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1. INTRODUCTION 
Many different forms of continuous functions have been 

introduced over years. Most of them involve the concept of    

g-closed sets, -open sets, semiopen sets, sg-open sets, etc. In 

1987, Bhattacharya and Lahiri [5] introduced the class of 

semi-generalized closed sets. In 1990, Arya and 

Nour[3]defined generalized semiclosed sets. The concept of 

generalized closed sets was first initiated by Levine in 

1970[12]. The notion of b-open sets was defined by              

D. Andrijevic in 1996[2].In this paper a new class of sets 

called gd-closed sets has been introduced using the concept of         

d-closed sets by I.Arockiarani et al[10]. Further we study the 

basic properties of gd-closed sets. Using this new concept of 

sets we have introduced new class of functions called          

gd-continuous and gd-irresolute functions. Some of its basic 

properties and composition of functions is also discussed here. 

Preliminaries: We present here relevant preliminaries 

required for the progress of this paper   

Definition 1.1: A subset A of a topological space (X, ) is 

called 

1. Preclosed set[15] if cl(int(A))A, preopen set if  

A int(cl(A)) 

2.  -open set [17] if A   int(cl(int(A))),  -closed 

set if cl(int(cl(A))) A. 

3. Regular open set[19] if A=int(cl(A)), regular closed 

set if A=cl(int(A))) 

4. Semiopen set [11] if A  cl(int(A)), semiclosed set 

if int(cl(A) A. 

5. Semi-pre-open set[1] if A   cl(int(cl(A))),     

semi-pre-closed set if int(cl(int(A))) A. 

6. d-open set[10] if A scl(int(A))  sint(cl(A)) 

 

 

Definition 1.2: A subset A of a topological space (X,  ) is 

called                                                       

1. A generalized closed set[12] (briefly g-closed) set if 

cl(A)   U whenever A U and U is open. 

2. A generalized  semiclosed set[3] (briefly gs-closed if 

𝑠cl(A) U whenever AU and U is open. 

3. A -generalized closed set [13](briefly  g-closed) if 

 cl(A) U whenever AU and U is open. 

4. A generalized preclosed set [14](briefly gp-closed) if 

pcl(A) U whenever AU and U is open. 

5. A generalized pre regular closed set[9] (briefly       

gpr-closed) if pcl(A) U whenever AU and U is 

regular open  

6. A -regular generalized closed set[12] (briefly          

 gr –closed) if  cl(A) U whenever AU and U 

is regular open  

7. A regular generalized closed set [18](briefly rg-closed) 

if cl(A)U whenever AU and U is regular-open. 

2. GENERALIZED D-CLOSED SETS 
Definition 2.1: A subset A of a space X is called Generalized 

d-closed set if dcl(A) U whenever AU and U is open. 

The class of all generalized d-closed sets is denoted by 

GDC(X). 

Definition 2.2:  

i. The gd-closure of a subset A of X is denoted by 

gdcl(A) is the smallest gd-closed set containing A. 

ii. The gd-interior of  a subset A of X is denoted by 

gdint(A) is the largest gd-open set contained in A. 

Proposition 2.3[9]: The intersection of a open set and d-open 

set is d-open set. 

Proposition 2.4: 

i. Every closed set is gd-closed set. 

ii. Every d-closed set is gd-closed set.                                                                                                    
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Proof:  

i. Let A be closed set such that AU where U is 

open in (X,  ). Since A is closed cl(A)=AU. 

But every closed set is d-closed. Hence A is         

gd-closed. 

ii. Let A be d-closed set such that AU where U is 

open in (X,  ). Since A is d-closed dcl(A)=AU. 

Hence A is gd-closed. The converse of the above 

result need not be true may seen by the following 

example. 

Example 2.5: Let X= {a, b, c},  = {X,  , {a}, {a, b}}.   

A= {a, c} is gd-closed but not d-closed or closed.  

Proposition 2.6: Every  -closed set is gd-closed set.                                                                        

Proof: Let A be  -closed set such that AU where U is 

open in (X,  ). Since A is  -closed  cl(A)=AU. But 

every -closed set is d-closed. Hence A is gd-closed. The 

converse of the above result need not be true may seen by the 

following example. 

Example 2.7: Let X= {a, b, c},  = {X,  , {a}, {b, c}}.   

A= {b} is gd-closed but not  -closed. 

Proposition 2.8: Every preclosed set is gd-closed set.                                                                               

Proof: Let A be preclosed set such that AU where U is 

open in (X,  ). Since A is preclosed set pcl(A)=AU. But 

every preclosed set is d-closed set. Hence A is gd-closed. The 

converse of the above result need not be true may seen by the 

following example.   

Example 2.9: Let X= {a, b, c},  = {X,  , {a}, {a, b}}.   

A= {a, c} is gd-closed set but not preclosed set. 

Proposition 2.10: Every semiclosed set is gd-closed set.                                                                               

Proof: Let A be a semiclosed set such that AU where U is 

open in (X,  ). Since A is semiclosed set scl(A)=A U. 

But every semiclosed set is d-closed set. Hence A is            

gd-closed. The converse of the above result need not be true 

may seen by the following example. 

Example 2.11: Let X= {a, b, c},  = {X,  , {a}, {b, c }}. 

A= {b} is gd-closed set but not semiclosed set. 

Proposition 2.12: Every g-closed set is gd-closed set.                                                                             

Proof: Let A be a g-closed set then cl(A) U whenever A

U and U is open in (X,  ). Since every closed set is        

d-closed set we have dcl(A)  cl(A) U. Hence A is       

gd-closed. The converse of the above result need not be true 

may seen by the following example. 

Example 2.13: Let X= {a, b, c},  = {X,  , {a}, {a, b}}. 

A= {b} is gd-closed set but not g-closed set. 

Proposition 2.14: Every  g-closed set is gd-closed set.                                                                                

Proof: Let A be a g-closed set then  cl(A) U whenever 

AU and U is open in (X, ). Since every  -closed set is d-

closed set we have dcl(A)   cl(A) U. Hence A is    d-

closed. The converse of the above result need not be true may 

seen by the following example. 

Example 2.15: Let X= {a, b, c},  = {X,  , {b, c}}. A= {b} 

is gd-closed set but not  g-closed set. 

Proposition 2.16: Every gp-closed set is gd-closed set.                                                                                

Proof: Let A be a gp-closed set then pcl(A) U whenever A

U and U is open in (X,  ). Since every pre closed set is  

d-closed set we have dcl(A)   pcl(A) U. Hence A is    

gd-closed. The converse of the above result need not be true 

may seen by the following example. 

Example2.17: Let X= {a, b, c}, = {X,  , {a}, {b}, {a, 

b}}. A= {a} is gd-closed set but not gp-closed set. 

Proposition2.18: Every gpr-closed set is gd-closed set.                                                                                

Proof: Let A be a gpr-closed set then pcl(A) U whenever 

AU and U is regular open in (X,  ). Every regular open is 

open hence AU and U is open. Since every pre closed set 

is d-closed set we have dcl(A)  pcl(A) U. Hence A is   

gd-closed. The converse of the above result need not be true 

may seen by the following example. 

Example 2.19: Let X= {a, b, c},  = {X,  , {a}, {b}, {a, 

b}}. A= {a} is gd-closed set but not gpr-closed set. 

Proposition 2.20: Every  gr-closed set is gd-closed set.                                                                                 

Proof: Let A be a  gr-closed set then  cl(A) U 

whenever AU and U is regular open in (X,  ). Every 

regular open is open hence AU and U is open. Since every 

 -closed set is d-closed set we have dcl(A) cl(A) U. 

Hence A is gd-closed. The converse of the above result need 

not be true may seen by the following example. 

Example2.21: Let X= {a, b, c},  = {X,  , {a}, {b}, {a, 

b}}. A= {a} is gd-closed set but not  gr-closed set. 

Proposition 2.22: Every rg-closed set is gd-closed set.                                                                                  

Proof: Let A be a rg-closed set then cl(A) U whenever A

U and U is regular open in (X,  ). Every regular open is 

open hence AU and U is open. Since every closed set is   

d-closed set we have dcl(A)   cl(A) U. Hence A is      

gd-closed. The converse of the above result need not be true 

may seen by the following example. 

Example 2.23: Let X= {a, b, c},  = {X,  , {a}, {b}, {a, 

b}}. A= {a} is gd-closed set but not rg-closed set. 

Proposition 2.24: Every gs-closed set is gd-closed set. 

Proof: Let A be a gs-closed set then scl(A) U whenever A

U and U is open in (X,  ). Since every semiclosed set is 

d-closed set we have dcl(A)  scl(A) U. Hence A is      

gd-closed. The converse of the above result need not be true 

may seen by the following example. 

Example 2.25: Let X= {a, b, c},  = {X,  , {b, c}}. A= {b} 

is   gd-closed set but not gs-closed set. 
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From the above examples we have the following diagram 

                                                                                                                                                       

             

             

             

             

                                              

             

                 

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

                                   

                                                                  

Figure. 1 Relation between generalized d-closed set and other existing closed sets 

                 1.gs closed set   2.g closed set   3. gr closed set   4. rg closed set   5. gpr closed set   6. gp closed set    

                7. g-closed set   8.  -closed set   9.semiclosed set   10.d-closed set  11.preclosed set   12.closed set  

                13.gd-closed set. 

Lemma 2.26: For a subset A of a space X the following hold 

a. dcl(A)=A  (sint(cl(A)  scl(int(A)) 

b. dint(A)=A  (scl(int(A)  sint(cl(A)) 

c. dcl(X-A)=X-dint(A) 

Theorem2.27: A set A is gd-open if and only if F dint(A) 

whenever F is closed and  FA. 

Proof: Let A be gd-open and suppose that FA and F is 

closed. Then X-A is gd-closed set. Thus gdcl(X-A) X-F . 

But dcl(X-A)=X-dint(A). Thus X-dint(A) X-F. Hence F
dint(A).Conversely, let F be closed set with F dint(A) 

whenever FA. FA(X-A)   (X-F). Also F
dint(A). Thus (X-dint(A))=dcl(X-A)  X-F where (X-F) is 

open. Thus A is gd-open. 

 

Theorem 2.28: Let A be closed subset of (X, ). Then 

dcl(A)-A does not contain any non empty closed set.                                                                                                                                                                      

Proof: Let A be generalized d-closed and F be a non empty 

closed set such that F dcl(A)-A. Then F  dcl(A)  F 

dcl(A) and F cA . F cA 
cF  is open. Then dcl(A)


cF F

cAdcl ))(( .F dcl(A) cAdcl ))(( F

  which is a contradiction. Hence   dcl(A)-A contains no 

non empty closed set. 

Theorem 2.29: Let A be a   gd-closed subset of (X, ) and A

B dcl(A), then B is   gd-closed.                   

Proof: Let AB dcl(A) then dcl(A)=dcl(B).Since A is   

gd-closed, dcl(A) G where AG; G is open in X. Let B

G and G is open in X, since A is gd-closed and since 

dcl(A)=dcl(B), dcl(B) G. Thus B is gd-closed. 

 

1 2 

3 12 

11 4 

10 5 

9 6 

13 

8 7 
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Theorem 2.30: A gd-closed set A is d-closed if and only if 

dcl(A)-A is closed                                              

Proof: Let A be gd-closed. If A is d-closed then dcl(A)-A=  

is a closed set. Thus dcl(A)-A is closed. Conversely, let 

dcl(A)-A be closed. .dcl(A)-A is closed subset of  itself hence 

dcl(A)-A contain any non empty closed subset thus dcl(A)-A 

=  (i.e) A=dcl(A).Hence A is d-closed. 

Definition 2.31: Let BAX, then we say B is gd-closed 

relative to A if )(BdclA U when BU and U is open 

in A 

Theorem 2.32: Let BAX where A is gd-closed and 

open. Then B is gd-closed relative to A if and only if B is    

gd-closed.                                                                                                                                                        

Proof: Let BAX, where A is gd-closed and open and 

let B is gd-closed relative to A. Since BA and A is gd-

closed and open dcl(A) A. Thus dcl(B)  dcl(A) A.

)(BdclA =A dcl(B) so dcl(B)= )(BdclA A. If 

B is gd-closed relative to A and U is a open subset of X such 

that BU then B=B AU A where U A is open in 

A. Thus B is gd-closed relative to A. dcl(B)= )(BdclA  

U AU. Thus B is  gd-closed in X. Conversely, Let B 

is gd-closed in X and U is open subset of A such that BU. 

Let U=V A for some open subset V of X.As B  V & B is 

gd-closed in X ,dcl(B) V. Thus )(BdclA =dcl(B) A

V A=U. Hence B is gd-closed relative to A. 

Corollary 2.33: Let A be a gd-closed set which is also open 

then A F is gd-closed whenever F is d-closed.                                                                                                                                                                       

Proof: Let A be a gd-closed and open then dcl(A) A. But 

A  dcl(A) thus A=dcl(A).Hence A F is d-closed. Every 

d-closed is gd-closed. A F is gd-closed. 

Remark 2.34: Intersection of two gd-closed sets need not be 

gd-closed. 

Example 2.35: Let X={a, b, c}, ={X,  ,{a}}. A= {a, b} 

which is gd-closed set. B= {a, c} which is gd-closed set. But 

A B= {a} is not gd-closed. 

Remark 2.36: Union of two gd-closed sets need not be       

gd-closed. 

Example 2.37: Let X={a, b, c},  ={X,  ,{a}, {c}, {a, c}}, 

A={a} which is  gd-closed set. B={c} which is gd-closed set.  

But A B = {a, c} is not gd-closed. 

3. gd-Continuous and   gd-Irresolute 

Functions 
Definition 3.1: A function f :(X,  ) (Y, ) is called     

gd-continuous if the pre image of every closed set of Y is     

gd-closed in X. 

Definition 3.2: A function f: (X,  )   (Y,  ) is called 

gd-irresolute if the pre image of every gd-closed set of Y is 

gd-closed in X. 

Definition 3.3: A function f: (X,  )   (Y,  ) be            

d-irresolute if  the pre image of every d-open set in Y is        

d-open in X. 

Definition 3.4: A function f: (X,  )   (Y,  ) is called    

d -continuous if the inverse image of every closed set in Y is 

d-closed in X 

Theorem 3.5: Let f:(X,  )   (Y,  ) be d-continuous, 

then f is gd-continuous but not conversely.                   

Proof: Let V be a open set in Y. Since f is d-continuous then 

)(1 Vf 
is d-open in X. But every d-open set is gd-open in 

X hence )(1 Vf 
 is gd-open in X for VY. Thus f is       gd-

continuous. 

Example 3.6: Let X= {a, b, c},  = {X,  , {a}, {a, b}}.   

Y= {a, b, c},  = {{X,  , {a}, {b}, {a, b}}. Let f:(X,  ) 

(Y,  ) be identity map. f is gd-continuous but not d-

continuous because 
1f (b)={b}DO(X). 

Theorem 3.7: Let f: (X,  )   (Y,  ) be a continuous 

function. If f is gd-continuous then for each point x   X and 

for each open set V in Y containing f(x), there exists a          

gd-open set U containing x such that f(U) V     

The proof follows immediately.      

Theorem 3.8: If the bijective map f :(X,  )  (Y,  ) is   

d-irresolute and open, then f is gd-irresolute.         

Proof: Let V be gd-closed in Y and let )(1 Vf    U where 

U is open in X. Hence V f(U) holds. Since f(U) is open and 

V is sgd-closed in Y dcl(A)  f(U).Therefore 
1f (dcl(V)

U and since f is d-irresolute and dcl(V) is d-closed in Y,   

1f (dcl(V) is d-closed set in X. Thus dcl( )(1 Vf 
)      

dcl(
1f (dcl(V))) =

1f (dcl(V)  U. Hence )(1 Vf 
is     

gd-closed and thus f is gd irresolute.    

Remark 3.9: The concept of d-irresoluteness and                

gd-irresoluteness are independent. 

Example 3.10: Let X= {a, b, c},  = {X,  , {a}, {a, b}}. 

Y= {a, b, c},  = {{X,  , {a}}. Let f:(X,  )   (Y,  ) 

be identity map. Here f is d-irresolute but not gd-irresolute 

since V={c}  GDO(Y) but 
1f (c)={c}GDO(X). 

Example 3.11: Let X= {a, b, c},  = {X,  , {a}}. Let f:(X, 

 ) (Y,  ) be defined by f(a)=f(c)=b, f(b)=c. Here f is   

gd-irresolute but not d-irresolute, since V={b}  DC(X) but 

𝑓−1(𝑏)={a, c}D  C(X). 

Theorem 3.12: Let f:(X,  )   (Y,  ) be a map from a 

topological space (X,  ) into a topological space (Y,  ), 

then the following are equivalent. 

a) f is gd-continuous. 

b) The inverse image of each open set in Y is gd-open 

in X.  
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The proof follows immediately from the definition. 

Theorem 3.13: Let f:(X,  )  (Y,  )  and g: (Y, 
)(Z,  ) be any two functions then  

1. gof: (X,  )( Z,  ) is gd-continuous if g is 

continuous and f is gd-continuous. 

2. gof: (X,  )   ( Z,  ) is gd-irresolute if g is     

gd-irresolute and f is gd- irresolute. 

3. gof: (X,  )   ( Z,  ) is gd-continuous if g is 

gd-continuous and f is gd-irresolute. 

Proof: 

1. Let V closed set in (Z,  ). )(1 Vg 
  is closed in 

(Y,  ), since g is continuous. Thus 1f ( )(1 Vg 
) 

is gd-closed in (X,) since f is gd-continuous. Thus 

gof is gd-continuous. 

2. Let V be gd-closed set in (Z,  ), since )(1 Vg 
 is 

gd-closed in (Y,  ).Since f is gd-irresolute, is     

gd-closed in (X,  ). Thus gof is gd-irresolute. 

3. Let V be closed set in (Z,). Thus )(1 Vg 
 is       

gd-closed in (Y,  ).Since f is gd-irresolute            

1f ( )(1 Vg 
) is gd-closed in (X,  ). Thus gof is 

gd-continuous. 

Definition 3.14: A topological space X is called a d-

2

1T  space 

if every gd-closed set is closed. 

Definition 3.15 [13]: A topological space X is called a 

2

1T  

space if every g-closed sets is closed. 

Definition 3.16 [7]: A topological space is called a bT
space if every  g-closed set is closed. 

Proposition 3.18:   

1. Every d-

2

1T  space is a 

2

1T  space 

2. Every d-

2

1T space is a bT space. 

Example 3.18: Let X={a, b, c},  = {X,  , {a} {b},{a, 

b}}.Then the collection is 

2

1T  and bT but not d-

2

1T  since 

A={b} is gd-closed but not closed. 

Theorem 3.19: Let f:(X,  )  (Y,  ) be gd-irresolute 

function then f is d-irresolute function if X is d-

2

1T  space. 

Proof: Let V be d-closed set in Y. Since V is gd-closed in Y 

and f is gd-irresolute, )(1 Vf 
is gd-closed in x. But X is       

d-

2

1T  so )(1 Vf  is closed in X. Every closed is d-closed 

hence f is d-irresolute. 

Theorem 3.20: Let X and Z be any topological spaces and Y 

be a d-

2

1T  space then the composition  

1. gof: (X,  )   ( Z,  ) is gd-continuous if g is 

gd-continuous and f is gd-continuous. 

2. gof: (X,  )   ( Z,  ) is d-continuous if  g is   

gd-continuous and f is d-continuous. 

3. gof: (X,  )   ( Z,  ) is gd-continuous if g is 

gd-irresolute and f is gd-continuous. 

4. gof: (X,  )   ( Z,  ) is d-continuous if g is    

gd-irresolute and f is d-continuous. 

Proof: 

1. Let U be closed set in Z, then )(1 Ug 
is gd-closed 

in Y. But Y is a d-

2

1T  space thus )(1 Ug 
is closed 

in Y. Since f is gd-continuous 
1f ( )(1 Vg 

) is 

gd-closed in X. Thus gof is gd-continuous. 

2. Let U be closed set in Z, then )(1 Ug 
is gd closed 

in Y. But Y is a d-

2

1T  space thus )(1 Ug 
is closed 

in Y. Since f is d-continuous 
1f ( )(1 Vg  ) is      

d-closed in X. Thus gof is d-continuous. 

3. Let U be gd-closed set in Z, then )(1 Ug 
is         

gd-closed in Y. But Y is a d-

2

1T  space thus 

)(1 Ug 
is closed in Y.Since f is gd-continuous

1f ( )(1 Vg  ) is gd-closed in X. Thus gof is gd-

continuous. 

4. Let U be gd-closed in Z, then )(1 Ug 
is gd-closed 

in Y. But Y is a d-

2

1T space thus )(1 Ug 
is closed 

in Y. Since f is d-continuous 
1f ( )(1 Vg  ) is      

d-closed in X. Thus gof is d-continuous in X. 

3. CONCLUSION 
In general toplogy g-closed sets has a major role. Since its 

inception several weak forms of g-closed sets have been 

introduced in general toplogy. The present paper investigated 

in new weak form of g closed sets namely gd-closed sets and 

functions namely gd-irresolute functions in the light of d-open 

sets in topological spaces.  Some of its basic properties and 

composition of functions is also discussed. Many examples 

had been given to justify the results. 
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