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ABSTRACT
A setS ⊆ V (G) is a strong split geodetic set ofG, ifS is a geode-
tic set and 〈V −S〉 is totally disconnected. The strong split geode-
tic number of a graph G, is denoted by gss(G), is the minimum
cardinality of a strong split geodetic set of G. In this paper we in-
vestigate many bounds on strong split geodetic number in terms of
elements of G and covering number of G, further the relationship
between strong split geodetic number and split geodetic number.
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1. INTRODUCTION
In this paper we follow the notations of [1]. As usual n = |V | and
m = |E| denote the number of vertices and edges of a graph G
respectively.
The graphs considered here have at least one component which is
not complete or at least two non trivial components.
The distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest u− v path in G. It is well known
that this distance is a metric on the vertex set V (G). For a vertex
v of G, the eccentricity e(v) is the distance between v and a vertex
farthest from v. The minimum eccentricity among the vertices of
G is radius, rad G, and the maximum eccentricity is the diameter,
diam G. A u− v path of length d(u, v) is called a u− v geodesic.
We define I[u, v] to the set (interval) of all vertices lying on some
u− v geodesic of G and for a nonempty subset S of V (G), I[S] =⋃
u,v∈S I[u, v].

A set S of vertices of G is called a geodetic set in G if I[S] = V (G),
and a geodetic set of minimum cardinality is a minimum geodetic
set. The cardinality of a minimum geodetic set in G is called the
geodetic number of G, and we denote it by g(G).
Split geodetic number of a graph was studied by in [4]. A geodetic
set S of a graph G = (V,E) is a split geodetic set if the induced
subgraph 〈V−S〉 is disconnected. The split geodetic number gs(G)
of G is the minimum cardinality of a split geodetic set. Now we
define strong split geodetic number of a graph. A set S

′
of vertices

of G = (V,E) is called the strong split geodetic set if the induced
subgraph 〈V−S ′〉 is totally disconnected and a strong split geodetic
set of minimum cardinality is the strong split geodetic number of
G and is denoted by gss(G).
A vertex v is an extreme vertex in a graph G, if the subgraph
induced by its neighbors is complete. A vertex cover in a graphG is
a set of vertices that covers all edges of G. The minimum number
of vertices in a vertex cover of G is the vertex covering number
α0(G) of G. An edge cover of a graph G without isolated vertices
is a set of edges of G that covers all the vertices of G. The edge
covering number α1(G) of a graph G is the minimum cardinality
of an edge cover of G.
For any undefined term in this paper, see [1] and [2].

2. PRELIMINARY NOTES
We need the following results to prove further results.

THEOREM 2.1. [3] Every geodetic set of a graph contains
its extreme vertices.

THEOREM 2.2. [3] For any path Pn, with n vertices,

g(Pn) = 2.

THEOREM 2.3. [3] For integers r, s ≥ 2, g(Kr,s) =

min{r, s, 4}.

THEOREM 2.4. [3] Let G be a connected graph of order at

least 3. If G contains a minimum geodetic set S with a vertex x

such that every vertex of G lies on some x − w geodesic in G for

some w ∈ S, then g(G) = g(G×K2).

THEOREM 2.5. [2] For any graph G, α0 + β0 = α1 + β1.

PROPOSITION 2.6. For any graph G, gs(G) ≤ gss(G).

PROPOSITION 2.7. For any tree T of order n and number of

cut vertices ci then the number of end edges is n− ci.
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3. MAIN RESULTS

THEOREM 3.1. Let T be a tree that has at least three

internal vertices. If T has k end-vertices, then gss(T ) = k +

dn−(k+1)
2
e.

Proof. Let F = {v1, v2, ..., vk} be the set of all end vertices in T ,
|F | = k. Consider S = F ∪ H , where H ⊆ V (T ) − F , such
that H contains a vertex of maximum degree and a minimum set
of alternating vertices in V − F , |H| = dn−(k+1)

2
e. Now S be the

minimal set of vertices which covers all the vertices in T . Clearly
set of vertices of a subgraph 〈V − S〉 is totally disconnected, then
by the above argument S is a minimal strong split geodetic set of T .
Clearly it follows that, |S| = |F ∪H| = k+ dn−(k+1)

2
e. Therefore

gss(T ) = k + dn−(k+1)
2
e.

COROLLARY 3.2. For any path Pn, n ≥ 5, gss(Pn) = 2 +

dn−3
2
e.

Proof. Proof follows from the above theorem.

THEOREM 3.3. For cycle Cn of order n > 3

gss(Cn) =

{
n
2

if n is even
n+1

2
if n is odd.

Proof. Let n > 3, we have the following cases.
Case 1: Let n be even.
Consider {v1, v2, ..., vn, v1} be a cycle with n vertices where n
is even, let S = {v1, v3, ..., vn} be the set of alternating vertices
which covers all the vertices of Cn and for any vi ∈ V − S,
degvi = 0. Clearly S forms minimal strong split geodetic set of
Cn, it follows that |S| = n

2
. Therefore gss(Cn) = n

2
.

Case 2: Let n be odd.
Consider {v1, v2, ..., vn} be a cycle with n vertices where n is odd,
let S = (v1, vn) ∪ {v3, v5, ..., vn−2} which covers all the vertices
of Cn and for any vi ∈ V − S, degvi = 0. Clearly S forms
minimal strong split geodetic set of Cn, it follows that |S| = n+1

2
.

Therefore gss(Cn) = n+1
2

.

COROLLARY 3.4. For any cycle Cn of order n > 3,

gss(Cn) = α0(Cn).

Proof. We have the following cases.
Case 1: Let n be even.
Let n > 3 be the number of vertices which is even and α0 is the
vertex covering number of Cn. We have by Case 1 of Theorem
3.3, gss(Cn) = n

2
. Also for even cycle, vertex covering number is

α0(Cn) = n
2

. Hence gss(Cn) = α0(Cn).
Case 2: Let n be odd.
Let n > 3 be the number of vertices which is odd and α0 is the
vertex covering number of Cn. We have by Case 2 of Theorem 3.3,
gss(Cn) = n+1

2
. Also for odd cycle, vertex covering number is

α0(Cn) = n+1
2

. Hence gss(Cn) = α0(Cn).

THEOREM 3.5. For the wheel Wn = K1 + Cn−1 (n ≥ 6),

gss(Wn) =

{
n+2

2
if n is even

n+1
2

if n is odd.

Proof. Let Wn = K1 + Cn−1(n ≥ 6) and let
V (Wn) = {x, u1, u2, ..., un−1}, where deg(x) = n − 1 > 3 and
deg(ui) = 3 for each i ∈ {1, 2, ..., n− 1}. We have the following
cases
Case 1. Let n be even. Consider geodesic P : {u1, u2, u3},
Q : {u3, u4, u5},...,R : {u2n−1, u2n, u2n+1, x}. It is clear that
the vertices u2, u4, ..., u2n lies on the geodesics P,Q,..., R. Also
S = {u1, u3, u5, ..., u2n−1, u2n+1, x} is a minimal strong split
geodesic set such that V − S is totally disconnected and it has
n
2

+ 1 vertices.
Hence gss(Wn) = n+2

2
.

Case 2. Let n be odd. Consider geodesic P : {u1, u2, u3},
Q : {u3, u4, u5},..., R : {u2n−1, u2n, u2n+1, x}. It is clear that
the vertices u2, u4...u2n lies on the geodesic P,Q,...,R. Also
S = {u1, u3, u5, ..., u2n−1, u2n+1, x} is a minimal strong split
geodesic set such that V − S is totally disconnected and it has
n−1

2
+ 1 vertices.

Hence gss(Wn) = n+1
2

.

COROLLARY 3.6. For the wheel Wn = K1 + Cn−1 (n ≥
6),

gss(Wn) =

{
∆+δ

2
if n is even

∆+δ−1
2

if n is odd.

Proof. Let Wn = K1 + Cn−1(n ≥ 6) and let V (Wn) =
{x, u1, u2, ..., un−1}, where deg(x) = n−1 > 3 and deg(ui) = 3
for each i ∈ {1, 2, ..., n−1}. Maximum degree(∆) ofWn is n−1
and minimum degree(δ) of Wn is 3.
We have the following cases
Case 1: Let n be even. We have from Case 1 of Theorem 3.5
gss(Wn) = n+2

2

⇒ gss(Wn) = (n−1)+3
2

⇒ gss(Wn) = ∆+δ
2

.
Case 2: Let n be odd. We have from Case 2 of Theorem 3.5
gss(Wn) = n+1

2

⇒ gss(Wn) = (n−1)+3−1
2

⇒ gss(Wn) = ∆+δ−1
2

.

THEOREM 3.7. Let G be a connected graph of order n and

diameter d. Then gss(G) ≤ n− d+ 2, except for tree.

Proof. Let u and v be vertices of G for which d(u, v) = d and
let u = v0, v1, ..., vd = v be the u − v path of length d. Now let
S = V (G)−{v1, v2, ..., vd−1}. Then I[S] = V (G), V −(S∪{vi})
is totally disconnected and thus gss(G) ≤ |S|+ 1 = n− d+ 2.

THEOREM 3.8. For any tree T with at least three internal

vertices and order n, diameter d. Then gss(G) ≤ n−d+k, where

k be the number of end vertices.

Proof. Let u and v be vertices of G for which d(u, v) = d and
let u = v0, v1, ..., vd = v be the u − v path of length d. Now
let S = V (G) − {v1, v2, ..., vd−1}. Then I[S] = V (G), V −
(S ∪ {v2, v3, ..., vk−2}) is totally disconnected and thus gss(G) ≤
|S|+ k − 1 = n− d+ k.
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THEOREM 3.9. For any integers r, s ≥ 2 gss(Kr,s) =

min{r, s}.

Proof. Let G = Kr,s, such that U = {u1, u2, ..., ur}, W =
{w1, w2, ..., ws} are the partite sets of G, where r ≤ s and also
V = U ∪W .
Consider S = U , for every wk, 1 ≤ k ≤ s lies on the ui − uj
geodesic for 1 ≤ i 6= j ≤ r. Since V − S is totally disconnected,
we have S is a strong split geodetic set of G.
Let X = {u1, u2, ..., ur−1} be any set of vertices such that
|X| < |S|, then X is not a geodetic set of G, since ur /∈ I[X].
It is clear that S is a minimum strong split geodetic set of G. Hence
gss(Kr,s) = |S| = r.

THEOREM 3.10. For any connected graph G of order n,

gs(G) + gss(G) < 2n.

Proof. Suppose S = {v1, v2, ..., vn} ⊆ V (G) be the set of vertices
which covers all the vertices inG and V −S is disconnected. Then
S is a minimal split geodetic set of G. Further if the subgraph
〈V − S〉 contains the set of vertices vi, 1 ≤ i ≤ n, such that
degvi = 0. Then S itself is an strong split geodetic set of G.
Otherwise, S

′
= S1 ∪ I , where S1 ⊆ S and I ⊆ V (G) − S is

the minimum set of alternate vertices, S
′

forms a minimal strong
split geodetic set of G. Since V − S ′ contains isolated vertices, it
follows that |S| ∪ |S ′ | < 2n. Therefore, gs(G) + gss(G) < 2n.

The following corollaries are immediate consequence of above
Theorem and Theorem 2.5.

COROLLARY 3.11. For any connected graph G of order n,

gs(G) + gss(G) < 2(α0(G) + β0(G)).

COROLLARY 3.12. For any connected graph G of order n,

gs(G) + gss(G) < 2(α1(G) + β1(G)).

4. ADDING AN END EDGE
For an edge e = (u, v) of a graph G with deg(u) = 1 and
deg(v) > 1, we call e an end-edge and u an end-vertex.

THEOREM 4.1. G
′

be the graph obtained by adding an end

edge (u, v) to a cycle Cn = G of order n > 3, with u ∈ G and

v /∈ G. Then

gss(G
′
) =

{
n+2

2
for even cycle

n+3
2

for odd cycle.

Proof. Let {u1, u2, ..., un, u1} be a cycle with n vertices. Let G
′

be the graph obtained from G = Cn by adding an end-edge (u, v)
such that u ∈ G and v /∈ G.
We have the following cases.
Case 1: Let G be an even cycle.
Let S = {v, ui} ⊆ V (G

′
), where v /∈ G is an end vertex of

G
′

and ui is an antipodal vertex of u. Consider S
′

= S ∪ H ,
where H ⊆ V (G

′
)− S is a minimum set of non-adjacent vertices,

|H| = n
2
− 1. Now S

′
be the minimal set of vertices which covers

all the vertices of G
′
. Clearly for any ui ∈ V − S ′ , degui = 0,

by the above argument it follows that S
′

is a minimal strong split
geodetic set of G

′
. Clearly |S ′ | = |S ∪H| = 2 + n

2
− 1 = n+2

2
.

Therefore gss(G
′
) = n+2

2
.

Case 2: Let G be an odd cycle.
(a) When n = 5
Let S = {v, a, b} be a geodetic set, where v /∈ G, is an end-vertex
of G

′
and a, b ∈ G, such that 2d(u, a) = d(u, b) and d(a, b) = 2.

Thus I[S] = V (G
′
) and V − S is an induced subgraph which has

two components. Let S
′

= S ∪ H where H ⊆ V − S such that
H contains minimum alternate vertices from both the components
having n−3

2
vertices. Clearly S

′
forms the minimal strong split

geodetic set of G
′
, since V − S ′ forms an independent set. Clearly

|S ′ | = |S ∪H| = 3 + n−3
2

= n+3
2

. Therefore gss(G
′
) = n+3

2
.

(b) When n > 5
Let S = {v, a, b} be a geodetic set where v /∈ G is an end-vertex
of G

′
and a, b ∈ G, such that d(u, a) = d(u, b) and d(a, b) is

the diameter of G. Thus I[S] = V (G
′
) and V − S is an induced

subgraph which has two components. Let S
′

= S ∪ H where
H ⊆ V − S such that H contains minimum alternate vertices
from both the components having n−3

2
vertices. Clearly S

′
forms

the minimal strong split geodetic set of G
′
, since V − S ′ forms

an independent set. Clearly |S ′ | = |S ∪ H| = 3 + n−3
2

= n+3
2

.
Therefore gss(G

′
) = n+3

2
.

THEOREM 4.2. Let G
′

be the graph obtained by adding end

edge (ui, vi), i = 1, 2, ..., n, to each vertex of G = Cn of order

n > 3 such that ui ∈ G, vj /∈ G. Then

gss(G
′
) =

{
k + n

2
for even cycle

k + n+1
2

for odd cycle.

.

Proof. Let G = Cn = {u1, u2, ..., un, u1} be a cycle with n
vertices. Let G

′
be the graph obtained by adding an end-edge

(ui, vi), i = 1, 2, ..., n = k to each vertex of G such that ui ∈ G
,vi /∈ G.
Case 1: Let G be an even cycle.
Let F = {v1, v2, ..., vk} is the k number of end-vertices of G

′
and

H ⊆ V (G
′
)−F is an even cycle. Let S = F ∪H1, whereH1 ⊆ H

such thatH1 /∈ E(H). Now S be the minimal set of vertices which
covers all the vertices inG

′
. Clearly for any ui ∈ G

′
, deg(ui) = 0.

Then by the above argument S is the minimal strong split geode-
tic set of G

′
, it follows that |S| = |F ∪ H1| = k + n

2
. Therefore

gss(G
′
) = k + n

2
.

Case 2: Let G be odd cycle.
Let F = {v1, v2, ..., vk} is the k number of end-vertices of G

′
and

H ⊆ V (G
′
) − F is an odd cycle. Let S = F ∪ (u1, un) ∪ H1,

where H1 ⊆ H such that H1 /∈ E(H). Now S be the minimal set
of
vertices which covers all the vertices inG

′
. Clearly for any ui ∈ G

′
,

deg(ui) = 0. Then by the above argument S is the minimal strong
split geodetic set ofG

′
, it follows that |S| = |F ∪(u1, un)∪H1| =

k + 2 + n−3
2

. Therefore gss(G
′
) = k + n+1

2
.
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5. CARTESIAN PRODUCT
The cartesian product of the graphsH1 andH2, written asH1×H2,
is the graph with vertex set V (H1) × V (H2), two vertices u1, u2

and v1, v2 being adjacent in H1 ×H2 if and only if either u1 = v1

and (u2, v2) ∈ E(H2), or u2 = v2 and (u1, v1) ∈ E(H1).

THEOREM 5.1. For any pathPn of order n, gss(K2×Pn) =

n.

Proof. Consider G = Pn. Let K2 × Pn be graph formed from two
CopiesG1 andG2 of G. Let V = {v1, v2, ..., vn} be the vertices of
G1,W = {w1, w2, ..., wn} be the vertices ofG2 and U = V ∪W .
Case 1. Let n be even.
Consider S = H1 ∪H2, where H1 = {v1, v3, v5, ..., vn−1} ⊆ V
having n

2
vertices, H2 = {w2, w4, w6, ..., wn} ⊆ W having n

2
vertices. Now S be the minimal set of vertices which covers all the
vertices in K2 ×Pn. Such that set of vertices of a subgraph U − S
is isolated, then by the above argument S is a
minimal strong split geodetic set ofK2×Pn. Clearly it follows that,
|S| = |H1 ∪H2 = n

2
+ n

2
= n. Therefore gss(K2 × Pn) = n.

Case 2. Let n be odd.
Consider S = H1 ∪H2, where H1 = {v2, v4, v6, ..., vn−1} ⊆ V
having n−1

2
vertices, H2 = {w1, w3, w5, ..., wn} ⊆ W having

n+1
2

vertices. Now S be the minimal set of vertices which covers
all the vertices in K2 × Pn. Such that set of vertices of a subgraph
U − S is isolated, then by the above argument S is a
minimal strong split geodetic set ofK2×Pn. Clearly it follows that,
|S| = |H1∪H2 = n−1

2
+ n+1

2
= n. Therefore gss(K2×Pn) = n.

The following Corollaries are immediate consequence of above
Theorem and Theorem 2.5.

COROLLARY 5.2. For any path Pn of order n, gss(K2 ×
Pn) = α0 + β0.

COROLLARY 5.3. For any path Pn of order n, gss(K2 ×
Pn) = α1 + β1.

THEOREM 5.4. For any complete graph of order n,

gss(K2 ×Kn) = 2n− 2.

Proof. Let G1 and G2 be disjoint copies of G = Kn, n ≥ 2. Let
V = {v1, v2, ..., vn} and W = {w1, w2, ...wn} be the vertex set
of G1 and G2 respectively and let viwi ∈ E(K2 × Kn) for i ∈
{1, 2, ..., n}. Let S be the minimum geodetic set of K2 × Kn by
Theorem 2.4 g(K2 ×Kn) = g(Kn) = n. Consider S

′
= S ∪H ,

where H ⊆ U − S having n − 2 vertices, since U − S has two
components which are complete graphs. Now S

′
be the minimal

set of vertices which covers all the vertices in K2 ×Kn, such that
set of vertices of subgraph U − S ′ are isolated, then by the above
argument S

′
is a minimal strong split geodetic set of K2 × Kn.

Clearly it follows that |S ′ | = |S ∪H| = n+ n− 2 = 2n− 2.

OBSERVATION 5.5. For any complete graph of order n,

g(K3 ×Kn) = g(Kn).

THEOREM 5.6. For any complete graph of order n,

gss(K3 ×Kn) = 3n− 3.

Proof. Let G1 and G2 be disjoint copies of G = Kn, n ≥ 2.
Let X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn} and Z =

{z1, z2, ..., zn} be the vertex set of G1, G2 and G3 respectively.
Let S be the minimum geodetic set of K3 × Kn by Observation
5.5 g(K3 × Kn) = g(Kn) = n. Consider S

′
= S ∪ H , where

H ⊆ V − S having 2n− 3 vertices. Now S
′

be the minimal set of
vertices which covers all the vertices in K3 ×Kn, such that set of
vertices of subgraph V − S ′ are isolated, then by the above
argument S

′
is a minimal strong split geodetic set of K3 × Kn.

Clearly it follows that |S ′ | = |S ∪H| = n+ 2n− 3 = 3n− 3.

THEOREM 5.7. G
′

be the graph obtained by adding an end

edge (u, v) to a cycle Cn = G of order n > 3, with u ∈ G and

v /∈ G. Then gss(K2 ×G
′
) = n+ 2.

Proof. Let {u1, u2, ..., un, u1} be a cycle with n vertices. Let G
′

be the graph obtained from G = Cn by adding an end-edge (u, v)
such that u ∈ G and v /∈ G.
We have the following cases.
Case 1: Let G be an even cycle.
Let S be the minimum geodetic set of K2 × G

′
, by Theorem 2.4

g(K2 × G
′
)=g(G

′
) = 2. Consider S

′
= S ∪ H , where H ⊆

V − S having n vertices. Now S
′

be the minimal set of vertices
which covers all the vertices in K2 × G

′
, such that set of vertices

of subgraph V − S ′ are totally disconnected. Then by the above
argument S

′
is a minimal strong split geodetic set of K2 × G

′
.

Clearly it follows that |S ′ | = |S ∪H| = 2 + n.
Case 2: Let G be an odd cycle.
Let S be the minimum geodetic set of K2 × G

′
, by Theorem 2.4

g(K2 × G
′
)=g(G

′
) = 3. Consider S

′
= S ∪ H , where H ⊆

V −S having n−1 vertices. Now S
′
be the minimal set of vertices

which covers all the vertices in K2 × G
′
, such that set of vertices

of subgraph V − S ′ are totally disconnected. Then by the above
argument S

′
is a minimal strong split geodetic set of K2 × G

′
.

Clearly it follows that |S ′ | = |S ∪H| = 3 + n− 1 = n+ 2.

6. CONCLUSION
In this paper we establish many bounds on strong split geodetic
number in terms of elements of G and covering number of G, fur-
ther the relationship between strong split geodetic number and split
geodetic number.
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