
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 15, March 2014

20

Code Clone v/s Model Clones: Pros and Cons

Ritu Garg
Computer Science Department

Deenbandhu Chhotu Ram University of Science
and Technology, Murthal

Haryana, India

Rajesh Bhatia
Punjab Engineering College University of

Technology
Chandigarh

ABSTRACT
Every software has time and budget constraints associated

with it.The time and budget of the software also depends on

the risk and inconsistencies during the software life cycle

phases.These risks and inconsistencies can be reduced by

detecting clones in form of redundancy between the software

systems.This paper provides a brief overview to the detection

of these risk and inconsistencies in either of the two phases of

software development system i.e.design phase or the

implementation phase along with their pros and cons.

Keywords
Software System, Clone detection, Model based Clone

detection, Code based Clone detection

1. INTRODUCTION
Whenever two similar type ofsoftware’s are developed, they

have much common functionality so, the new software is

developed with the existing one.Sometimes the new version is

released from the previous version then also they have

common functionality between them.Such a reuse which

results in copy and paste activitieswith minor modifications

without changing the functionalities is known as cloning.

Cloning can create problems associated with update

anomalies exist which requires change at one place in one

original copy to be duplicated in all other duplicate copies that

are similar to the original one.It can hamper the

maintainability and Comprehensibility of the software

systems.In addition to time and effort, the cost of developing

and testing the software systems also increases. Thus there is

a great need to detect the clones and remove them.It can be

done at two levels in software development process- code

clones and model clones.When clones are detected at the

implementation phase of two software’s then such a clone is

called code clones while when clones are detected at the

design phase of two software’s then such a clone is called

model clones.

2. CODE CLONE AND MODEL CLONES
If the fragment is in form of code during the implementation

phase then it is termed as code clone [1] otherwise the

fragments will be in form of models which is termed as model

clones.There exist four types of code clones on basis of

similarity [2].The two similar code fragments may be based

on copy and reuse approach or the accidental cloning which is

not the result of direct copy or paste activity.One such

example of code based cloning is shown in figure 1 on basis

of type-2 clones as discussed below.

Types of Code Clones [see 1]:-

Type-1:- It represents the redundancy in the code fragments

except for the differences in the whitespace, layouts and

comments.

Type-2:- It includes type-1 clones within it.It also represents

the redundancy in the code fragments except for the

differences in the naming of variables, constants, keywords,

literals, types.

Type-3:- It includes type-2 clones within it.It also represents

the redundancy in the code fragments except for the

differences in the modification of statements.It reflects change

in the form of addition, deletion or modification of the

statements within a block.

Type-4:- It includes type-3 clones within it.It also represents

the redundancy in the code fragments in form of semantic

relation.The redundant code performs same computation but

different implementations using different syntaxes.

Figure1: Code based clone detection

A model fragment is a set of model elements that is closed

under containment relationship.A model clone is a pair of

model fragments such that there is a high degree of similarity

between the fragments.The two similar model fragments may

be based on copy and reuse approach or the accidental cloning

which is not the result of direct copy or paste activity.One

such example of model based cloning is shown in figure 2 on

basis of type-2 clones as discussed below.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 15, March 2014

21

Types of Model Clones (See [2]):-

Type 1:- It represents a model that is identical except for

layout, secondary notation, internal identifiers and notes.

Type 2:- It represents a model that is identical except for

changes such as changes to element names, attribute names

and parts.

Type 3:- It represents a model that is identical with changes

such as addition or removal of parts (sub model inside the

model elements).

Type 4:- It represents a model that is identical in content only

that may be due to model fragment copying, methodology or

language constraints, convergent development or other

processes.

Figure 2: Model based clone detection

3. RELATED WORK RELATED TO

CLONES
There are many tools related to code clone detection.Ducasse

et al.[3] developed a language independent clone detection

tool duploc which does line by line comparison.Simian [4]

takes every file as plain text file in order to find

clones.Johnson [5] applied fingerprinting technique for source

code comparison.Nicad [6] is a text based hybrid clone

detection tool that can detect type-3 clones (Near-Miss

Clones) effectively via identification and normalization

phase.CCFinder [7] uses tree matching technique in order to

find similarity to find clones of large size.CloneDR [8] is

capable of detecting the type-2 and type-3 clones by using

hashing and dynamic programming technique.Deckard [9]

converted AST (abstract syntax trees) to characteristic vectors

using locality sensitive hashing.Komodoor and Horowitz’s

PDG-DUP [10]use program slicing to find isomorphic PDG

subgraphs.Hummel et al.[11] implemented a tool in ConQAT

which uses a hybrid incremental index-based clone detection

technique.It is highly scalable, incremental and takes less time

for execution.

There are only some tools related to model cloning as not

much work has been done in its context.Liu et al.[12]

developed a tool DuplicationDetector in order to detect

duplications in sequence diagram.Deissenboeck et al.[13]

developed a tool Clone Detective to detect clones in

Simulink/Matlab Models.Pham et al.[14] presented a tool

ModelCD for Matlab/Simulink Models that is able to

efficiently and accurately detect both exactly matched and

approximate model clones via two algorithms escan and

ascan.Storrle et al.[see 2] developed a tool MQlone which

produces XMI files from UML domain models and these files

are transformed into prolog files.Hummel et al.[15] pioneered

a tool that is based on incremental instead of batch mode

clone detection.There is vagueness in model clone detection

on notions of similarity which hinders the understanding of

clone detection [16].

4. RESULTS IN SUPPORT OF MODEL

CLONE DETECTION
In this paper the differences between the code based clone

detection and the model based clone detection has been

observed for the various parameters such as versioning

systems which represents the same system as another version

of the previous with some additional functionality.The

identification, impact and refinement of risk are taken into the

account.So as the cost, effort and time associated with the

software.The cost for RMMM

(Risk Mitigation, Monitoring and Management) Plan is

determined for them as shown in table 1.Accordingly the

cost/benefit analysis is also good for the model clones because

they detect the clones earlier.

Table 1:- Result in support of Code Clone Detection

Parameters Model Clone Code Clone

Versioning More efficient Less efficient

Risk identification Earlier Later

Cost for handling risk Less More

Effort in handling risk Less More

Time to overcome risk Less More

Cost associated with amplified errors Less More

Elimination or control of potential hazards Earlier stage Later stage

Risk impact Less More

Risk Refinement Earlier analysis and response Later analysis and response

Cost for RMMM Less More

Cost/benefit Less More

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 15, March 2014

22

5. RESULTS IN SUPPORT OF CODE

CLONE DETECTION
Clones are detected to reduce the inconsistency within the

software but this should be done with accuracy which occurs

in code clone.The errors/inconsistency detected by code clone

is more for code clone as compared to models.There are more

chances to detect clones in systems based on polymorphism

and overriding in code clones.Further accounting for

completeness, recall (true positives within the software) and

precision (false positives within the software) is higher for

code clones than to models as shown in table 2.

Table 2:- Result in support of Code Clone Detection

Parameters Model Clone Code Clone

Errors detected Less More

Accuracy Less More

Systems based on Polymorphism Less chances to detect clones More chances to detect clones

Systems based on Overriding Less chances to detect clones More chances to detect clones

Completeness Low High

Recall Low High

Precision Low High

6. CONCLUSIONS AND FUTURE

WORK

Cloning is widely used in order to reduce risk and

inconsistencies within the software.The model clone detection

is done to reduce redundancy and inconsistency in the

software systems at an earlier phase which doesn’t hamper the

cost, effort and time associated with the software as the code

clone does.Code clones also reduces inconsistencies and risk

but it detects them at later stage.Model clones should be used

when the software to be build is strict with respect to its time

and budget constraints.Also, when the software suffers a

higher risk then it should be mitigated at the earlier stage with

model clones.However code clones should be used when the

software to be build is soft/loose with respect to its time and

budget constraints.When the system needs accuracy with high

recall then code clones should be preferred.This analysis has

been done on the detection phase only but it can be extended

to the removal of clones after detection by keeping only one

original copy and automatically removing the duplicate

copies.

7. REFERENCES
[1] C.K.Roy, J.R.Cordy, A Survey on Software Clone

Detection Research, Technical Report 2007-541,

Queen’s University at Kingston Ontario, Canada, 2007,

p.115.

[2] H.Storrle,Towards clone detection in UML domain

models, in: Proceedings Software & Systems Modeling,

Volume 12, Issue 2, 2013,pp.307-329.

[3] S.Ducasse, M.Rieger, S.Demeyer, A language

independent approach for detecting duplicated code, in:

Proceedings of the 15th International Conference on

Software Maintenance (ICSM’99), Oxford, England,

UK, 1999,pp.109–119.

[4] Tool Simian <http://www.harukizaemon.com/

simian/index.html> (accessed April 2012).

[5] J.H.Johnson, Substring matching for clone detection and

change tracking, in:Proceedings of the 10th International

Conference on Software Maintenance,Victoria, British

Columbia, Canada, 1994, pp.120–126.

[6] C.K.Roy, J.R.Cordy, NICAD: Accurate detection of

near-miss intentional clones using flexible pretty-printing

and code normalization, in: Proceedings of the 16th

IEEE International Conference on Program

Comprehension (ICPC’08), Amsterdam, The

Netherlands, 2008, pp.172–181.

[7] T.Kamiya, S.Kusumoto, K.Inoue, CCFinder: a multi-

linguistic token-based code clone detection system for

large scale source code, IEEE Transactions on Software

Engineering 28 (7) (2002) 654–670.

[8] I.D.Baxter, A.Yahin, L.Moura, M.Sant’Anna, L.Bier,

Clone detection usingabstract syntax trees, in:

Proceedings of the 14th International Conference on

Software Maintenance (ICSM ’98), Bethesda, Maryland,

USA, 1998, pp.368– 378.

[9] L.Jiang, G.Misherghi, Z.Su, S.Glondu, DECKARD:

Scalable and accurate treebased detection of code clones,

in: Proceedings of 29th International Conference on

Software Engineering (ICSE’07), Minneapolis, MN,

USA, 2007, pp.96–105.

[10] RaghavanKomondoor.Automated Duplicated-Code

Detection and Procedure Extraction.Ph.D.Thesis, 2003.

[11] B.Hummel, E.Juergens, L.Heinemann, M.Conradt,

Index-based code clonedetection: Incremental,

distributed, scalable, in: Proceedings of the 26th IEEE

International Conference on Software Maintenance

(ICSM’10), Timisoara,Romania, 2010, pp.1–9.

[12] H.Liu, Z.Ma, L.Zhang, W.Shao, Detecting duplications

in sequence diagrams based on suffix trees, in:

Proceedings 13th Asia-Pacific Software Engineering

Conference (APSEC’06), Bangalore, India, 2006,

pp.269–276.

[13] F.Deissenboeck, B.Hummel, E.Juergens, B.Schätz,

S.Wagner, J.Girard, S.Teuchert, Clone detection in

automotive model-based development, in: Proceedings of

30th International Conference on Software Engineering

(ICSE’08), Leipzig, Germany, 2008, pp.603–612.

[14] N.H.Pham, H.A.Nguyen, T.T.Nguyen, J.M.Al-Kofahi,

T.N.Nguyen, Complete and accurate clone detection in

graph based models, in: Proceedings of 31st International

Conference on Software Engineering (ICSE’09),

Vancouver, Canada, 2009, pp.276–286.

[15] B.Hummel, E.Juergens, D.Steidl, Index-based model

clone detection, in: Proceedings of 5th International

Workshop on Software Clones, Honolulu, USA, 2011,

pp.21–27.

[16] D.Rattan, R.K.Bhatia, M.Singh: Software clone

detection: A systematic review, in: Information &

Software Technology, Volume- 55, 2013, pp.1165-1199.

IJCATM : www.ijcaonline.org

