
International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 15, March 2014 

31 

Prevention of Malicious Attack on Smart Phones 

using Amendment Capture Service 

 
S. Fouzul Hidhaya 

B.S. Abdur Rahman University 
Chennai, Tamil Nadu, India 

 Angelina Geetha 
B.S. Abdur Rahman University 

Chennai, Tamil Nadu, India 

 

ABSTRACT 

Sensitive data and information is at a greater risk due to the 

exploitation of the smart phones by Malwares. Malwares that 

once targeted the computers are now fully designed to extract 

all the information possible from the mobile phones. This 

work focuses on preventing the malicious attack on the 

mobile phones by using Amendment capture service, which 

checks the smart phone periodically or when a change has 

taken place and executes the DtKFc algorithm to detect the 

malicious applications.   

General Terms 

Machine Learning, Decision tree Algorithm, K-fold 

Algorithm, Amendment Capture Algorithm. 

Keywords 

Android system, Application Permission, Android Security, 

Malicious Applications, Smart phone security 

1. INTRODUCTION 
Smart phones with its phenomenal growth has brought along 

security threat as a compliment. Smart phones have become 

its user‟s identity. All the personal information like messages, 

credentials, contacts, photos, videos, etc…  are stored in the 

phones. And this makes security of mobile phone applications 

gain importance. These applications either have vulnerable 

codes or they have code to exploit vulnerable Apps.  Study 

shows that the number of new malicious attack samples in 

2012 increased 8 times more than those available in 2011. 

Smart phone attack can be classified into 4 types [1] as  

1. OS attack – vulnerable points in Operating system 

2. Mobile App Attack – poor coding of applications  

3. Communication network attack – through Wi-Fi and 

Bluetooth 

4. Malware attack – Malicious coding written to 

exploit system. 

One of the most affected platforms is the Android OS. 

Kaspersky Lab as reported to have found 99% of newly 

discovered mobile malicious program to target android 

platform. A survey has found that Android is the most popular 

platform used by application developers. 71% of the 

developer population uses Android OS [2].  

The android operating system is designed to provide security 

between two applications. The inter communication between 

applications is restricted with permissions. These permissions 

for inter-communication are obtained during the installation 

process of the application. Normally these permissions are 

presented to the user in the „Terms and Conditions‟ page were 

the user clicks on „I Agree‟ and install the application without 

reading the terms. Even if the permissions are read, the 

permission package should be accepted as a whole, one 

cannot delete certain permissions from the list.  

This creates a loophole in the OS. Malicious software makes 

use of this loophole to steal the data from the user. When the 

application is first installed the malware cannot be found. The 

applications can get its malicious code as a patch or an update 

file from its server. Thus a application may be benign when 

first downloaded but may turn malicious after an update of the 

version. So constant monitoring of the system is required to 

secure data in a android system. 

In this work abnormality in the behavior of the smart phone is 

checked. The Android system is trained and tested using 

DtKFc algorithm. The program constantly monitors all the 

applications for an update or patch file. The history of the 

updated applications is then scrutinized to recognize if the 

system exhibited an abnormal behavior or a temporal pattern 

while running the application. The abnormality in the 

behavior can be recognized using the Decision Tree algorithm 

and a pattern can be recognized using a Knowledge Based 

Temporal Abstract Pattern algorithm.  If this application is 

found malicious then a warning message is given to the user. 

The rest of the paper is as follows: Section 2 describes the 

related work in the area, Section 3 describes the system 

design, Section 4 evaluates and analysis the result and Section 

5 concludes the paper. 

2. RECENT WORKS 
T. K. Buennemeyer et al. [3], in their work introduce 

capabilities developed for Battery - Sensing Intrusion 

protection system (B-SIPS) that raises an alert when an 

abnormal current change occurs. They have developed a 

Correlation Intrusion Detection Engine (CIDE) that provides 

power profiling for mobile devices and a correlated view of 

B-SIPS and Snort alerts.  The B-SIPS client is designed with 

customizable features to accommodate varying user skill 

levels. Users with advanced computer skills can configure the 

application to provide more refined detection and alert 

information, while basic users can effectively operate the 

system with default settings. 

Abijith Bose et al., [4] represented the behavior of malwares 

based on key observations. Using these observations they 

have proposed a framework to detect mobile worm, Virus and 

Trojans instead of signature based solutions. This work also 

defines various rules to identify the inter-process 

relationships. 

Shabtai et al. [5] designed a machine learning system taking 

into consideration various features of the system like the 

messaging, battery usage, CPU usage etc. 

E. Menahem et al. [6] have used classification algorithms for 

machine learning process. Here the behavior of the 

application during execution is studied, and classifiers are 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 15, March 2014 

32 

used to learn patterns in order to classify applications as 

malicious or benign. 

Garcia-Teodoro et al. [7] has given a detailed survey on the 

techniques used in anomaly- based network intrusion 

detection. They have classified the different techniques that 

could be used for intrusion detection.  

Griffin et al. [8] have used Signature-based method that 

depends on the identifying unique signatures that define the 

malware. This work uses string signatures, each of which is a 

contiguous byte sequence that potentially can match many 

variants of a malware family. But this can be applied only to 

known malicious code. 

SCanDroid [9] does a modular analysis to allow incremental 

checking of applications as they are installed on an Android 

device. It extracts security specifications from manifests that 

accompany such applications, and checks whether data flows 

through those applications are consistent with those 

specifications. 

A. Shabtai et al., [10] in their work does a assessment of the 

security in the android framework. To identify high risk 

threats they have conducted a methodological qualitative risk 

analysis.  

A. Shabtai [11] work does a static analysis of Android 

application files. They have developed a Knowlege based 

Temporal Abstraction (KBTA). Using KBTA, continuously 

measured data (e.g., number of running processes) and events 

(e.g., software installation) are integrated with a temporal 

abstraction knowledge-base; i.e., a security ontology for 

abstracting higher-level, meaningful concepts and patterns 

from raw, time-oriented security data, also known as temporal 

abstractions 

A. Shabtai [12] proposes the implementation of SELinux in 

Android in order to harden the Android system and to enforce 

low-level access control on critical Linux processes that run 

under privileged users. By choosing this route, we can protect 

better the system from scenarios in which an attacker exploits 

vulnerability in one of the high privileged processes. 

Aubrey-Derrick Schmidt [13] in their work, the features that 

describe the state of the device are extracted and these 

features are processed in a remote server. This will be used for 

anomaly detection. 

Jacob et al. [14] gives a survey of different reasoning 

techniques used by behavioral detectors. They have classified 

these detectors into main families- stimulation based detectors 

and formal detectors depending on their data collection and 

data interpretation mechanisms.  

3. SYSTEM ARCHITECTURE 
The system works as a service for the android system. This 

service is provided with highest priority and is given the 

privilege to interrupt any process in the android system. 

Figure 1 shows the system architecture. 

The system consists of two stages: 

1. The preparatory Phase 

2. The monitoring phase 

3.1 The Preparatory Phase 
In this phase the Android system is trained and tested using 

DtKFc Algorithm and KBTAP Algorithm. There are three 

main functions in this phase. 

1. Feature monitoring 

2. DtKFc Algorithm 

3. KBTAP Algorithm  

3.1.1 Feature monitoring 
For learning the behavior of a system some features of the 

system are monitored. These features are assigned an upper 

and lower threshold values. If the feature values are between 

these thresholds then the system is considered to behave 

normally. If there is a break in the threshold values then there 

may be a possibility of malicious application running in the 

system. The features and their parameters that are used to 

diagnose abnormal behavior are given in table 1.   

 

 

Figure 1: System Architecture 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 15, March 2014 

33 

Table 1. Feature Parameters 

Feature Parameters 

CPU CPU usage 

Runnable entities 

Total entities 

Battery power Battery voltage 

Battery Current 

Battery Temperature 

Operating System Process created 

Running process 

Context switch 

Messaging 

Behavior 

Similar time frame 

No. of occurrences 

Size and content of 

Messages 

 

3.1.2 DtKFc Algorithm 
Two algorithms, Decision tree and K-fold algorithm are 

combined to train and test the data sets and to produce 

efficient results. The decision tree algorithm takes the feature 

parameters as input and depending on their values classifies 

them as benign or malicious. The system is trained using 

decision tree algorithm. Both benign and malicious 

applications are provided for training. Simultaneously, the 

system is tested using the K-Fold algorithm. The given dataset 

of applications are divided into K sets. Each set will have a 

combination of both benign and malicious applications. The 

testing is done in K iterations.  In each iteration K-1 sets are 

taken for training. The remaining 1 set is taken for testing the 

system. The accuracy of the results is improved by this 

method. This method is named „the Decision tree and K-fold 

Combination algorithm‟ or the DtKFc Algorithm. Figure 2 

describes the training and testing process. 

3.1.3 KBTAP Algorithm 
Apart from the feature parameters abnormal behavior may 

occur in a pattern. For example, when an application is 

opened, there may be a sudden increase in CPU process 

followed by access to the SD card, followed by connecting to 

Wi-Fi and there may be increase in number of packets sent 

out. Another Example pattern, Camera application may be 

initiated and photos may be taken, followed by connecting to 

the Wi-Fi and the number of packets sent out may increase. 

All possible patterns are abstracted and are placed in 

knowledge based temporal abstract pattern [11].   DtKFc and 

KBTAP algorithms are clubbed together into the classifier 

engine. 

3.2 The Monitoring Phase 
3.2.1Amendment Capture Service (ACS) 
All the applications downloaded from the Google play store 

are verified by the Google Bouncer service. The Google 

Bouncer checks the apps for behavior and malicious code. 

Only if the app is found benign it uploads the app to the store. 

But those apps only upload the basic part of the software in 

the Google play store. The application after getting installed 

in the mobile phone tends to download the remaining major 

part of the program from its remote server. So the part of the 

program downloaded after installation through Wi-Fi or 

GPRS is viable to have malicious code. The same thing is 

possible when an application receives a patch code or a update 

from its server after installation. So an application that is 

thought to be benign may change malicious after updates. 

To protect the mobile system from this situation, constant 

monitoring of the system is needed. The feature monitoring 

system keeps a constant watch for abnormal behavior of the 

system. An update monitoring system watches over the 

updates and patch codes. These monitoring systems trigger 

the Amendment Capture Service (ACS) when abnormality 

arises. ACS maintains a log file which records the history of 

all the applications in the android system.  

The log file has the following details: 

1. The installation time stamp of each application. 

2. The no. of services triggered by each application. 

3. The no. of updates received by each application. 

4. The time stamp of the latest version update received 

by each application and a „yes‟ tag to indicate that 

the update has been checked by the ACS or a „No‟ 

tag if the application is not checked. 

5. The time stamp of the latest patch code received by 

each application. 

6. The time stamp of the latest check done by ACS. 

7. The no. of times each application was called over 

the past 2 weeks 

 

Figure 2: (a) Training using Decision Tree Algorithm    (b) Testing Using K-Fold Algorithm 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 15, March 2014 

34 

8. The time stamp of the last time each application was 

opened. 

9. The data from feature monitoring system.  

ACS is triggered during one of the following situations: 

1. When an application is first installed in the mobile 

phone. 

2. When an abnormal behavior has been noted. 

3. When an application has received an update. 

4. When an application has received a patch code. 

5. Periodical check – After every 2 weeks, the time for 

the check can be chosen by the user. 

3.2.2 Amendment Capture Algorithm (ACA) 
A change or periodical check triggers ACS. ACS implements 

the Amendment Capture Algorithm (ACA). Figure 3 

describes the Amendment Capture Algorithm.  

 

Figure 3: Amendment Capture Algorithm 

 

4. EVALUATION AND RESULTS 
The system was stimulated using an Eclipse Emulator. A total 

of 50 applications were considered as dataset. The dataset has 

25 benign applications and 25 malicious applications. The 

benign applications were downloaded from the android 

market. To be sure that the benign applications are virus and 

worm free, they were tested using kaspersky for mobile. The 

malicious applications were downloaded from contagion.com. 

The files with .apk and .jar were extracted.  

These applications were divided into 5 sets. Each set had a 

mix of both benign and malicious applications. 4 folds were 

used for training the system and the remaining 1 set was used 

for testing. In the next iteration the tested set was included as 

the training set and 1 set from the prior training set becomes 

the testing set. Each application was made to run in the 

emulator for 10 minutes. The accuracy calculator calculated 

the Accuracy of the result for each test. True Positive Rate 

(TPR) measure, which is the proportion of positive instances 

classified correctly. False Positive Rate (FPR), which is the 

proportion of negative instances misclassified. Total Accuracy 

measures the proportion of absolutely correctly classified 

instances, either positive or negative.  TP is number of 

positive instances classified correctly. FP is the number of 

negative instances misclassified. FN is the number of positive 

instances misclassified. TN is the number of negative 

instances classified correctly. 

The accuracy calculator uses the formula, 

a. TPR = TP /(TP + FN)  

b. FPR = FP / (FP + TN)  

c. Total Accuracy = (TP + TN)/ (TP + 

TN + FP + FN)  

The training and testing results are as tabulated in table 2. The 

results from the monitoring system are tabulated in table 3.    

5. CONCLUSION AND FUTURE WORK 
In this paper, a technique to train the system using DtKFc 

algorithm and KBTAP algorithm to detect malware is 

presented. The system captures the changes in the Mobile OS 

and evaluates the system periodically. The accuracy of our 

system is calculated using the accuracy calculator and the 

results shows an average accuracy of 0.94. The system 

produces most accurate results for the given dataset of 

applications. At any point of time, the system will be able to 

find accurately if a malicious application is running in the 

system. And if a malware is suspected to be present an alert 

will be given to the user through a Graphical user interface. 

The assumption taken is that the application runs in the 

system for at least 5 minutes. This time is needed for the 

system to recognize the malicious action. 

Table 2: Training and Testing Results 

Experiment Set  TP TN FP FN TPR  FPR  Accuracy  

I  4 4 1 1 0.8 0.2 0.8 

II  7 3 0 0 1.0 0.0 1.0 

III  4 6 0 0 1.0 0.0 1.0 

IV  3 6 1 0 1.0 0.142 0.9 

V 6 4 0 0 1.0 0.0 1.0 

 

 

 

Step 1: 

Capture trigger reason – trig_reason ; 

Step 2: 

     If  trig_reason = update_monit then 

While (not empty of no_of_apps) 

Check log file if ( app_update = true) 

Add application to app_array[ ]; 

                app_array[ ] = list_of_apps_with_update ; 

Return app_array[ ];  

Go to Step 3; 

     Else If  trig_reason = Feature_Monit then  

app_array[ ] = list of active apps 

Return app_array[ ]; 

Go to Step 3; 

    Else If trig_reason =  period_check then  

Get ( check_date = last_check_date) 

While(timestamp_app_install>check_date or 

timestamp_app_update >check_date  or  

timestamp_app_patchcode > check_date) 

Add the application to App_array[ ]; 

Return app_array[ ]; 

 Go to step 3; 

Step 3:  

    Classifier engine ( app_array[ ]); 

If (app = benign) 

Tag the update_check = yes; 

Else If (app = malicious) 

     Prompt the user – remove_application; 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 15, March 2014 

35 

Table 3: Trigger Results 

Triggers TP TN FP FN TPR  FPR  Accuracy  

Updates 6 4 0 0 1.0 0.0 1.0 

Behaviors 3 4 0 1 0.75 0.0 0.875 

 

6. REFERENCES 
[1] http://www.checkmarx.com/2013/11/29/10-challenges-

of-mobile-

security/?goback=%2Egde_36874_member_5812209353

184280577#%21  

[2] http://www.infosecurity-magazine.com/view/30153/99-

of-mobile-malware-targets-android/ 

[3] Buennemeyer, T. K., Nelson T.M., Clagett L.M., 

Dunning J. P., Marchany R.C., Tront J.G., 2008. Mobile 

device profiling and intrusion detection using smart 

batteries. In International conference on system sciences 

, p. 296–296.  

[4] Bose,A., Hu, X., Shin, K. G., Park, T., 2008. Behavioral 

detection of malware on mobile handsets. In Proc. of the 

6th international conference on mobile systems, 

applications, and services 

[5] Asaf Shabtai , Uri Kanonov, Yuval Elovici, Chanan 

Glezer , Yael Weiss, 2012. “Andromaly”: a behavioral 

malware detection framework for android devices, 

Journal of Intelligence Information Systems, 38,p. 161-

190 

[6] Menahem, E., Shabtai, A., Rokach, L., & Elovici, Y. 

2008. Improving malware detection by applying multi-

inducer ensemble. Computational Statistics and Data 

Analysis, 53(4), 1483–1494. 

[7] Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, 

G., & Vazquez, E., 2009. Anomaly-based network 

intrusion detection: Techniques, systems and challenges. 

Computers & Security, 28(1–2), p. 18–28. 

[8] Griffin, K., Schneider, S., Hu, X., & Chiueh, T., 2009. 

Automatic generation of string signatures for malware 

detection. In Proc. of the 12th international symposium 

on recent advances in intrusion detection. 

[9] Adam, P. F., Chaudhuri, A., & Foster, J. S., 2009. 

SCanDroid: Automated security certification of android 

applications. In proc. of  IEEE symposium of security 

and privacy 

[10] Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, 

S., Glezer, C.,. 2009 Google Android: A state-of-the-art 

review of security mechanisms. arXiv preprint 

arXiv:0912.5101 . 

[11] Shabtai, A., Kanonov, U., Elovici, Y.,. 2010. Intrusion 

Detection on Mobile Devices Using the Knowledge 

Based Temporal-Abstraction Method. Journal of systems 

and Software. 83(8),p. 1524 -1537. 

[12] A. Shabtai, Y. Fledel, Y. Elovici., 2010. Securing 

Android-Powered Mobile Devices Using SELinux”, 

IEEE Security and Privacy, 8(3),p.36-44, 

http://doi.ieeecomputersociety.org/10.1109/MSP.2009.14

4 

[13] Aubrey-Derrick Schmidt , Frank Peters,  Florian Lamour,  

Sahin Albayrak.2009. Monitoring smart phones for 

anomaly detection. Mobile Networks and Applications 

14(1), p. 92-106. 

[14] Jacob, G., Debar, H., & Filiol, E., 2008. Behavioral 

detection of malware: From a survey towards an 

established taxonomy. Journal in Computer Virology, 4, 

251–266.

 

 

IJCATM : www.ijcaonline.org 


