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ABSTRACT 
Finding the shortest path in a graph means selecting the path 

between source and destination which gives the minimum 

path length. This problem of finding the shortest path can be 

solved using Dijkstra algorithm. The time complexity of 

Dijkstra algorithm is high. Looking at the shortcoming of 

traditional Dijkstra algorithm, this paper has proposed a new 

method to improve the time complexity of this algorithm 

using queue and hashing techniques. The time complexity of 

the improved algorithm is O(n log n).  
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1. INTRODUCTION 
The shortest path algorithm has gradually become one of the 

recent topics of research. It is used in geographic information 

science, operations research, computer science and other 

discipline. It is not only the key problem in network analysis 

but also the key issues in graph theory, electronics, network 

optimization, logistics and transportations. Shortest path 

means selecting the path from source to destination in which 

the path length is the minimum. This shortest path problem 

can be solved by Dijkstra algorithm. This algorithm is used to 

find the shortest path between any nodes. It solves the single 

source shortest path problem for a graph with non-negative 

edge path costs, producing a shortest path tree. The basic idea 

of Dijkstra algorithm is to find the shortest path between node 

N1 to node N2 i.e. for a given source vertex in the graph, the 

algorithm finds the path with lowest cost between that vertex 

and every other vertex. Then using this shortest path, find the 

shortest path between node N2 to node N3. Hence a shortest 

path is founded between node N1 to node N3. This process is 

repeated from source until the destination is reached. This 

idea of Dijkstra algorithm has the time complexity as O(n2). 

This paper has proposed the improved time complexity as O(n 

log n).  

2. DIJKSTRA ALGORITHM 

2.1 Description of traditional Dijkstra  

      Algorithm 
Dijkstra algorithm can label the nodes constantly. The value 

of the label varies with the nodes, which is the length of the 

shortest path between the starting point and label nodes [3]. In 

addition, the nodes without labels can be labeled temporarily 

that is, the relative minimum value of the shortest distance for 

the other nodes is given. Of course, the closer the starting 

point approaches the vertex, the earlier it gets the fixed label. 

Combining with the backtracking algorithm we can find the 

node passed by the shortest path between the starting point 

and the other nodes, and then obtain the shortest path labeled 

by the node [4]. 

 

2.2  Shortcomings of Dijkstra’s Algorithm 
The Dijkstra algorithm takes a large amount of time in 

calculating the shortest path. So it is not applicable when the 

number of nodes increases. As the shortest path finds an 

application in networking, transportation, etc so there is a 

need to find the shortest path in lesser time. It also takes lots 

of space for cost matrix due to which space complexity 

increases. 

3. NEW IMPROVED DIJKSTRA                    

ALGORITHM 

3.   3.1  Proposed Algorithm 
Step1- Enter the adjacency list ADJ which contains the node 

number and the edge weight.  

Step2- Arrange each row of adjacency list in ascending order 

of edge weight using shell sort. 

Step3- Enter the source and destination. 

Step4- Mark the status of each node as NULL in STATUS. 

Step5- Mark the weight of each node as infinity and source 

weight as zero in LIST. 

Step6- insert source in QUEUE. 

Step7- Repeat steps till QUEUE is not empty. 

a) Delete element X from FRONT end of QUEUE. 

b) if STATUS[X]=NULL then- 

i. If neighbor of X is not present in QUEUE then 

add X’s neighbor to QUEUE. 

ii. Calculate the weight of its neighbors as-  

iii. Min(Wij, eij+ parent’s weight). 

iv. If the new weight is less than the weight present 

before then insert this calculated weight in LIST 

and update its parent in LIST.  

v. Update STATUS[X]=X. 

   Else 

         Delete the element from the QUEUE. 

Step8- set y = destination. 

Step9- repeat while source is not reached 

            (i) push y onto STACK. 

            (ii) set y = parent of y.  
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3.1.1 Working of algorithm 
First enter the adjacency list. Arrange each row of the 

adjacency list in ascending order using shell sort according to 

edge weight entered so that there is a right selection of nodes 

for finding the path. STATUS is a single dimensional array 

used for keeping track that if the node has already been 

visited or not. For this STATUS of each node is set as NULL, 

when the node is visited then its status is updated with the 

node number. If the STATUS of node number is NULL 

means that the node has not been visited but if it’s NOT 

NULL then the node is visited. LIST is a two dimensional 

array of structure containing the weight of the node and parent 

of the node. Firstly the weight of each node in LIST is marked 

as infinity, after calculating the weight through parent node 

the weight of node is updated when visited. Queue is used for 

updating the weight of each node by selecting the neighbor 

nodes according to the adjacency list. By this all the node’s 

weight is calculated. Each time a node is deleted from front of 

the queue and its neighbors are added to the queue. If the 

neighbor already exists then just its weight is calculated like 

other neighbor’s weight. If the calculated weight is less than 

the existing weight of the neighbor then its weight is updated 

in LIST. This loop continues till queue is not empty. Stack is 

used for finding the path between source and destination by 

setting a variable equal to the destination and recursively 

visiting its parent so that the path can be found. This loop 

continues till source is not reached. 

 

3.2 Example 
                       4                           2          

 

 

             2                     1              5 

 

 

                                          2              

 

 

Fig 1: An assumed graph. 

 

Step 1- Adjacency matrix ADJ. 

 

Table1: Adjacency matrix entered by user. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2- Sort this list according to edge weights using shell 

short. 

 

Table 2: Adjacency matrix after shell sort. 

 

 

Step 3- Source=1 and destination=3. 

 

Step 4- Initialize status. 

     1               2               3             4                5 

NULL NULL NULL NULL NULL 

 

Step 5- Initialize LIST. 

 

Table 3: LIST which stores the weight and parent of each 

node. 

 

Node 

number 
Weight Parent 

1 0 Null 

2 Infinite  

3 Infinite  

4 Infinite  

5 Infinite  

 

Step 6- QUEUE. 

         1               2                 3                  4                5 

1     

 

Step 7- Delete X i.e. X= 1. 

i. Add neighbor of 1 to QUEUE. 

       1              2           3              4               5 

      4        2    

 

ii. Calculate the weight of added nodes and add the 

minimum weight of each added node to LIST. 

Table 4: Updated LIST after accessing the first node. 

 

Node 

number 
Weight Parent 

1 0 Null 

2 4 1 

3 Infinite  

4 2 1 

5 Infinite  

 

 

Nod

e 

no. 

Adjacent  

node 1 

Adjacent  

node 2 

Adjacent 

node 3 

Node 

no. 

Edge 

wt 

Node 

no. 

Edge 

wt 

Node 

no. 

Edge 

wt 

1 2 4 4 2   

2 3 2     

3 NULL      

4 5 2 2 1 3 5 

5 NULL      

Node 

no. 

Adjacent  

node 1 

 Adjacent 

 node 2 

Adjacent 

node 3 

Node 

no. 

Edge 

wt 

Node 

no. 

Edge 

wt 

Node 

no. 

Edge 

wt 

1 4 2 2 4   

2 3 2     

3 NULL      

4 2 1 5 2 3 5 

5 NULL      

1 2 3 

4 5 
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iii. STATUS. 

       1            2            3              4             5 

  1 NULL NULL NULL NULL 

 

Step 8- Delete X i.e. X=4 from QUEUE. 

i. Add neighbor of 4 to QUEUE. 

       1            2              3            4              5 

              2      5 3  

 

ii. Calculate the weight of added nodes and add the 

minimum weight of each added node to LIST. 

      Table 5: Updated LIST after accessing second node. 

 

Node number Weight Parent 

1 0 Null 

2 3 4 

3 7 4 

4 2 1 

5 4 4 

 

iii. STATUS. 

 1             2                  3                  4             5 

       1 NULL NULL    4 NULL 

 

Step 9- Delete X i.e. X=2 from queue. 

 

i. Add neighbor of 2 to QUEUE. As neighbor of 2 i.e 

3 already exist in the QUEUE, so just its weight is 

calculated by using 2 as parent. 

       1            2             3               4             5 

                   5 3  

 

ii. Calculate the weight of added nodes and add the 

minimum weight of each added node to LIST. 

 

      Table 5: Updated LIST after accessing third node. 

Node number Weight Parent 

1 0 Null 

2 3 4 

3 5 2 

4 2 1 

5 4 4 

 

iii. STATUS. 

             1          2               3             4             5 

    1    2 NULL      4 NULL 

 

Step 10- Delete X i.e. X=5. 

 

i. It has no neighbors, so QUEUE remains the same. 

       1            2              3     4              5 

                   3  

 

ii. Calculate the weight of added nodes and add the 

minimum weight of each added node to LIST. 

 

  Table 6: Updated LIST after accessing fourth node. 

 

Node number Weight Parent 

1 0 Null 

2 3 4 

3 5 2 

4 2 1 

5 4 4 

 

iii. STATUS. 

       1               2               3             4          5 

    1     2 NULL      4     5 

  

Step 11- Delete X, i.e. X=3. 

 

i. It has no neighbors, so QUEUE remains the same. 

Now QUEUE has become empty so it will come out 

of loop. 

       1            2              3     4              5 

                     

 

ii. Calculate the weight of added nodes and add the 

minimum weight of each added node to LIST. 

 

    Table 7: Updated LIST after accessing fifth node. 

 

Node number Weight Parent 

1 0 Null 

2 3 4 

3 5 2 

4 2 1 

5 4 4 

 

iii. STATUS. 

         1               2              3             4             5 

    1       2     3     4    5 

 

Step 12- Destination i.e. y=3 (this loop continues till source is 

not reached). 

 

i. Stack- push y in stack. 

 

 

 

 

Fig 2: Stack after pushing destination. 

 

 

 

 

 

      3 

TOP 
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ii. Push parent of 3 (select parent from LIST). 

 

 

 

 

            

 

Fig 3: Stack after pushing parent of 1st node. 

 

iii. Push parent of 2 (select parent from LIST). 

 

 

 

 

           

 

Fig 4:  Stack after pushing parent of 2nd node. 

 

iv. Parent of 4 is 1 i.e source is reached so it will come 

out of loop. For printing the shortest path first print 

the source and then one by one stack elements from 

the top till stack is not empty. 

  

3.3 Analysis of new algorithm 
The new algorithm has improved the time complexity. The 

time complexity of traditional Dijkstra algorithm is O(n2) 

while the time complexity of this new algorithm is O(n log n). 

It can be seen form the following table that this algorithm is 

improved the working of traditional Dijkstra algorithm- 

 

Table 8: Comparison between traditional Dijkstra 

algorithm and new improved algorithm. 

 

Original Data Traditional 

Dijkstra 

Algorithm 

Improved 

Dijkstra 

Algorithm 

Arc Node Total 

No. of 

paths 

Com

putin

g 

Time

(s) 

Total 

No. 

of 

path 

Computi

ng time 

(s) 

420 132 387 0.04 87 0.02 

3740 1475 4213 0.54 139 0.4 

30147 11655 84531 4.2 844 1.5 

 

 
 

Fig 4: Comparative study of the two algorithms. 

 

This graph depicts the comparative study of the Dijkstra 

algorithm and the new proposed algorithm. In this blue line 

represents Dijkstra algorithm and red line represents New 

proposed algorithm. 

 

4. CONCLUSION 
Dijkstra algorithm is used in various fields. This paper has 

found the application of Dijkstra algorithm in those fields. By 

using queue, stack and hashing it has improved the running 

time of the algorithm which was earlier very large. By this the 

need to find the shortest path in less time can be solved easily.  

5. FUTURE SCOPE 
This algorithm has used linear data structure and has 

improved the time complexity of traditional Dijkstra 

algorithm. Linear data structure is easy to implement. In the 

similar way traditional Dijkstra was improved using min 

heap. In future this algorithm can further be improved by 

improving its space complexity as well as it time complexity 

as linear time.  
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