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ABSTRACT 

 In this paper, we present a finite element method involving 

Galerkin method with quintic B-splines as basis functions to 

solve a general eighth order two point boundary value 

problem.The basis functions are redefined into a new set of 

basis functions which vanish on the boundary where Dirichlet 

type of boundary conditions, Neumann boundary conditions, 

second order derivative boundary conditions and third order 

derivative type of boundary conditions are prescribed. The 

proposed method was applied to solve several examples of the 

eighth order linear and nonlinear boundary value problems. 

The solution of a nonlinear boundary value problem has been 

obtained as the limit of a sequence of solution of linear 

boundary value problems generated by quasilinearization 

technique. The obtained numerical results are compared with 

exact solutions available in the literature. 

Keywords 
Galerkin method; Quintic B-spline; Basis function; Eighth 

order boundary value problem; Absolute error. 

1. INTRODUCTION 
In this paper, we consider a general eighth order linear 

boundary value problem given by  
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subject to the boundary conditions                 
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where A0, C0, A1, C1, A2, C2, A3, C3 are finite  real constants 

and a0(x), a1(x), a2(x), a3(x), a4(x), a5(x),a6(x), a7(x), a8(x), b(x) 

are all continuous functions defined on the interval [c, d].   

Generally, this type of eighth order boundary value problems 

arises in the study of astrophysics, hydrodynamics and hydro 

magnetic stability, fluid dynamics, astronomy, beam and long 

wave theory, applied mathematics, engineering and applied 

physics. The boundary value problems of higher order 

differential equations have been investigated due to their 

mathematical importance and the potential for applications in 

diversified applied sciences. The literature on the numerical 

solutions of eighth order boundary value problems is very 

scarce. Chandra Sekhar [1] determined that when an infinite 

horizontal layer of fluid is heated from below and is under the 

action of rotation, instability sets in, when this instability is an 

ordinary convection the ordinary differential equation is sixth 

order, when the instability sets in as overstability, it is 

modeled by an eight order ordinary differential equation. 

An eighth order differential equation  derived from governing 

bending and axial vibrations by Shen [2], Paliwal and Pande 

[3] derived equations for the equilibrium in terms of 

displacement components for an orthotropic thin circular 

cylindrical shell subjected to a load that is not symmetric 

about the shell, which resulted in eighth order differential 

equations. The text book by Agarwal [4] contains theory 

which deals with the conditions for the existence and 

uniqueness of solutions of eighth order boundary value 

problems, though no numerical methods are given in for 

solving such problems. Solving such boundary value 

problems analytically is possible only in very rare cases. So, 

many numerical methods have been developed overs the years 

to approximate the solution for these types of boundary value 

problems. An eighth order differential equation occurs in 

torsional vibration of uniform beams was investigated by 

Bishop [5], Boutayes and Twizell [6] developed finite 

difference methods for the special case solution of the eighth 

order boundary value problems, Twizell et. al. [7] developed 

numerical methods for eighth, tenth, twelfth order eigenvalue 

problems arising in thermal instability,  Inc and Evans [8] 

presented the solution of special case of eighth order 

boundary value problems using Adomain decomposition 

method,  Siddiqi et. al. [9] presented solution of special case 

of eighth order boundary value problems using variational 

iterational technique, Ghazala Akram and Hamood Ur 

Rehman [10] presented the solution of special case of eighth 

order boundary value problems using kernel space method 

there were used searching least square value method 

investigated for nonlinear eighth order boundary value 

problems, Liu and Wu [11] presented the solution of special 

case of eighth order boundary value problems using 

generalized differential  quadrature rule, Koonprasert and 

Torvattanabum [12] presented variational iterational method 

for solving eighth order boundary value problems, Javidi and 

Golbai [13] presented HPM for solution of eighth order 

boundary value problems, Prorshouhi at. al. [14] presented 

variatonal iterational method for solution of special case of 

eighth order boundary value problems. 

In the following, we mainly pay attention to the spline 

functions technique have been developed to solve these type 

of boundary value problems. Siddiqi and Ghazala  [15,16] 

presented solution of special case of eighth order boundary 

value problems using nonic non polynomial spline functions 

and nonic polynomial spline methods, Siddiqi and Twizell 

[17] presented the solution of special case of eight order 

boundary value problems using octic splines, Kasi 

Viswanadham and Showri raju [18] developed  quintic B-

splines Collocation method to solve a general eight order 

boundary value problem. 
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In this paper, we try to present a simple finite element method 

which involves Gelerkin  approach with quintic B-splines as  

basis functions to solve the eighth order two point boundary 

value problems of the type  (1)-(2). This paper is organized as 

follows. Section 2, deals with the justification for using 

Galerkin method. In Section 3, a description of Galerkin 

method with quintic B-splines as basis functions is explained. 

In particular, we first introduce the basic concept of quintic B-

splines and followed by the proposed method. In Section 4, 

the procedure to solve the nodal parameters has been 

presented. In section 5, the proposed method is tested on 

several   linear and nonlinear boundary value problems. The 

solution to a nonlinear problem has been obtained as the limit 

of a sequence of solution of linear problems generated by the 

quasilinearization technique [19]. Finally, in the last section, 

the conclusions are presented. 

2. JUSTIFICATION FOR USING 

GALERKIN METHOD 
For the few decades, the finite element method has become 

very powerful, useful tool to  solve the boundary value 

problems in the complex dynamical systems. In finite element 

method (FEM) the approximate solution can be written as a 

linear combination of basis functions which constitute a basis 

for the approximation space under consideration. FEM 

involves variational methods like Rayleigh Ritz, Galerkin, 

Petrov-Galerkin, Least Squares and Collocation etc. 

In Galerkin method, the residual of approximation is made 

orthogonal to the basis functions. When one uses Galerkin 

method, a weak form of approximation solution for a given 

differential  equation  exists and is unique under appropriate 

conditions [20,21] irrespective of properties of a given 

differential operator. Further, a weak solution also tends to a 

classical solution of given differential equation, provided 

sufficient attention is given to boundary conditions [22]. That 

means the basis functions should vanish on the boundary 

where the Dirichlet type of boundary conditions are 

prescribed. Hence in this paper we employed the use of 

Galerkin method with quintic B-splines as basis functions to 

approximate the solution of eighth order boundary value 

problems. 

3. DESCRIPTION OF THE METHOD 
Definition of quintic B-spline: The quintic B-splines 

are defined in [23-25]. The existence of quintic spline 

interpolate s(x) to a function in a closed interval [c, d] for 

spaced knots (need not be evenly spaced) of a partition 

dxxxxc nn  110 ...    is established by 

constructing it. The construction of s(x) is done with the help 

of the quintic B-splines. Introduce ten additional knots x-5, x-4, 

x-3, x-2, x-1, xn+1, xn+2, xn+3, xn+4  and xn+5  in such a way that 

x-5<x-4<x-3<x-2<x-1<x0 and xn<xn+1<xn+2<xn+3<xn+4<xn+5. 
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where {B-2(x), B-1(x), B0(x), B1(x), B2(x), B3(x),…,Bn-1(x), 

Bn(x), Bn+1(x), Bn+2(x)} forms a basis for the space )(5 S  

of quintic polynomial splines. Schoenberg [25] has proved 

that quintic B-splines are the unique nonzero splines of 

smallest compact support with the knots at 

x-5<<x-4<…<x0<x1<…<xn-1<xn<xn+1<xn+2 <…...<xn+5.    

 

To solve the boundary value problem (1) and (2) by the 

Galerkin method with quintic B-splines as basis functions, we 

define the approximation for y(x) as 
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where 
,

j s  are the nodal parameters to be determined. In 

Galerkin method the basis functions should vanish on the 

boundary where the Dirichlet type of boundary conditions are 

specified. In the set of quintic B-splines{B-2(x), B-1(x), 

B0(x),…,Bn(x), Bn+1(x), Bn+2(x)}the basis functions B-2(x),      

B-1(x), B0(x), B1(x), B2(x),  Bn-2(x), Bn-1(x),  Bn(x), Bn+1(x)  and 
Bn+2(x) do not vanish at one of the boundary points. So, there 

is a necessity of redefining the basis functions into a new set 

of basis functions which vanish on the boundary where the 

Dirichlet type of boundary conditions are specified. Since, we 

are approximating the eighth order boundary value problem 

by quintic B-splines polynomial, we redefine the basis 

functions into a new set of basis functions which vanish on 

the boundary where the Dirichlet type boundary conditions, 

Neumann boundary conditions, second order derivative 

boundary conditions and third order derivative type of 

boundary condiotions are prescribed. The procedure for 

redefining the basis functions is as follows. 

Using the definition of quintic B-splines and the Dirichlet 

boundary conditions of (2), the approximate solution at the 

boundary points can be written as  
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Using the Neumann boundary conditions of (2) to the 

approximate solution y(x) in (6), we get 
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Eliminating 1 and 1n  from the equations (6), (9) and 

(10), the approximation for y(x) can be written as  
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Using the second order derivative boundary conditions of (2) 

to the approximate solution y(x) in (11), we get  
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Eliminating 0 and n  from the approximations (11), (14) 

and (15), the approximation for y(x) can be written as  
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 Using the third order derivative boundary conditions of (2) to 

the approximate solution y(x) in (16), we get             
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(15), the approximation for y(x) can be written as  
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Now the new set of basis functions for the approximation y(x) 

is{ ( ), 2,..., 2}jB x j n  . Applying the Galerkin method to 

(1) with a new set of basis functions, we get 
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Integrating by parts the first four terms on the left hand side of 
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Substituting (25), (26), (27), (28) in (24) and using the 

approximation for y(x) given in (21), and after rearranging the 

terms for resulting equations, the resulting system of 

equations can be written in the matrix form as 
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4. PROCEDURE TO FIND A SOLUTION 

FOR NODAL PARAMETERS 

A typical integral element in the matrix A  is 
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evaluate each mI , we employed 6-point Gauss-Legendre 

quadrature formula. Thus the stiffness matrix A is an eleven 

diagonal band matrix. The nodal parameter vector   has 

been obtained from the system  A B  by using a band 

matrix solution package. We have used the FORTRAN-90 

program to solve the boundary value problems (1)-(2) by the 

proposed method. 

5. NUMERICAL RESULTS 
To demonstrate the applicability of the proposed method for 

solving the eighth order boundary value problems of the types 

(1) and (2), we considered three linear boundary value 

problems and two nonlinear boundary value problems. 

Numerical results for each problem are presented in tabular 

forms and compared with the exact solutions available in the 

literature. 

Example 1: Consider the linear boundary value problem 

     
(8) 16 4, 1 1y y x                 (32)                                                                        

subject to ( 1) (1) 0y y   , 

sinh 2 sin 2
( 1) (1) .25

cosh 2 cos 2
y y


    


, 

( 1) (1) 0,y y     

 
sin1cos1 cosh1sinh1

( 1) (1)
cos 2 cosh 2

y y


     


.  

 

The exact solution for the above problem is  

 

y(x)=25[1-2(sin 1 sinh1 sin x sinh x + cos 1 cosh1 cos x 

 cosh x)/(cos 2 + cosh x)] 

 

The proposed method is tested for this problem where the 

domain [-1, 1] is divided into 10 equal subintervals. The 

obtained numerical results for this problem are given in   

Table 1. The maximum absolute error obtained by the 

proposed method is 7.852912x10-6. 
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Table 1. Numerical results for Example 1 

x Exact Solution Absolute Error by 

proposed method 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

3.976926E-02 

7.498498E-02 

1.023106E-01  

1.195382E-01 

1.254157E-01   

1.195382E-01 

1.023106E-01   

7.498498E-02 

3.976926E-02 

6.705523E-08 

1.654029E-06 

4.455447E-06 

6.906688E-06 

7.852912E-06 

6.698072E-06 

3.896654E-06 

1.467764E-06 

3.725290E-07 

 

Example 2: Consider the linear boundary value problem                          

      
(8) 3(48 15 ) , 0 1xy xy x x e x          (33)                                  

                               

subject to (0) (1) 0,y y  (0) 1,y  (1) ,y e    

(0) 0,y  (1) 4 ,y e    

(0) 3,y   (1) 9 .y e    

 

The exact solution for the above problem is y =x(1-x)ex. The 

proposed method is tested on this problem where the domain 

[0, 1] is divided into 10 equal subintervals.  The obtained 

numerical results for this problem are given in Table 2. The 

maximum absolute error obtained by the proposed method is 

1.227856x10-5. 

 

Table 2. Numerical results for Example 2 

x Exact Solution Absolute Error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

9.946539E-02 

1.954244E-01 

2.834704E-01 

3.580379E-01 

4.121803E-01 

4.373085E-01 

4.228881E-01   

3.560865E-01 

2.213642E-01 

5.215406E-08 

2.220273E-06 

7.003546E-06 

1.114607E-05 

1.227856E-05 

8.881092E-06 

2.533197E-06 

1.817942E-06 

2.041459E-06 

 

Example 3: Consider the linear boundary value problem 

10,sin4sin16cos14

22222 )4()5()6()7()8(





xxxxxyy

yyyyyyy

 (34)                                                                                        

subject to (0) 0,y  (1) 0,y   

(0) 1,y    (1) 2sin1,y   

(0) 0,y  (1) 4cos1 2sin1,y    (0) 7,y 

(1) 6cos1 6sin1.y     
 

The exact solution for the above problem is
2( ) ( 1)sin .y x x x   The proposed method is tested 

on this problem where the   domain [0, 1] is divided into 10 

equal subintervals.  The obtained numerical results for this 

problem are given in Table 3. The maximum absolute error 

obtained by the proposed method is 7.688999x10-6. 

Table 3. Numerical results for Example 3 

x Exact Solution Absolute Error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

-9.883508E-02 

-1.907226E-01 

-2.689234E-01 

-3.271114E-01 

-3.595692E-01 

-3.613712E-01 

-3.285510E-01 

-2.582482E-01 

-1.488321E-01 

3.799796E-07   

2.145767E-06 

5.632639E-06   

9.745359E-06 

1.138449E-05   

1.013279E-05 

7.271767E-06   

3.874302E-06 

1.430511E-06 

Example 4: Consider the nonlinear boundary value problem 

         
(8) 2 3 , 0 1x x xy e y e e x           (35)                             

subject to 
1(0) 1, (1) ,y y e  (0) 1,y    

1(1) ,y e   1(0) 1, (1) ,y y e  
1(0) 1, (1) .y y e       

The exact solution for the above problem is y=e
-x

.  The 

nonlinear boundary value problem (35) is converted into a 

sequence of linear boundary value problems generated by 

quasilinearization technique [19] as 
(8) 2 3

( 1) ( ) ( 1) ( )[2 ] [ ]x x x x

n n n ny y e y y e e e   

       

   for n=0,1,2,…                                                            (36)            

subject to ( 1) (0) 1,ny    ( 1)

1
(1) ,ny

e
   

( 1) ( 1)

1
(0) 1, (1) ,n ny y

e
 


     

( 1) (0) 1,ny 
    ( 1)

1
(1) ,ny

e

   

( 1) (0) 1,ny 
    ( 1)

1
(1) .ny

e



    

Here ( 1)ny   is the ( 1)thn   approximation for ( ).y x  

The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of a linear 

problems (36). Numerical results for this problem are 

presented in Table 4. The maximum absolute error obtained 

by the proposed method is 3.641844x10-5. 
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Table 4. Numerical results for Example 4 

x Exact Solution Absolute Error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

9.048374E-01 

8.187308E-01 

7.408182E-01 

6.703200E-01 

6.065307E-01 

5.488116E-01 

4.965853E-01 

4.493290E-01 

4.065697E-01 

3.576279E-07   

6.318092E-06 

1.895428E-05   

3.099442E-05 

3.641844E-05  

 3.170967E-05 

1.925230E-05   

7.182360E-06 

1.460314E-06 

Example 5: Consider the nonlinear boundary value problem              
1

(8) 8 2
8

2
7!( ), 0 1

(1 )

yy e x e
x

    


       (37)                                  

subject to (0) 0,y 
1

2
1

( 1) ,
2

y e   (0) 1,y   

1 1

2 2( 1) ,y e e


  
1

12(0) 1, ( 1) ,y y e e       

1 3

2 2(0) 2, ( 1) 2 .y y e e


     

 

The exact solution for the above problem is

( ) (1 ).y x ln x   The nonlinear boundary value 

problem (37) is converted into a sequence of linear boundary 

value problems generated by quasilinearization technique [19] 

as      

( ) ( )8 8(8)

( 1) ( 1) ( ) 8

2 7!
(8! ) (8! 7!)

(1 )

n ny y

n n ny e y y e
x

 

 


   


                                                                         

for n = 0,1,2,…                (38) 

subject to ( 1) (0) 0,ny  

1

2
( 1)

1
( 1) ,

2
ny e    

1 1

2 2
( 1) ( 1)(0) 1, ( 1) ,n ny y e e



 
     

( 1) (0) 1,ny 
     

1

12
( 1)( 1) ,ny e e
     

( 1) (0) 2,ny 
 

1 3

2 2
( 1) ( 1) 2 .ny e e




    

Here ( 1)ny   is the ( 1)thn   approximation for ( ).y x  The 

domain [0,1] is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of a linear 

problems (39). Numerical results for this problem are 

presented in table 5.The maximum absolute error obtained by 

the proposed method is 1.00135x10-5.  

 

 

 

 

Table 5. Numerical results for Example 5 

x Exact Solution Absolute Error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

6.285473E-02 

1.219913E-01 

1.778251E-01 

2.307057E-01 

2.809298E-01 

3.287517E-01 

3.743905E-01 

4.180371E-01 

4.598581E-01 

2.011657E-07  

4.544854E-07  

1.519918E-06 

4.068017E-06  

6.705523E-06 

9.059906E-06  

1.001358E-05 

5.453825E-06  

2.592802E-06 

6. CONCLUSIONS 
In this paper, a Galerkin method with quintic B-splines as 

basis functions to solve a general eighth order boundary value 

problem has been developed. The quintic B-splines basis set 

has been redefined into a new set of basis functions which 

vanish on the boundary where the Dirichlet boundary 

conditions, Neumann boundary conditions, secondary order 

derivative boundary conditions and third order derivative 

boundary conditions are prescribed. The proposed method has 

been tested on three linear and two nonlinear eighth order 

boundary value problems. The numerical results obtained by 

the proposed method are in good agreement with the exact 

solutions available in the literature.  The objective of this 

paper is to present a simple and accurate method to solve a 

general eighth order boundary value problem.                                                                                                                                                       
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