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ABSTRACT 
An optimal explicit guidance law that maximizes terminal 

velocity is developed for a reentry vehicle to a fixed target. 

The equations of motion are reduced with differential flatness 

approach and acceleration commands are related to 

trajectory’s parameters. An optimal trajectory is determined 

by solving a real-coded genetic algorithm. For online 

trajectory generation, optimal trajectory is approximated. The 

approximated trajectory is compared with the pure 

proportional navigation, and genetic algorithm's solutions. 

The near optimal terminal velocity solution compares very 

well with these solutions. The approach robustness is 

examined by Monte Carlo simulation. Other advantages such 

as trajectory representation with minimum parameters, 

applicability to any reentry vehicle configuration and any 

control scheme, and Time-to-Go independency make this 

guidance approach more favorable.  

Keywords 
Reentry, Explicit Guidance, Differential Flatness, Optimal 

Guidance, Real Genetic Algorithm.  

1. INTRODUCTION 
The general solution of the optimal flight of a reentry vehicle 

(RV) to an arbitrary, but specified, final condition has been of 

interest for some time. Contensou was the first to consider 

optimal control and proposed the problem for unconstrained 

range in terms of flight path angle as the independent variable 

[1]. Eisler and et al. [2], using neighboring optimal control, 

devised a sampled-data feedback control method to obtain 

unconstrained, approximate, maximum-terminal-velocity 

descent trajectories at a designated target. This maximization 

has the dual advantage of reducing the time to reach the target 

as well as maximizing the kinetic energy level. 

Generally, the design of guidance algorithms may be defined 

loosely as the art of finding the correct acceleration 

commands to move between two given points. Many different 

techniques have been suggested for the design of guidance 

algorithms. These range from the earliest algorithms derived 

using physical insight (e.g., pursuit, proportional navigation 

(PN) and their variants) to those derived from a systematic 

application of mathematical techniques. Most current 

guidance design methods may be classified into two main 

categories [3]: (1) nominal trajectory-based techniques and (2) 

on-line trajectory generation, reshaping and prediction 

schemes. In the first approach, an (optimal) reference 

trajectory is defined prior to the mission, and during the flight, 

a controller keeps the vehicle close to the nominal trajectory. 

The predictive and/or reshaping approaches propagate the 

future trajectory based on current flight state by means of 

onboard numerical integration to calculate the control input 

during the remaining flight.  

Explicit guidance methods are good examples of the second 

category. A review of literature [4] shows that they have 

many advantages over other approaches. These methods, 

which use preset external trajectories, give a huge calculation 

advantage and can provide a near optimal solution with any 

desired accuracy. These are applicable to systems that have 

linear acceleration and aim at constructing guidance 

algorithms with specified desired dynamics (i.e. solving an 

inverse problem.). Although some authors [5, 6] have 

considered the inverse problem as a direct method because of 

the implicitly parameterized control, it is better that this 

approach is examined within a different class. In a direct 

method, the trajectory of the vehicle must be predicted if the 

initial conditions and the time history of the controls are 

given, meaning Cauchy task, whereas in an inverse problem, 

the controls that are compatible with a desired trajectory must 

be predicted [7]. Inverse methods are of great interest in the 

context of synthesizing nonlinear autopilots [8-10] and 

guidance algorithms [11-15]. A survey about the inverse 

problem approach in optimal trajectory generation, both in 

Russia and in the United States, can be found in Yakimenko’s 

paper [5]. In guidance applications, the variable guidance 

gains are correlated with the shape of the trajectory that will 

follow and satisfy particular terminal constraints. Although, 

with an extension of Taranenko [15], Cameron [16], and 

Page's [17] methods, the use of this approach in guidance 

algorithm design has been developed by Hough [11] and 

Yakimenko [5], it still suffers from serious flaws: a relatively 

large number of optimization parameters (Ops) (Taranenko, 

20; Mortazavi [18],‌‌ 12; and Hough, 8) depending on the 

vehicle's velocity vector, relatively difficult numerical 

calculations, accuracy dependence on the number of segments 

used in the approximation, and offline application.       

In this paper, the author extends the previous works done on 

maximizing terminal velocity [19-21]. An explicit guidance 

law is developed by flatness approach for guiding a 

hypersonic unthrusted reentry vehicle (RV) to a fixed point on 

the ground (Eisler’s problem [2]). . The guidance commands 

are related to geometrical trajectory shape and constraints. 

The guidance law is based on the normal and side 

accelerations. At the next step, the guidance law is optimized 

using real-coded genetic algorithms (RGA). The present paper 

deals with a new, in some sense, simplified method that 

provides near optimal spatial trajectories being presented 

analytically and completely defined by minimum OPs. This 

method has a number of advantages over methods presented 

by Taranenko, and Hough. Although guidance law is designed 

for an RV, it can also be applied to any vehicle at any phase.   

The remainder of this paper is organized as follows. The 

optimal guidance problem, as well as RV's dynamics, is 

described in Section 2, section 3 introduces the computational 

algorithm, and section 4 deals with simulation results.   
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Fig 1: Geometrical definitions. 

2. PROBLEM DEFINITION  
Assuming a spherical, nonrotating Earth (this assumption was 

made for simplicity, but a similar guidance law can be derived 

based on more precise equations of motion including terms 

due to earth rotation) and a gravitational field with ,/ 2rg    

three-dimensional point mass equations of motion for the RV 

(Fig. 1) can be written as:     
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where V is velocity,  is flight path angle,  is yaw angle,  is 

range,  is cross-range, h is altitude, t is the time variable, m 

is RV mass, D is drag force, ahc is horizontal acceleration 

command, and avc is vertical acceleration command. For the 

bank-to-turn control configuration (BTT): 

mLamLa /sin,/cos hccv    

where  is bank angle.. 

The guidance problem is to find acceleration commands (or 

equivalently , and  for BTT), which steer the vehicle to its 

target, subject to the state equations (1); known initial 

conditions, V0, 0, 0, 0, 0, and h0; and known final 

conditions, f, f, and hf (equivalent to a fixed target position). 

The solution must satisfy the following constraint: 

max
2

hc
2

vcc ≤ aaaa                                                         (2) 

The amax can be related to the limitations of angle of attack, 

dynamic pressure, heat transfer, loading, etc.   

3. COMPUTATIONAL ALGORITHM 

3-1-Differential Flatness 
Differential flatness was first introduced by Fliess and el al 

[22] in a differential algebraic context. The important property 

of flat systems is that a set of variables (equal in number to 

the number of inputs) can be found such that all states and 

inputs can be expressed in terms of those outputs and a finite 

number of their time derivatives without any integration 

procedure. More precisely, the dynamical system of the 

general form may be considered as [23]: 

))(),(()(

))(),(()(

tutxhty

tutxftx




 

where x is the n-dimensional state vector, u is the m-

dimensional input vector, y is the m-dimensional tracking 

output vector, f(.) and h(.) are a nonlinear functions. The 

system is differentially flat if a set of variables z(t)m can be 

found which are differentially independent, called flat outputs, 

of the form 

))(),...,(),(),(()( )( tutututxtz a  

such that 
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where  and  are smooth functions, z(a)(t) and z(b)(t) are 

respectively the a and b order time derivative of z(t).  

In situations where explicit trajectory generation is required, 

differential flatness can be very useful: since the behavior of 

flat systems is determined by the flat outputs only, the 

trajectories can be planned in output space and then mapped 

to the appropriate inputs. Many authors have been used 

differential flatness approach to reentry problem guidance 

[23-26]; As it is proved in the study of Neckel and et al [27], 

the nonlinear model (1) is not flat if h,  and  are considered 

as flat outputs. To get around this problem, all studies have 

kept the longitudinal and lateral motions uncoupled. 

Therefore, only the longitudinal dynamics are inverted using 

altitude and curvilinear abscissa as flat outputs, the lateral 

guidance being ensured via a typical roll reversal technique 

[e.g. 24]. Decoupling has its limitations. For overcoming these 

limitations, choosing  and  as flat outputs and solving 

problem by inverse approach is proposed.  

To apply this concept, the independent variable is changed 

from t to  in the system equations (1). (The independent 

variable may be any monotonous variable; Archer's study [28] 

would be useful for independent variable selection in RV 

guidance.) After that, acceleration commands are solved:  

(3)
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On the other hand, with geometrical considerations,  and  

are obtained: 

(4) d/dtan,d/dcostan  h 

In Eq. (3), the desired trajectory shape enters through the 

curvature terms  and , obtained by the implicit 

differentiation of Eq. (4) with respect to : 
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These functions introduce second derivative terms h and . 
Therefore, the guidance commands are related to the shape of 

the trajectory. An admissible trajectory must satisfy the 

relation, Eq. (2). 

Actual acceleration a lags the acceleration command ac, 

whose components are specified by Eqs. (3) and (5). For three 

degree-of-freedom (3DOF) simulations, noninstantaneous 

response could be modeled by a first-order lag: 

 ///d caaa td , 

where the time constant  approximates the dominant closed 

loop pole of autopilot and actuator. In the sequel, 

instantaneous response (0) assumed, and it follows that the 

acceleration commands of Eq. (3) are the actual acceleration 

components (a=ac). 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.3, March 2014 

 

14 

3-2-Trajectory Generation 
Many methods have been used for trajectory generation [11, 

16, 29, 30]; all of them having many parameters and requiring 

specific conditions. In this paper, the Bezier curve [31] is 

suggested for trajectory generation. 

In view of its properties, this curve has been used in various 

fields of study such as computer graphics [31], robotic 

guidance [32, 33], airfoil design [34, 35], and trajectory 

optimization [36].   Mathematically, a parametric Bezier curve 

of order n is defined by  

(6)                                                              ∑
n
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and u  denotes the parameter of the curve taking values in [0, 

1]. So, as seen from Eq. (6), the Bezier curve is completely 

determined by Cartesian coordinates of the control points. The 

derivative of order r of a Bezier curve can be derived as: 
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It is clear that the derivative of order r of a Bezier curve at one 

of its end points only depends on the r+1 control points 

nearest (and including) that end point. It follows that, at u=0: 
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For this problem, the parameter u is equal to the normalized 

range )/()( 00   f , and the Bezier approximation 

of the trajectory is determined by coordinates (hi, i) of the 

control points Bi. With the allowable assumption n=3 for 

reentry trajectories, the first point B0 = (h0,0) and last point 

B3 = (hf, f) will be fixed. Now, the middle control points B1= 

(h1, 1) and B2 = (h2, 2) must be determined. In the beginning 

of trajectory, the second control point, B1, can be set using 

Eqs. (4) and (8): 
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where )-( 0f   . 

On the other hand, from Eqs. (3), (5), and (8), can be derived: 
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Because of maxhc ≤ aa , from Eqs. (3), (5), and (8), can be 

written: 
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With a value in this boundary, ahc may be determined from 

Eqs. (2) and (10): 
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By selecting the third control point, B2, the initial trajectory 

will be generated, and the RV will follow it so long as the 

constraints are satisfied. When the acceleration commands 

exceed the maximum allowable acceleration, acceleration 

command saturation causes the actual values of h, , , and  

to deviate from the desired values along the initial trajectory. 

Holding the terminal conditions fixed, Bezier control points 

should be continuously updated with instantaneous  values. 

Using C0 (position), C1 (angle), and C2 (acceleration) 

continuity conditions, the new trajectory's control points can 

be obtained automatically. Therefore, for guiding the RV, the 

only necessary task is to select the third control point, B2, for 

the initial Bezier trajectory. It must be noted that all choices in 

the boundaries of Eqs. (11) and (12) guarantee that the RV 

reaches the target while satisfying the constraints. 

In the case that the final velocity orientation is constrained, a 

fourth-order Bezier curve is suggested (e.g., if the final 

velocity vector is constrained to f, and f, the B0, B1, B2, and 

B4 control points would be treated the same way (see [37])). 

The fourth control point, B3, can be set like B1: 

3/sectan-,3/tan- 4343 fff hh  
 

3-3-Optimal Solution 
For this problem, optimum selection of B2 = (h2, 2) is sought 

to generate optimal trajectory which leads to maximum 

impact velocity. It is clear that a parameter optimization 

problem must be solved. Many different methods have been 

suggested to solve these problems, especially in space 

trajectories applications, that can be found in Betts's survey 

[38]. The use of genetic algorithms (GAs) to determine 

optimal space trajectories has recently become popular. The 

applications range from trajectory planning for launch 

vehicles to the trajectory design of interplanetary missions 

[36, 39-41]. In this paper, a form of GAs, known as floating-

point or real-coded GA (RGA) [42-44], is used. The RGA 

used in this study is similar to that described in an orbit 

transfer problem [45], and is simulated with the Optimization 

Toolbox (with some modifications) in MATLAB 8. Stochastic 

uniform selection with elitism, scattered crossover with 0.8 

probability, uniform mutation with 0.1 probability, population 

size 100, and 50 generation for termination were used. The 

calculations were repeated several times using different seeds 

to check the repeatability of the optimal parameters.  
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4. SIMULATION RESULTS AND 

DISCUSSION 
To demonstrate the effectiveness of this guidance law, it has 

been used in a 3DOF (point mass) simulation containing a 

standard atmosphere, and aerodynamic coefficients as 

functions of Mach number, angle of attack, and Reynolds 

number in tabulated form for RV model based on [46]. 

Results are shown in Figs.2-7 for a sample period of t=0.01s.  

It is understood that the optimum selection of B2 via RGA 

approach requires a very large computer resource. For this 

reason, the following approximate (near optimal) approach 

(APR) have been used. As first seen by Eisler and et al. [1] 

and can be seen in Fig. 2 by RGA approach, the optimal 

trajectory steers the RV to fly at higher altitudes as far as 

possible. This is equivalent to h2=g4, i.e. avc= amax and 

selection of 2 in such a manner that ahc=0 in the beginning of 

flight (For BTT it is equivalent to Lc=Lmax, and =180).       

Table 1.  Trajectory boundary conditions. 

 Initial Final 

, km 80 0 

, km 2 0 

h, km 30 0 

V, m s-1 4000 maximum 

, deg 20 unconstrained 

, deg 0 unconstrained 

 

Also shown in these figures are the optimal trajectory (RGA) 

and the trajectory obtained from pure proportional navigation 

(PPN) with N=3 [47]. A fourth-order, fixed step, Runge-Kutta 

integrator is used in all simulations. The trajectory boundary 

conditions for the example problem are shown in Table 1.  

Figures 2 and 3 display the simulation flight path profiles. 

APR and RGA have the same vertical path, but slightly 

different horizontal paths, whereas PPN, which turns quickly 

to line up with the target. As just said, these first two 

simulations shift the majority of flight time to the higher 

altitudes, where drag is low. Therefore differences in 

horizontal paths and acceleration command (Fig. 4) have a 

very small effect on velocity profile (Fig. 7).   

The acceleration command profiles shown in Figs. 4-6 

reconfirm the turning rates between PPN and the other 

guidance schemes. The horizontal acceleration command 

profiles are shown in Fig. 4 and also show the increased 

turning rate applied by PPN to line up with the target. RGA 

initially chooses a middle ground between PPN and 

approximate scheme. Figures 5 and 6 display a good 

agreement in vertical and total acceleration command profiles 

for RGA and APR schemes. 

Velocity-range profiles in Fig. 7 are grouped in a similar 

fashion to the flight profiles. Because of the altitude 

management in the APR and RGA guidance, the terminal 

velocities show small differences. The optimal velocity 

produced by RGA scheme is 1625 m s-1. The terminal 

velocity generated by APR method differs from it by about 

0.3% (1620 m s-1), while the PPN solution is over 13% less 

(1410 m s-1). Note also that the times of flight for RGA and 

APR schemes are almost identical. 

Uncertainties or off-nominal conditions in models 

characteristics have a profound effect on a guidance 

performance. The overall goal of guidance algorithm is the 

successful steering of the vehicle in spite of these 

uncertainties. The more important are the entry conditions, the 

aerodynamics characteristics, and the atmospheric density. A 

Monte Carlo analysis was performed by introducing 

variations in vehicle aerodynamics (10%), atmospheric 

density (10%), and entry conditions (= h= 1000 

m, = =1 deg, V= 10 m/s). Also the following wind 

profile was considered: 


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where V1= 15 m/s, V2= 20 m/s, Vw1=Vw2= 5 m/s, hw1=10 

km, hw2=20 km.   

Finally, with a uniform distribution in uncertainties, 200 cases 

were conducted to assess the robustness of proposed guidance 

approach. The mean value and standard deviation resulted in 

the range were mR= -13.65 m and R= 4.24 m. These values 

were mC= -0.21 m and C= 0.32 m in the cross range. The 

scheme provides robust properties as indicated by results of 

Monte Carlo flight simulations. This robustness is the 

character of closed loop explicit guidance laws.   

 

Fig 2: Vertical path comparison. 

 

 
Fig 3: Horizontal path comparison. 
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Fig 4: Horizontal acceleration command. 

 

 

 

Fig 5: Vertical acceleration command. 

 

Fig 6: Total acceleration command. 

 

 

Fig 7: Velocity comparison. 
 

5. CONCLUDING REMARKS 
A near optimal explicit guidance method was devised to 

obtain descent trajectories for a prescribed destination using 

differential flatness and inverse problem combination. The 

guidance commands are related to shape of trajectory, 

specified by a Bezier curve, to minimize the time spent in the 

denser parts of the atmosphere. During periods of command 

saturation, the instantaneous Bezier control points vary until 

sufficient control is available to follow the optimal trajectory. 

Optimal Bezier control points can be determined by using any 

parameter optimization method, such as Real-coded Genetic 

Algorithm (RGA), and implemented by an approximated logic 

(APR). The robustness of the algorithm in the face of worst 

case perturbations in the entry conditions, the aerodynamics 

characteristics, and the atmospheric density was examined by 

Monte Carlo simulation. The proposed method is 

characterized by the following advantages: 1) a priori 

satisfaction of the boundary conditions; 2) an absence of 

"wild" trajectories during path generation; 3) an analytical 

(parametric) representation of reference trajectory with 

minimum parameters; 4) applicability to any RV 

configuration, regardless of its lift-to-drag ratio or range of 

flight Mach number regime; 5) applicability to any control 

schemes (bank-to-turn or skid-to-turn), and 6) offline nominal 

trajectory and Time-to-Go independence. Comparison with 

the real coded genetic algorithm for the terminal velocity is 

excellent and far exceeds the pure proportional navigation 

solution.   
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