
International Journal of Computer Applications (0975 – 8887)

Volume 89– No.19, March 2014

9

Energy Efficient Query Processing for WSN based

on Data Caching and Query Containment

Kayiram Kavitha
Lecturer

Dept. of CS & IS
BITS-Pilani,
Hyderabad

Campus, Hyderabad,
India

Vinod
Pachipulusu

Decision Scientist
MuSigma Business

Solutions, Bangalore,
India

Sreeja Thummala
Student

Dept. of CS & IS
BITS-Pilani,
Hyderabad

Campus, Hyderabad,
India

R.Gururaj, Ph.D

HOD & Asst. Prof.
Dept. of CS & IS

BITS-Pilani,
Hyderabad Campus,

Hyderabad,
India

ABSTRACT

Wireless Sensor Networks (WSNs) are deployed to capture

the sensed data from tiny sensors spread around the physical

environment. In general, WSNs are used to monitor physical

phenomena like temperature, pressure, humidity etc. In most

of the cases they are deployed in remote geographic locations

and operate unmanned. Usually, these sensors are battery

operated. Due to these deployment circumstances, battery

recharge or replacement becomes almost impossible. Hence,

the foremost requirement of any WSN is to utilize the battery

power in an efficient way. A sensor node expends most of its

energy in data transmission. It is observed that a query

submitted to WSN may request same data or subset of data as

that of another request. In this paper, a novel query processing

scheme is proposed that exploits the cached results at the BS

and the commonality among the queries which require data

from the network. This can significantly minimize the

transmission and processing costs w.r.t., energy in the

network. The experimental results proved the same.

1. INTRODUCTION
A Wireless Sensor Network (WSN) [1] is a collection of

multiple sensor nodes connected together to form a network.

The applications of WSN include Wastewater Monitoring,

Green House Monitoring, Air Pollution Monitoring, Machine

Health Monitoring, Landslide Detection, Forest Fire Detection

etc. These applications monitor certain physical

characteristics like temperature, pressure, humidity, light, air

pollutant etc. A sensor node is a tiny electronic device with a

small micro controller, memory unit, energy source (usually

battery) and a radio transceiver for wireless communication.

The role of each sensor node is to sense and transmit the

sensed data to the central monitoring station termed as the

Base-Station (BS). It is assumed that the BS has abundant

computational, storage and energy resources. The battery

attached to the sensor node is the source of energy for

performing various operations like sensing, data storage,

computations and transmission. It is observed that 80% of the

power is utilized towards radio communication. Hence, to

increase the lifetime of the network, it is essential to minimize

the volume of data transmission during query processing.

As the BS links the WSN with the outside world, it is

assumed that all queries are submitted to the BS. In general,

the queries submitted by end-users/applications may be either

ad-hoc [2] or continuous [3]. In case of ad-hoc queries, it

requires one time execution only. For example, “Give the

maximum temperature today” is an ad-hoc query. On the

other hand continuous queries refer to such requests which

require processing at some specified intervals of time or on

some event. For example, the query “Give the average

temperature for the last 10 hours on hourly basis” is a

continuous query.

In this work, it is assumed that both BS and the sensor nodes

are capable of processing queries. The only difference

between a sensor node and BS is in terms of the resources

available. Further, in this proposal the focus is on minimizing

the cost of executing ad-hoc queries only. Usually, an ad-hoc

query submitted at the BS is sent to respective network of

nodes for execution. Since, the results of a query are given

back to the user through the BS; all the nodes send their result

data to the BS. As the BS has a reasonable amount of storage,

the results of a query can be stored at the BS for future use.

Such data stored at the BS is called as cached result. If the

query request involves cached results, the BS can process the

query and give the results. Otherwise, the query needs to be

sent to the concerned nodes for execution.

The earlier work in [4] optimizes query execution by

identifying queries which can be answered at BS based on the

domain knowledge that defines certain constraints on the data

values. But by using domain knowledge, BS can answer only

certain queries without disseminating the query into the

network. The approach used in [5] exploits spatial

containment among queries. According to this, queries request

data from a particular geographical region specified as

bounding rectangle co-ordinates. The bounding rectangle co-

ordinates of each query are mapped onto R-tree for

identifying the largest bounding rectangle, based on which a

single query is formulated that covers all the required regions,

and executed in the network. This avoids dissemination and

execution of queries representing the bounded rectangles

contained by the largest bounded rectangle. But, this approach

does not exploit attribute level and predicate level

commonalities. Though the techniques mentioned in [6] [7]

try to exploit the query containment, they look at the

containment w.r.t., result attributes only. They have not

considered the filters specified in the form of conditions in the

WHERE clause of the query. All these optimization

techniques lead to energy savings in specific application

contexts. Hence, the techniques are highly application

dependent. Full length detailing about the above approaches is

given in Section 2 as part of the related work.

In this work, the focus is on set of ad-hoc queries received at

BS, which need to be executed at BS and/or at network nodes.

A set of ad-hoc queries submitted at BS are often found to be

requesting the same results. Sometimes they may not be

equal, but they exhibit certain overlap in their query results.

Such relationship among queries is termed as query

containment. The containment relationship is said to be

satisfied, if two queries yield same or partially same query

results. For the sake of convenience w.r.t., terminology, a

International Journal of Computer Applications (0975 – 8887)

Volume 89– No.19, March 2014

10

super-query can be defined as a query ‘q’ that yields the

superset of the results of a set of queries Q {q1….qn}. This

super-query ‘q’ is formed based on ‘Q’. Hence, the challenge

is to formulate a super-query-set for a set of queries which can

be disseminated and executed in the network leading to

reduced transmission cost in terms of energy. Further, a query

submitted at BS may need to be processed- (i) completely

using the cached data at BS or (ii) completely against the data

available in the network, or sometimes (iii) partly against the

cached data or partly against the data available in the network.

In this paper, a novel query processing technique is proposed

that exploits cached results at BS and query containment

among the ad-hoc queries to be executed in the network. If the

query results can be obtained in its entirety from the cached

results then the query can be executed against the cached

results at the BS and send the results to the user. Otherwise if

the query results need to be extracted partially or completely

from the network nodes, then the commonalities w.r.t., the

data requirements of all such ad-hoc queries need to be found

to formulate super-queries and transmit the same to the

required nodes for execution. In this work, a bit-map approach

is proposed for identifying the commonalities (containment)

among the queries and formulating a super-query. This helps

in minimizing the number of queries executed and the volume

of data transmitted in the network which eventually leads to

optimal utilization of the power and longer network life. The

experimental results prove the effectiveness of this approach

for WSNs requiring to process ad-hoc in-network queries.

The rest of the paper is organized as follows. The related work

and limitations are presented in Section 2, and the proposed

solution is described in Section 3. Section 4 shows the

simulation results and analysis. Finally, the paper concludes in

Section 5.

2. RELATED WORK
The work in [4] proposes an approach for processing

aggregate queries with the help of domain knowledge and

sensing constraints. An aggregate query may involve one or

more of the operations like- average, sum, minimum,

maximum, and count. For instance, consider the query “Is the

average of the temperatures of the nodes n1 and n2, greater

than 80”. To process this query, the BS collects temperature

from n1 and n2 and computes the average and checks if it is

greater than 80. The result of this query is Boolean. If the

domain semantics specifies that the temperature at any node is

between 0 and 100, this knowledge can be used by BS in

simplifying the execution. For example, to process this, BS

can retrieve one of the temperatures first and check if it is less

than 60. If so, it tells that independent of the temperature

reading at the other node the result is false. In that case, it

need not send and process the query for n2. This way

unnecessary query/result transmission and processing are

avoided. This approach can be applied only for certain

queries, which use universally fixed knowledge and

constraints.

The Query model in [5] allows queries to specify

geographical area rather than explicitly stating single data

sources. Each query region is specified as a bounding

rectangle using co-ordinates. Two queries q1 and q2 are said

to exhibit containment relation, when the query, q1 is found to

request data from the sensors within the geographical

boundaries specified by q2 or vice-versa. This is identified by

constructing R-tree, which stores the bounding rectangle co-

ordinates for each query. This R-tree is used to identify the

largest rectangle that contains all other rectangles. Now, the

BS will disseminate queries to the respective nodes contained

in the rectangle. The individual nodes process the queries and

transmit the results back to the BS where it is recompiled to

answer individual queries. This scheme eliminates

redundancy in query and result transmission, and significantly

increases the query efficiency. The drawbacks in R-tree

approach are as follows. While constructing R-tree, the

containment among the queries is identified by looking at the

geographical co-ordinates specified in individual queries.

Hence this containment relationship does not take the

conditions specified in the WHERE clause of the query i.e.,

filters applied on other parameters like time etc. This is the

major drawback of the R-Tree algorithm. As it is observed,

that in most of the wireless applications data retrieval mainly

based on the conditions specified in WHERE clause with

respect to time, it is believed that if the containment

relationship is characterized by time points, it is more likely to

increase the effectiveness.

The work in [7] presents formulation of the problem of query

scheduling at the BS, and also solves this with an efficient

query scheduling algorithm. The paper solves the problem of

scheduling queries with different sliding window sizes and

different frequency upper bounds to share computation. The

problem is formulated with these two different variations over

data streams, and also proposes a combination rule to classify

queries. The novel scheduling algorithm is to share the

computation between similar queries. Two queries are

compared for identifying their common tasks. This

comparison is done based on the frequency semantics of the

query. The scheduling algorithm uses Earliest Deadline First

(EDF) to solve the situations of overload and under-load of

the system. This approach is limited to the semantics of

frequency and different sliding window sizes in a query. This

scheduling scheme does not consider event detection queries

and continuous queries.

With advancements in mobile devices, the sensor networks

are made available to mobile users wherever they arrive at. A

single sensor network supports multiple applications for

mobile users. The work in [8] deals with merging the queries

coming from different devices. These users can query the

WSN in different query formats and with different query

clauses. But, all the queries request data from the same sensor

network. So, two or more users may request same data or

partially same data. Therefore, it is highly desirable to

optimize the query set before disseminating into the network.

The work in [8] deals with merging the incoming queries from

various sources and writing a network query which is sent into

the network. The attributes from the user queries form

attribute list in the network query. The sampling period in the

network query is computed as the least sampling period

among the user queries. The network query formed will be a

single giant query disseminated into the network. The results

obtained from the network are filtered into their respective

query results. The query merging does not consider aggregate

queries and queries with GROUP BY clause and HAVING

clause and hence limits the scope for optimization.

To the best of our knowledge, none of the works done so-far

exploited the WHERE clause predicates of a query. Therefore,

a novel scheme is proposed to improve the energy efficiency,

by exploiting the cached results at BS and the containment

relationship among the queries submitted at the BS.

According to this, super-queries are formulated that contain

the results of all the queries related by containment.

International Journal of Computer Applications (0975 – 8887)

Volume 89– No.19, March 2014

11

3. PROPOSED SOLUTION
In this Section a detailed account of the proposed query

processing scheme for WSNs is given.

3.1 Overview of workflow for query

processing in the proposed solution
The external world submits queries at the BS. The queries

submitted at the BS are stored in a query register. Now, each

query from the query register may obtain its results

completely or partially on the cached results at BS.

Sometimes, the cached results may not be useful in any way.

In case a query finds its complete results at the BS, then the

query need not be disseminated into the network. But, if a

query yields partial results at the BS then the remaining

results are obtained from the network of nodes. For certain

queries which don’t find results at the BS, need to get their

query results from the network. When examined the queries

which need data from the network may exhibit certain overlap

in their query results. For a given set of queries, that are

submitted at BS in a given time interval the data requirements

using a bit-map is captured. After elapse of the time period, a

set of super-queries are framed from the bit-map which will

be disseminated into the network. The query results obtained

from the network of nodes will be stored in cached results at

the BS. Now, the BS has complete results for all the queries in

the register. Therefore, the queries from the query register are

executed upon the cached results. The query results are given

to the user.

3.2 Query Processing based on the cached

results at BS
With the available cached results at the BS, each query in the

query register may yield complete, partial or no results. But,

the challenge is to identify the data requirements of each

query. To solve this problem, a simple technique is proposed

that uses a bit-map. In general, a WSN is queried for the

sensor value(s) during a fixed time interval. The query results

are with two columns viz., the time-stamp and its sensor

values. Now, an empty two column query result table is

framed, where the first column values are generated with the

time-stamp for the required time interval. The second column

is the sensor values for their respective time-stamps, which

can either be obtained from the cached results at the BS or

from the network of nodes. Therefore, sensor values are

fetched for the required time-stamp from the cached results at

the BS if available. For the sensor values which are not

available in the cached results they need to be retrieved from

the network of nodes. Thus, values for the second column are

available either for all rows or only for some rows. The

following situations arise based on the values in the second

column of the query result table-

1. The second column is completely filled that means query

results are available in the cached results at the BS.

2. The data is partly filled, that means there are empty

locations for which data is unavailable at the BS.

3. The second column is empty, which means that the query

cannot be answered at the BS.

In the first case, the query can be completely answered at the

BS itself without transmitting the query into the network. The

second case gives partial results at BS and the rest from the

network. The third case is to completely retrieve from the

network. In the second and third cases, where the data needs

to be retrieved from the network, there may be certain

redundant data requirement among the queries. Hence, it is

desirable to minimize such redundant data transmissions in

the network. Therefore, a simple technique to solve this is

using the bit-map approach, presented in Section 3.3. The

flowchart for the same is shown in Fig 1.

Fig 1: Flowchart showing the proposed solution

3.3 Identifying query containment using

bit-map
In general, the queries which do not yield results at the BS are

disseminated into the network. The data requirements of these

queries are captured in a 2D bit-map. Now, the details of the

bit-map are explained. A bit-map is an array of bits for each

sensor. Each bit position in the bit-map represents a time-

interval. The queries obtained from second and third case in

Section 3.1 are the candidates for the bit-map. The

commonalities in multiple query results are exploited by

mapping all the query requirements onto the bit-map. Initially,

the bit-map has ‘0’ for all its bits. The data required at a

particular time interval is marked as bit ‘1’ against their time-

interval. Whenever bit ‘1’ is found existing in a cell, ignore

that and proceed. It means this particular data has already

been in requirement of some other query. Now, all the

incoming queries are plotted on the same bit-map for a certain

time period. Depending on the application, the time period

can be set. After the time period is elapsed, a set of super-

queries are framed from the bit-map, which is explained in

Section 3.4.

3.4 Framing super-query from the bit-map
At the BS, super-query-set from the bit-map are framed on

hourly basis or once every six hours depending on the

application and user requirement. With an increase in this

time period, the number of queries plotted on bit-map also

increase. To frame the super-query-set from the bit-map, scan

International Journal of Computer Applications (0975 – 8887)

Volume 89– No.19, March 2014

12

each bit-map from left to right.Whenever there is an entry ‘1’

, its corresponding time-stamp is considered as the lower

bound and continue scanning its adjacent cell for entry ‘0’ to

indicate the upper bound for the time series. Now, the upper

and lower bound time stamps are obtained for each sensor

from the bit-map. This forms the data requirement for each

sensor. Hence, super-query for each sensor with these unique

time-stamps can be framed. The same process is repeated for

all bit-maps to obtain a set of super-queries. Now, the bit-

maps are set to ‘0’ and repeat the proposed query processing

at the BS.

3.5 Dissemination of super-query and result

compilation
The super-queries framed in Section 3.4 are disseminated into

the network. The query results obtained from the network are

cached at the BS. Each query in the query register is now

executed upon the cached results at BS. Hence, the query

results are delivered to the user. Now, an illustration for the

proposed approach is presented in Section 3.6.

3.6 Illustration for the proposed approach
Here, using an example, the working of the proposed

approach is illustrated. First, the initial query processing at the

BS is explained, and then identification of query containment

using bit-map approach is detailed. For simplicity, a network

with 4 sensor nodes is considered and time interval for each

sensor node is assumed as one hour. The 5 queries {q1, q2, q3,

q4, q5} are as follows.

q1: SELECT * FROM S1, S2 WHERE t > 1 AND t < 2;

q2: SELECT * FROM S1, S3 WHERE t > 2 AND t < 3;

q3: SELECT * FROM S1, S4 WHERE t > 3 AND t< 5;

q4: SELECT * FROM S3, S2 WHERE t > 1 AND t< 4;

q5: SELECT * FROM S4, S2 WHERE t > 3 AND t< 6;

A sample bit-map is shown in Fig 2 below. A bit-map is

meant to capture the data requirements for each sensor. The

data required from each sensor for a particular time interval is

shown as a bit-map. Initially the bit-map is empty, which is

shown with ‘0’ in all its bit-positions.

Sensor

nodes/Time

1 2 3 4 5 6

S1 0 0 0 0 0 0

S2 0 0 0 0 0 0

S3 0 0 0 0 0 0

S4 0 0 0 0 0 0

Fig 2:Sample bit-maps showing initial value ‘0’ in all cells.

Let us assume that initially the BS has data from Sensor nodes

S1, S2, S3, S4 for time interval, t=1 to t=2, which forms the

cached results. The query q1 needs data from Sensor nodes S1,

S2 for time interval t=1 to t=2, which is available at the BS.

Therefore, q1 is answered at BS itself. Now q2 needs data

from Sensor nodes S1, S3 for time interval t=2 to t=3 which is

not available at the BS. So, the query is plotted onto the bit-

maps of Fig 2. Now, the value 1 is plotted in the bit-maps of

S1, S3 against the time interval t=2 to t=3 and the modified

bit-maps as shown in Fig 3 is obtained.

Sensor

nodes/Time

1 2 3 4 5 6

S1 0 1 1 0 0 0

S2 0 0 0 0 0 0

S3 0 1 1 0 0 0

S4 0 0 0 0 0 0

Fig 3: Bit-maps after plotting q2.

Now consider query q3, which needs data from S1, S4 for a

time-interval t=3 to t=5. This data is not available at the BS.

So, plot this on the bit-map obtained in Fig 3. Let us take up

the query q4, which needs data from S3, S2 for a time interval

t=1 to t=4. First it is executed on cached data at the BS. The

data is in cache at BS for a time interval of t=1 to t=2. But,

data from t=2 to t=4 is needed. Hence this unavailable data is

plotted on the bit-maps. In case if a particular bit position in

the bit-map has value 1 before plotting, this can be ignored, as

it has already been the requirement of previous query.

Similarly for query q5, the bit-maps obtained after the

previous query q4 will be the input bit-map. The Final bit-map

after plotting all 5 queries is shown in Fig 4 below.

Sensor

nodes/Time

1 2 3 4 5 6

S1 0 1 1 1 1 0

S2 0 1 1 1 1 1

S3 0 1 1 1 0 0

S4 0 0 1 1 1 1

Fig 4: Bit-map after plotting q2, q3, q4, and q5.

Now, the Fig 4 is considered for generating super-queries.

Each row specifies the required data from each sensor for

their time interval. Like Sensor S1 needs data from the

network for a time interval of t=2 to t=5. Hence the super-

query that can be generated is SELECT * from S1 where t > 2

and t < 5. Similarly, super-queries for the other sensors can be

given as -

SELECT * from S2 where t > 2 and t < 6.

SELECT * from S3 where t > 2 and t < 4.

SELECT * from S4 where t > 3 and t < 6.

Hence, this super-query–set generated will minimize the

volume of query/result transmission in the network.

4. PERFORMANCE EVALUATION
In this Section, the details about the simulator is presented,

evaluation of the query processing system with bit-map and

without bit-map scheme is performed, and the simulation

results are discussed.

4.1 Simulator
A simulator has been used to evaluate the effectiveness of the

bit-map approach. The simulator is developed using Java

technology. The simulator works with few parameters in the

network to be constant (like transmission range). The

simulator is built to work for network with varying sizes. The

sensor nodes are considered to form a fixed/static routing tree

structure. The transmission range for each sensor is fixed as

10. Each of the sensors is initialized with power 100Joules.

The sensors are employed for sensing temperature. The

dataset used here is obtained from Intel Berkeley research lab

data [10]. The query set is gathered from user experience. The

simulator is limited to have input queries varying in their time

intervals to reduce the complexity. Initially there is no cached

data at the BS. As queries request data from the network, as

and when the result is received, the BS stores a copy of the

same, which becomes cached data.

4.2 Experimental results
A set of experiments were conducted to show the performance

of the bit-map approach. The comparison is made based on

the following metrics.

International Journal of Computer Applications (0975 – 8887)

Volume 89– No.19, March 2014

13

1. The Number of packets transmitted in the network

for ‘n’ queries.

2. The Lifetime of the network.

3. The Number of queries executed in the lifetime of

the network.

The experimentation was done with networks of varying

sizes. The presented reading for each performance metric is

the average of the five simulation runs conducted on the

simulator. The metrics computed are as follows: (i) number of

packets transmitted, (ii) network lifetime and (iii) the number

of queries executed in each experiment. The average values of

the experiment results are depicted in the graphs presented in

this section. First the network is simulated without bit-map

approach and then using bit-map approach. In each

experiment, the same set of 1000 queries is used to compute

the number of packets transmitted in each of the networks.

From Fig 5, it is observed that for executing 1000 queries in

the network, the bit-map approach has shown a good decrease

in the number of packets transmitted. From the results it is

evident that as the network size increases the number of

packets transmitted in the network decreases.

Fig 5: Graph showing the No. of packets transmitted in

the network for executing 1000 queries.

As the network spends maximum energy for packet

transmission, battery power is reduced after each transmission

at every node. Hence, optimal battery power utilization is one

of the major issues in WSN. The lifetime of the network for

varying network size is presented as a graph in Fig 6. In the

bit-map approach, the size of the super-query-set disseminated

into the network is obviously smaller than the incoming

queries at the BS. Hence, the network power is conserved,

which increases the network lifetime. The graph in Fig 6

confirms this speculation.

Fig 6: Graph showing the network lifetime.

The next experiment quantifies the number of queries

executed during the network lifetime. The graph in Fig 7

shows the number of queries executed in the network of size

varying from 100 to 650. There is a steep increase in the

number of queries executed during the lifetime of the network

w.r.t. the size of the network. Also, the graph shows higher

number of queries executed in the bit-map approach.

Fig 7: Graph showing number of queries executed during

the lifetime of the network

From the above experimental results, it is clear that the bit-

map approach results in optimal power utilization. In addition

it is observed that effectiveness of the approach increases with

the network size. Hence, it can be concluded that bit-map

approach is successful in conserving the network power and

increasing its lifetime.

5. CONCLUSION
The novel query processing technique presented in this paper

exploits cached results at BS and query containment among

the ad-hoc queries to be executed in the network. If the query

results can be obtained in its entirety from the cached results

then execute such query against the cached results at the BS

and send the results to the user. Otherwise if the query results

need to be extracted partially or completely from the network

nodes, then the commonalities w.r.t., the data requirements of

all such ad-hoc queries need to be identified to formulate

super-queries, and transmit the same to the required nodes for

execution. A bit-map approach is used for identifying the

commonalities (containment) among the queries and to

formulate super-queries. This helps in minimizing the number

of queries executed and the volume of data transmitted in the

network which eventually leads to optimal utilization of the

International Journal of Computer Applications (0975 – 8887)

Volume 89– No.19, March 2014

14

power and longer network life. The focus of the query

processing scheme in this paper was on devising effective

approaches for processing ad-hoc queries. Nevertheless same

techniques also can be applied on continuous queries as well.

The experimental results prove the effectiveness of the

proposed approach.

6. REFERENCES
[1] Akylidiz, I.F., Su, W., Sankarasubramaniam, Y.,

Cayirici, E.: The survey on sensor networks. IEEE

Communications Magazine 40(8), 114–120 (2002).

[2] Castelluccia, C., Mykletun, E., & Tsudik, G. (2005,

July). Efficient aggregation of encrypted data in wireless

sensor networks. In Mobile and Ubiquitous Systems:

Networking and Services, 2005. MobiQuitous 2005. The

Second Annual International Conference on (pp. 109-

117). IEEE.

[3] Brayner, A., Lopes, A., Meira, D., Vasconcelos, R., &

Menezes, R. (2008). An adaptive in-network aggregation

operator for query processing in wireless sensor

networks. Journal of Systems and Software, 81(3), 328-

342.

[4] Yang, Chi, and Rachel Cardell-Oliver. An efficient

approach using domain knowledge for evaluating

aggregate queries in WSN, Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP), 2009

5th International Conference on. IEEE, 2009.

[5] Benzing, Andreas, Boris Koldehofe, Marco Volz, and

Kurt Rothermel, Multilevel predictions for the

aggregation of data in global sensor networks, In

Distributed Simulation and Real Time Applications (DS-

RT), 2010 IEEE/ACM 14th International Symposium on,

pp. 169-178. IEEE, 2010.

[6] Behzadan, Afshin, and Alagan Anpalagan, Optimization

of multiple overlapping queries for energy efficient

sensor communication, In Communications (QBSC),

2010 25th Biennial Symposium on, pp. 181-186. IEEE,

2010.

[7] Chen, Tao, Nong Xiao, and Fang Liu, Multi-aggregate-

query scheduling over data streams, In Parallel and

Distributed Computing, Applications and Technologies

(PDCAT), 2010 International Conference on, pp. 27-33.

IEEE, 2010.

[8] Müller, René, and Gustavo Alonso. "Shared Queries in

Sensor Networks for Multi-User Support", ETH,

Department of Computer Science, 2006.

[9] Huei-You Yang, Wen-Chih Peng and Chia-Hao Lo,

Optimizing Multiple In-Network Aggregate Queries in

Wireless Sensor Networks, Advances in Databases:

Concepts, Systems and Appliations. Springer Berlin

Heidelberg, 2007. 870-875.

[10] Intel Berkeley Research lab,

http://db.csail.mit.edu/labdata/labdata.html.

IJCATM : www.ijcaonline.org

