
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 18, March 2014

9

GPU Matrix Sort (An efficient implementation of

Merge Sort)

Mukul Panwar Monu Kumar Sanjay Bhargava, Ph. D
DIT University, Dehradun DIT University, Dehradun DIT University, Dehradun

ABSTRACT

Sorting is one of the frequent used operations in computer

science. Due to highly parallel computing nature of GPU

architecture; it can be utilized for sorting purpose. We have

considered the input array that is to be sorted in a 2D matrix

form and applied a modified version of merge sort on that

matrix. This modification leads to a much efficient sorting

algorithm with reduced complexity. Therefore a lot of work

has already been done to improve the efficiency of sorting

algorithms. In this paper We have used the GPU architecture

for solving the sorting problem.

Keywords

Sorting, Multi-Core, CUDA, Quicksort.

1. INTRODUCTION
In this paper We have described an efficient parallel

algorithmic implementation of merge sort, GPU matrix sort,

designed to take advantage of the highly parallel nature of the

graphics card. Merge sort is an efficient sorting algorithm in

practice for single processor system. It is well known that

merge sort is a comparisons –based sorting requires 0(nlgn)

comparisons to sort n elements[1][2].Merge sort best case,

average case and worst case time complexity is 0(nlgn).

Today’s graphics cards contain very powerful multicore

processors. These multicore processors are mainly used in

gaming. But since the processors are specialized for compute

intensive highly parallel computations, they could be used to

solve problems. Standard graphics API such as open GL [3]

and DirectX [4] do not expose much of the underling

computational capabilities that graphic hardware can provide.

The lack of convenient data types, basic computational

functionality, and a generic model renders this environment

far from attractive from developers. The Compute Unified

Device Architecture (CUDA) introduced by NVIDIA [5] is a

significant advance, exposing several hardware features that

are not available via the graphics API. CUDA consist of

minimal set of extensions to the C language and a runtime

library that provide function to control the GPU from the host,

as well as device specific functions and data types. At the top

level, an application written for CUDA consist of serial

program running on the CPU, and a parallel part, called a

kernel that runs on the GPU. A kernel however, can only be

invoked by a parent process running on the CPU. As a

consequence, a kernel cannot be initiated as a standalone

application and it strongly depends on the CPU process that

invokes it. Each kernel is executed on the device as many

different thread organized in thread block. Thread blocks are

executed by multiprocessors of the GPU in parallel.

2. RELATED WORK
Quick sort is a very famous sorting algorithm and it can be

parallelized. The obvious way to take advantage of its

inherent parallelism by just assigning a new processor to each

new subsequence. This means, however, that there will be a

very little parallelization in the beginning, when the sequence

is few [6]. To deal with this issue, Caderman [7] introduces a

parallel version of quick sort combining CPU process and

GPU process. The algorithm is theoretically optimal, but the

data transferring between the CPU and GPU slows down the

running time in practice.

If we use the concept of merge sort than it will proceed from

bottom to top while quick sort is a top down approach. It

implies from the very beginning of algorithm we will have

sufficient sub arrays to work with different processors. A

more general usage of merge sort is to sort many sorted sub

arrays into whole sorted array, due to its GPU friendly

memory access pattern[8][9]. Currently there is a big interest

in sorting algorithms on GPU. Prucell et al [10] have

presented an implementation of bitonic merge sort on GPU

based on an implementation by kapasi et al [11]. Sintorn et al

[12] presented a hybrid sorting algorithm which splits the data

with a bucket sort and then uses merge sort on the resulting

blocks.

3. IMPLEMENTATION
Let A be an array having n items such that A= {a1, a2, a3, a4_

_ _ _ _ _an} and each ai has a key value ki .Array A has to be

sorted in increasing order of the keys. The input array A is

organized into a 2D matrix which has w rows and h columns

and the items are filled in row major i.e. row by row. In the

above mentioned scheme row of any item ai is given by floor

(i/h). The column of any element ai is given by (i mod h). Any

item ai can be referred as A(x, y) where x is row number and y

is column number. Any item ai is smaller than item aj if ki<kj.

The basic scheme of matrix sort has 2 steps.

i) Sorting of individual rows of matrix.

ii) Merge the two sorted rows recursively until we get one

sorted array.

In the GPU architecture we can assign a single processor to

each row for the sorting of that row. A single row is having h

elements (due to h columns in the matrix) therefore the sorting

of h elements will take hlgh time using quick sort. Therefore

initially to work with w rows at least w processors are

required. We can have more than w processors. In this case

more than 1 processor will work on a single row. As in GPU

architecture all the processor will work simultaneously

therefore all the w rows can be sorted simultaneously. The

sorting of a single row by a single processor require hlgh time

where h is the size of a row. Total time required for sorting of

w rows will also be o (hlgh) because all the processors are

working simultaneously.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 18, March 2014

10

Table 1

S.No. Row Time Required Sorted By

Row 1 [h elements] hlgh Processor P1

Row 2 [h elements] hlgh Processor P2

Row 3 [h elements] hlgh Processor P3

- - - -

- - - -

- - - -

- - - -

Row w [h elements] hlgh Processor w

This will complete the first step of the GPU matrix sort i.e.

sorting of individual rows of matrix. The next step of the GPU

matrix sort will be merging of the two sorted rows recursively

until we get one sorted array. The two sorted rows can be

merged by a single processor using the merge procedure given

below.

Merge Procedure: [1]-

Input:-Merge procedure will take two sorted rows say wi and

wk as input both having h elements

Output: - Merge procedure will return a sorted array sw

having 2h elements.

Algorithm:-

Merge (wi,wk)

 m=1, c=1, t=1;

 While(c<=h and t<=h)

 If (wi[c] <= wk[t])

 Sw[m] = wi[c]; m++; c++;

 else

 Sw[m] = wk[t]; m++; t++;

 If(c>h)

 While(t<=h)

 Sw[m]=wk[t];

 t++; m++;

 else

 While(c<=h)

 Sw[m] =wi[c];

 c++; m++;

return sw;

The time complexity of the merge procedure will be 0(2h).

After the first pass of merge w rows will become w/2 such

that each row will have 2h elements. The first pass of merging

will take 0(2h) time because the merging of all the rows can

be done simultaneously by w/2 or more processors.

Sorted row 1 Sorted row (1 & 2)

Sorted row 2 Sorted row (3 & 4)

Sorted row 3 After merging of Sorted row (4 & 5)

Sorted row 4 pass 1

Sorted row (5 & 6)

..

.

Sorted row w-1

Sorted row (w-2& w-3)

Sorted row w Sorted row (w-1 & w)...

(Total w/2 rows)`

The above procedure of merging the rows will take place

repeatedly until we get one array having n elements in sorted

order.

After pass 1 each row will have 2h elements = 21h elements.

After pass 2 each row will have 4h elements= 22h elements.

After pass 3 each row will have 8h elements= 23h elements.

After pass 4 each row will have 16h elements= 24h elements.

Similarly

After pass k each row will have 2kh elements.

For k to be final merge pass 2kh =n

 2k=n/h

 Taking lg2 on both sides we get

 k lg22= lg2 (n/h)

 k=lg2 (n/h)--------------------------------- eqn (1)

Since n is the total number of array elements therefore n can

be written as n= w×h

Where w= number of rows in matrix, h=number of columns

in matrix.

Put the value of n in equation 1

Therefore k= lg2 ((w×h)/h)

K= lg2w. So from the above discussion it is clear that lg2w

merge passes will be required for getting a sorted array of n

elements. Now the total time complexity of merging will be

 time complexity of merging in Pass i
𝑘=𝑙𝑔𝑤
𝑖=1 .

That is equal to:-

Time complexity merge in pass 1 +Time complexity of merge

in pass 2 +…………………….Time complexity of merge in

pass k .

=21h +22h +23h +24h +………………………….2kh.

=21h +22h +23h+ 24h+………………………….2lgwh.

=h (21 +22 +23+ 24+………………………….2lgw) ----eqn (2)

Above series is a G.P. having a=2, r=2 and n=lg2w.

Sum of G.P. = a (rn-1)/(r-1)

Therefore sum will be = 2(2lgw-1)/ (2-1)

 = 2×2lgw- 2

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 18, March 2014

11

 = 2×w-2

On putting value of sum in eqn 2 we get = h (2w-2)

 = 0(wh)

The total time complexity of the proposed algorithm= Time

complexity of sorting rows + Total time complexity of

merging.

Therefore total time complexity of algorithm will be=0(hlgh+

wh).

4. EXPERIMENTS
As we have proved in implementation section the total

running time complexity of the G.P.U matrix sort is

0(hlgh+w)----eqn (1)

Where w- No of rows in the input matrix.

 h- No of columns in the input matrix.

If we arrange the Input in a square matrix then number of

rows will be equal to the number of columns i.e. w=h.

On putting w=h in equation (1) we get

Total time complexity = 0(hlgh +h.h)

 = 0(hlgh + h2)

 = 0(h2)

If we compare the above calculated time complexity with the

other standard sorting algorithm on single CPU say quick sort.

We can see for sorting n elements on a single CPU by quick

sort time complexity will be 0(nlgn). If we want to calculate

the speed up factor with respect to quick sort speed up will be

given by

Speed up=Time complexity of Quick sort / Time complexity

of GPU matrix sort

 = nlgn / h2________________eqn (2)

Here n is the total number of items in input array. In case of

matrix arrangement n can be written as n= Number of rows ×

Number of columns. For similar matrix, Number of rows =

Number of columns

Therefore n= h× h= h2

On putting the value of n in equation (2) we get

Speed up = h2 lg2h / h2

 = lg2h
2

Therefore Speed up= 2× lg2h -------------------- eqn (3).

 If we take n= 1024

Then h=32 (n=h×h)

Put the value of h in equation 3

Speed up= 2 ×lg232

Speed up=10.

Therefore the GPU matrix sort will be 10 times faster than

quick sort on single CPU if input size is 1k and it will increase

reasonably as we will increase the input size. We have done

some experiments on an NVIDIA GIX 280 graphics card with

240 streaming processors.

Table 2

Input

Size
w h Best running time

1M 32 32 18.768 ms

2M 64 32 41.861 ms

4M 64 64 93.121 ms

8 M 128 64 198.207 ms

5. CONCLUSION
This paper presents a sorting algorithm which is an efficient

implementation of merge sort using GPU architecture. The

implementation is simple and straightforward, it arranges the

input array to be sorted into a 2D matrix. Each row of input

matrix can be sorted by quick sort simultaneously by

assigning each row a different thread. By this way We have

sorted every row of input matrix in same time span after We

have applied merging of individual rows in sorted manner. By

this way the time complexity of the sorting procedure comes

as O (h2) where h is the number of rows in input matrix.

6. REFERENCES

[1] T.H. Coremen, C.E. Leiserson, R.L Rivest and C Stein,

Introduction to algorithms, second Edition. The MIT

Press and McGrawHill Book Company, 2001.

[2] D.E. Knuth, Art of Computer Programming, Volume 3:

Sorting and Searching. Addison-wesely Professional,

second ed., April 1998.

[3] OpenGL- The Industry Standard for High Performance

Graphics. http://www.opengl.org.

[4] Microsoft’s DirectXdeveloper site:

http://msdnmicrosoft.com/directx.

[5] NVIDIA Compute Unified Device Architecture (CUDA)

Toolkit, version3.2.

http://www.developer.nvidia.com/object/cuda-3-2-

downloads.html.

[6] D.J. Evans and R.C. Dumbar. The parallel Quick sort

algorithm Part 1. Run time analysis. Int J. Compute

Math, 12:19-55, 1982.

[7] D Cederman and P Tsigas “GPU- Quicksort: A practical

quick sort algorithm for graphics processor”. J. Exp

Algorithms, vol. 14 PP.1.4.-1.24-2009.

[8] N Satish, M Harris and M. Garland “Designing efficient

sorting algorithms for manycore GPU’s” in 23rd IEEE

International Symposium on Parallel and Distributed

Processing 1P.1-10-2009.

[9] M Harris, S Sengupta and JD Owens, “Parallel Prefix

sum (scan) with CUDA” in GPU Gems 3(H. Naguyen,

ed), Addison Wesley, August 2007.

[10] Timothly J. Prucell Craig Donner, Mike Cammarano,

Henrik Wann Jensen, and Pal Hanrahan. Photon

Mapping on Programmable Graphics Hardware Pages

41-50. Eurographics Association 2003.

[11] Ujval J Kapasi, William J Dally, Scott Rixner, Peter R

Mattson, John D Owens, Operations for data –parallel

architecture.

[12] Erik Sintorn and Ulf Assarsson. Fast parallel GPU

sorting using a Hybrid algorithm. In workshop on

General purpose processing on Graphics processing units

2007.

IJCATM : www.ijcaonline.org

