTES

We need the following results to prove further results.

THEOREM 2.1. [3] Every geodetic set of a graph contains
its extreme vertices.

THEOREM 2.2. [3] For any path P,, with n vertices,
g(P,) =2
THEOREM 2.3. [3] For integers T,s > 2, g(K,s) =

min{r, s,4}.

THEOREM 2.4. [3] Let G be a connected graph of order at
least 3. If G contains a minimum geodetic set S with a vertex x
such that every vertex of G lies on some x — w geodesic in G for

some w € S, then g(G) = g(G x K»).
THEOREM 2.5. [2] For any graph G, ag + Bo = a1 + i
PROPOSITION 2.6. For any graph G, gs(G) < gss(G).

PROPOSITION 2.7. Forany tree T of order n and number of

cut vertices c; then the number of end edges is n — c;.



3. MAIN RESULTS

THEOREM 3.1. Let T be a tree that has at least three

internal vertices. If T has k end-vertices, then gss(T) = k +
l—n—(k-&-l)-‘
=1

Proof. Let F' = {v1,va, ..., v } be the set of all end vertices in 7',
|F| = k. Consider S = F'U H, where H C V(T') — F, such
that H contains a vertex of maximum degree and a minimum set
of alternating vertices in V — F, |H| = (%] Now S be the
minimal set of vertices which covers all the vertices in 7'. Clearly
set of vertices of a subgraph (V' — S) is totally disconnected, then
by the above argument S is a minimal strong split geodetic set of T'.
Clearly it follows that, |S| = |[FUH| = k+ [%W . Therefore

9ss(T) = ke + [ =4+,

COROLLARY 3.2. Forany path P,, n > 5, g.s(P,) =2+
[2321.

Proof. Proof follows from the above theorem.

THEOREM 3.3. For cycle C,, of order n > 3

) 5 ifniseven
gss(Crn) = bl g s
5= ifnisodd.

Proof. Let n > 3, we have the following cases.

Case 1: Let n be even.

Consider {v1,v2,...,v,,v1} be a cycle with n vertices where n
is even, let S = {v1,vs,...,v,} be the set of alternating vertices
which covers all the vertices of C),, and for any v; € V — S,
degv; = 0. Clearly S forms minimal strong split geodetic set of
Ch, it follows that | S| = %. Therefore g, (Cr) = 5.
Case 2: Let n be odd.

Consider {v1, va, ..., v, } be a cycle with n vertices where n is odd,
let S = (v1,vy,) U{vs,vs, ..., v,_2} which covers all the vertices
of C), and for any v; € V — S, degv; = 0. Clearly S forms
minimal strong split geodetic set of Cy,, it follows that |S| = 2L,
Therefore g,s(Cp,) = 2.

COROLLARY 3.4. For any cycle C, of order n > 3,
9ss(Cn) = ap(Ch).

Proof. We have the following cases.

Case 1: Let n be even.

Let n > 3 be the number of vertices which is even and ay is the
vertex covering number of C,,. We have by Case 1 of Theorem
3.3, gss(Crn) = 5. Also for even cycle, vertex covering number is
OCO(Cn) = % Hence gss(cn) = Ot()(cn)-

Case 2: Let n be odd.

Let n > 3 be the number of vertices which is odd and «y is the
vertex covering number of C,,. We have by Case 2 of Theorem 3.3,
9ss(Cr) = L. Also for odd cycle, vertex covering number is

ao(Cy) = % Hence g,5(C.,) = ao(Ch).

THEOREM 3.5. For the wheel W,, = K1 + C,,_1 (n > 6),

&I= ifniseven
gss(Wn) = { 2

+1 . .
2I= ifnis odd.
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Proof. Let W,, = K; + Cn,.1(n > 6) and let
V(W,) = {z,u1,u2, ..., Upn_1}, Where deg(x) =n —1 > 3 and
deg(u;) = 3 foreachi € {1,2,...,n — 1}. We have the following
cases

Case 1. Let n be even. Consider geodesic P : {uj,us,us},
Q : {’LL3,’LL4, ’LL5},...,R . {Ugn_l, ’l,LQn,UQn+1,$}. It is clear that
the vertices uso, Uy, ..., Ug, lies on the geodesics P, Q,..., R. Also
S = {u1,u3,Us, ..., U251, U2n+1, T} iS @ minimal strong split
geodesic set such that V' — S is totally disconnected and it has
5 + 1 vertices.

Hence g.s(W,,) = ”T”

Case 2. Let n be odd. Consider geodesic P {u1,u2,us},
Q : {us,uq,ustss R0 {U2n—1,U2n, U241, 2}. It is clear that
the vertices us, uy...u2, lies on the geodesic P, (Q,...,R. Also
S = {u1,u3,Us, ..., U2p,-1, U2n+1, T} iS @ minimal strong split
geodesic set such that V' — S is totally disconnected and it has
21 41 vertices.

Hence g,,(W,,) = "TH

COROLLARY 3.6. For the wheel W,, = K1 + C,,_1 (n

(A%

6),

if nis even

AtS
Gss(Wn) = >

A+5-1 oo
S5— ifnisodd.

Proof. Let W,, = K; + Cp,_1(n > 6) and let V(W,,) =
{z,u1,u2, ..., un_1}, where deg(z) = n—1 > 3and deg(u;) = 3
foreachi € {1,2,...,n—1}. Maximum degree(A) of W,, isn—1
and minimum degree(d) of W, is 3.

We have the following cases

Case 1: Let n be even. We have from Case 1 of Theorem 3.5
9ss(Wn) = HTH

= gos(Wh) = %
:>988(W ) = %

Case 2: Let n be odd. We have from Case 2 of Theorem 3.5
gss(Wn) = ntl

THEOREM 3.7. Let G be a connected graph of order n and
diameter d. Then gss(G) < n — d + 2, except for tree.

Proof. Let u and v be vertices of G for which d(u,v) = d and
let u = vg, vy, ...,vq4 = v be the u — v path of length d. Now let
S =V (G)—{v1,v2,...,v4-1}. Then I[S] = V(G), V—-(SU{v;})
is totally disconnected and thus gss(G) < |S|+1=n—d+ 2.

THEOREM 3.8. For any tree T with at least three internal
vertices and order n, diameter d. Then gss(G) < n—d+ k, where

k be the number of end vertices.

Proof. Let u and v be vertices of G for which d(u,v) = d and
let w = vg,v1,...,v4 = v be the u — v path of length d. Now
let S = V(G) — {v1,v2,...,04-1}. Then I[S] = V(G), V —
(S U{va,vs,...,v5_2}) is totally disconnected and thus g5 (G) <
[S|+k—-1=n—-d+k.



THEOREM 3.9. For any integers 7,8 > 2 gs5(K,s) =
min{r, s}.

Proof. Let G = K, g, such that U = {uj,ua,...,u.}, W =
{w1,wa, ..., ws} are the partite sets of G, where r < s and also
V=Uuw.

Consider S = U, for every wg, 1 < k < s lies on the u; — u;
geodesic for 1 < ¢ # j < r. Since V' — S is totally disconnected,
we have S is a strong split geodetic set of G.

Let X = {uj,ug,...,u,_1} be any set of vertices such that
|X| < |S], then X is not a geodetic set of G, since u, ¢ I[X].
It is clear that S is a minimum strong split geodetic set of G. Hence
ges(K,) = S| =7

THEOREM 3.10. For any connected graph G of order n,
9s(G) + g5 (G) < 2n.

Proof. Suppose S = {v1, va, ..., v, } C V(G) be the set of vertices
which covers all the vertices in G and V' — S is disconnected. Then
S is a minimal split geodetic set of . Further if the subgraph
(V — S) contains the set of vertices v;, 1 < i < n, such that
degv; = 0. Then S itself is an strong split geodetic set of G.
Otherwise, S = S; U I, where S; € S and I C V(G) - Sis
the minimum set of alternate vertices, S' forms a minimal strong
split geodetic set of G. Since V — S contains isolated vertices, it
follows that | S| U |S| < 2n. Therefore, g,(G) + g.5(G) < 2n.

The following corollaries are immediate consequence of above
Theorem and Theorem 2.5.

COROLLARY 3.11. For any connected graph G of order n,
95(G) + 955 (G) < 2(a0(G) + Bo(G)).

COROLLARY 3.12. For any connected graph G of order n,
gs(G) =+ Gss (G) < 2(a1(G) + /81 (G))

4. ADDING AN END EDGE

For an edge ¢ = (u,v) of a graph G with deg(u) = 1 and
deg(v) > 1, we call e an end-edge and u an end-vertex.

THEOREM 4.1. G be the graph obtained by adding an end
edge (u,v) to a cycle C,, = G of order n > 3, with w € G and
v & G. Then

nt2
e (G/) _ { nig for even cycle
=32 for odd cycle.

Proof. Let {u1, ua, ..., un, u1 } be a cycle with n vertices. Let G
be the graph obtained from G = C,, by adding an end-edge (u, v)
such thatu € G and v ¢ G.

We have the following cases.

Case 1: Let GG be an even cycle.

Let S = {v,u;} € V(G'), where v ¢ G is an end vertex of
G and w; is an antipodal vertex of u. Consider S = SUH,
where H C V(G') — S is a minimum set of non-adjacent vertices,
|H| =% — 1. Now S’ be the minimal set of vertices which covers

all the vertices of G . Clearly for any u; € V — S’, degu; = 0,
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by the above argument it follows that S” is a minimal strong split
geodetic set of G. Clearly |S'| = [SUH| =2+ 2 — 1 = 2£2,
Therefore g, (G') = o2
Case 2: Let GG be an odd cycle.

(a) Whenn =5

Let S = {v, a, b} be a geodetic set, where v ¢ G, is an end-vertex
of G and a,b € G, such that 2d(u,a) = d(u,b) and d(a,b) = 2.
Thus I[S] = V(G') and V — S is an induced subgraph which has
two components. Let S = S U H where H C V — S such that
H contains minimum alternate vertices from both the components
having "T‘?’ vertices. Clearly S forms the minimal strong split
geodetic set of (7, since V — S’ forms an independent set. Clearly
|S'| = |SUH| =3+ 252 = »£3 Therefore g, (G') = “£2.
(b) Whenn > 5

Let S = {v,a,b} be a geodetic set where v ¢ G is an end-vertex
of G and a,b € G, such that d(u,a) = d(u,b) and d(a,b) is
the diameter of G. Thus I[S] = V(G') and V — S is an induced
subgraph which has two components. Let ' = S U H where
H C V — S such that H contains minimum alternate vertices

from both the components having "73 vertices. Clearly S’ forms
the minimal strong split geodetic set of G, since V — S forms
an independent set. Clearly |S'| = |SU H| = 3 + 253 = =53,
Therefore gSS(G') = ”T*?’

THEOREM 4.2. Let G be the graph obtained by adding end
edge (u;,v;), i = 1,2,...,m, to each vertex of G = C,, of order
n > 3 such that u; € G, v; ¢ G. Then

NI
gss(G):{ 2

for even cycle

k+ "%’1 for odd cycle.

Proof. Let G = C,, = {u1, ua, ..., un, u; } be a cycle with n
vertices. Let G be the graph obtained by adding an end-edge
(ui,v;), 1 = 1,2,...,n = k to each vertex of G such that u; € G
,Ug ¢ G.

Case 1: Let GG be an even cycle.

Let F = {v1,vs, ..., ) } is the k number of end-vertices of G’ and
H C V(G’)fFis aneven cycle. Let S = FUH,, where H; C H
such that H; ¢ E(H). Now S be the minimal set of vertices which
covers all the vertices in G . Clearly for any u; € G, deg(u;) = 0.
Then by the above argument S is the minimal strong split geode-
tic set of G, it follows that |S| = |F U Hy| = k + 5. Therefore
9ss(G) =k + 5.

Case 2: Let GG be odd cycle.

Let F = {vy, v, ..., v3 } is the k number of end-vertices of G’ and
H C V(G') — Fis an odd cycle. Let S = F U (uq,u,) U Hj,
where H; C H such that H; ¢ E(H). Now S be the minimal set
of

vertices which covers all the vertices in G . Clearly for any u,; € G,
deg(u;) = 0. Then by the above argument S is the minimal strong
split geodetic set of G, it follows that |S| = |F U (uy,u,)UH;| =
k + 2+ 252, Therefore gss(G) =k + ol



5. CARTESIAN PRODUCT

The cartesian product of the graphs H; and H, written as Hy X Ho,
is the graph with vertex set V/(H;) x V(Haz), two vertices u1, ua
and vy, vo being adjacent in H; x Hs if and only if either u; = v,
and (UQ, ’UQ) € E(HQ), Or Uy = V2 and (’U/h Ul) S E(Hl)

THEOREM 5.1. Forany path P, of ordern, gss(Kax P,,) =
n.

Proof. Consider G = P,,. Let K, x P, be graph formed from two
Copies G1 and G5 of G. Let V = {vy, va, ..., v, } be the vertices of
G1, W = {w1,wa, ..., w, } be the vertices of Gy and U = VUW.
Case 1. Let n be even.

Consider S = H; U Hy, where H; = {v1,v3,05,...,0p-1} C V
having % vertices, Hy = {wsa, ws, ws,...,wn} € W having &
vertices. Now S be the minimal set of vertices which covers all the
vertices in K5 x P, . Such that set of vertices of a subgraph U — S
is isolated, then by the above argument S is a

minimal strong split geodetic set of K5 x P,,. Clearly it follows that,
|S| = |H1UHy = § + & = n. Therefore g, (K2 x P,) = n.
Case 2. Let n be odd.

Consider S = H; U Hy, where Hy = {va,v4, 06, ..., Up-1} CV
having "T’l vertices, Hy = {w,ws,ws,...,w,} C W having
"T'H vertices. Now S be the minimal set of vertices which covers
all the vertices in K5 x P,,. Such that set of vertices of a subgraph
U — S is isolated, then by the above argument S is a

minimal strong split geodetic set of K5 x P,,. Clearly it follows that,
|S| = [HiUH, = 22 + 2L = . Therefore g5 (K2 x P,) = n.
The following Corollaries are immediate consequence of above
Theorem and Theorem 2.5.

COROLLARY 5.2. For any path P, of order n, gss(Ks X
Pn) = Qo + /80~

COROLLARY 5.3. For any path P, of order n, gss(Ko X
Pn) =0 + 51-

THEOREM 5.4. For any complete graph of order n,
gss (Ko x K,,) =2n — 2.

Proof. Let G; and G be disjoint copies of G = K,,,n > 2. Let
V = {v1,v2,...,0,} and W = {wq, wa,...w, } be the vertex set
of G and G respectively and let v;w; € E(Ks x K,,) fori €
{1,2,...,n}. Let S be the minimum geodetic set of K> x K,, by
Theorem 2.4 g(K2 x K,) = g(K,) = n. Consider S =SUH,
where H C U — S having n — 2 vertices, since U — S has two
components which are complete graphs. Now S’ be the minimal
set of vertices which covers all the vertices in Ky x K,,, such that
set of vertices of subgraph U — S’ are isolated, then by the above
argument S is a minimal strong split geodetic set of K X K.
Clearly it follows that [S'| = |[SUH| =n+n—2=2n — 2.

OBSERVATION 5.5. For any complete graph of order n,
9(Ks x Ky) = g(Ky).

THEOREM 5.6. For any complete graph of order n,
gss (K3 x K,,) =3n — 3.

Proof. Let G; and G2 be disjoint copies of G = K,,,n .
Let X = {z1,z2,..,z,}, Y = {y1,¥2,...,yn} and Z =

v
]
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{71, 22, ..., 2n } be the vertex set of G1, G2 and G35 respectively.
Let S be the minimum geodetic set of K3 x K,, by Observation
55 g(Ks x K,,) = g(K,) = n. Consider S = S U H, where
H C V — S having 2n — 3 vertices. Now S’ be the minimal set of
vertices which covers all th9 vertices in K3 x K, such that set of
vertices of subgraph V' — S" are isolated, then by the above
argument S’ is a minimal strong split geodetic set of K5 x K.
Clearly it follows that [S'| = |S U H| = n + 2n — 3 = 3n — 3.

THEOREM 5.7. G be the graph obtained by adding an end
edge (u,v) to a cycle C,, = G of order n > 3, with uw € G and
v ¢ G. Then gos(Ky x G') =n +2.

Proof. Let {uy,ua, ..., un,u1 } be a cycle with n vertices. Let G
be the graph obtained from G = C,, by adding an end-edge (u, v)
such thatu € G and v ¢ G.

We have the following cases.

Case 1: Let GG be an even cycle.

Let S be the minimum geodetic set of K, x G, by Theorem 2.4
g(Ka x G')=g(G') = 2. Consider S = S U H, where H C
V — S having n vertices. Now S be the minimal set of vertices
which covers all the/ vertices in Ko X G/, such that set of vertices
of subgraph V' — S are totally disconnected. Then by the above
argument S is a minimal strong split geodetic set of K x G .
Clearly it follows that |S'| = |S U H| = 2 + n.

Case 2: Let GG be an odd cycle.

Let S be the minimum geodetic set of K5 x G, by Theorem 2.4
g(Ky x G')=g(G") = 3. Consider ' = S U H, where H C
V — S having n — 1 vertices. Now S’ be the minimal set of vertices
which covers all the/ vertices in Ko X G’, such that set of vertices
of subgraph V' — S are totally disconnected. Then by the above
argument S is a minimal strong split geodetic set of Ky x G .
Clearly it follows that |S'| = [SUH| =3 +n—1=n+2.

6. CONCLUSION

In this paper we establish many bounds on strong split geodetic
number in terms of elements of G and covering number of G, fur-
ther the relationship between strong split geodetic number and split
geodetic number.
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