
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 14, March 2014

17

Shortest Path Algorithm using Hashing and Queue

Shruti Pant
M.Tech CSE

Uttarakhand Technical university
Dehradun, India

Pooja khulbe
M.Tech CSE

Uttarakhand Technical university
Dehradun, India

ABSTRACT
Finding the shortest path in a graph means selecting the path

between source and destination which gives the minimum

path length. This problem of finding the shortest path can be

solved using Dijkstra algorithm. The time complexity of

Dijkstra algorithm is high. Looking at the shortcoming of

traditional Dijkstra algorithm, this paper has proposed a new

method to improve the time complexity of this algorithm

using queue and hashing techniques. The time complexity of

the improved algorithm is O(n log n).

Keywords

Shortest path, Dijkstra algorithm, Queue, Hashing, Stack.

1. INTRODUCTION
The shortest path algorithm has gradually become one of the

recent topics of research. It is used in geographic information

science, operations research, computer science and other

discipline. It is not only the key problem in network analysis

but also the key issues in graph theory, electronics, network

optimization, logistics and transportations. Shortest path

means selecting the path from source to destination in which

the path length is the minimum. This shortest path problem

can be solved by Dijkstra algorithm. This algorithm is used to

find the shortest path between any nodes. It solves the single

source shortest path problem for a graph with non-negative

edge path costs, producing a shortest path tree. The basic idea

of Dijkstra algorithm is to find the shortest path between node

N1 to node N2 i.e. for a given source vertex in the graph, the

algorithm finds the path with lowest cost between that vertex

and every other vertex. Then using this shortest path, find the

shortest path between node N2 to node N3. Hence a shortest

path is founded between node N1 to node N3. This process is

repeated from source until the destination is reached. This

idea of Dijkstra algorithm has the time complexity as O(n2).

This paper has proposed the improved time complexity as O(n

log n).

2. DIJKSTRA ALGORITHM

2.1 Description of traditional Dijkstra

 Algorithm
Dijkstra algorithm can label the nodes constantly. The value

of the label varies with the nodes, which is the length of the

shortest path between the starting point and label nodes [3]. In

addition, the nodes without labels can be labeled temporarily

that is, the relative minimum value of the shortest distance for

the other nodes is given. Of course, the closer the starting

point approaches the vertex, the earlier it gets the fixed label.

Combining with the backtracking algorithm we can find the

node passed by the shortest path between the starting point

and the other nodes, and then obtain the shortest path labeled

by the node [4].

2.2 Shortcomings of Dijkstra’s Algorithm
The Dijkstra algorithm takes a large amount of time in

calculating the shortest path. So it is not applicable when the

number of nodes increases. As the shortest path finds an

application in networking, transportation, etc so there is a

need to find the shortest path in lesser time. It also takes lots

of space for cost matrix due to which space complexity

increases.

3. NEW IMPROVED DIJKSTRA

ALGORITHM

3. 3.1 Proposed Algorithm
Step1- Enter the adjacency list ADJ which contains the node

number and the edge weight.

Step2- Arrange each row of adjacency list in ascending order

of edge weight using shell sort.

Step3- Enter the source and destination.

Step4- Mark the status of each node as NULL in STATUS.

Step5- Mark the weight of each node as infinity and source

weight as zero in LIST.

Step6- insert source in QUEUE.

Step7- Repeat steps till QUEUE is not empty.

a) Delete element X from FRONT end of QUEUE.

b) if STATUS[X]=NULL then-

i. If neighbor of X is not present in QUEUE then

add X’s neighbor to QUEUE.

ii. Calculate the weight of its neighbors as-

iii. Min(Wij, eij+ parent’s weight).

iv. If the new weight is less than the weight present

before then insert this calculated weight in LIST

and update its parent in LIST.

v. Update STATUS[X]=X.

 Else

 Delete the element from the QUEUE.

Step8- set y = destination.

Step9- repeat while source is not reached

 (i) push y onto STACK.

 (ii) set y = parent of y.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 14, March 2014

18

3.1.1 Working of algorithm
First enter the adjacency list. Arrange each row of the

adjacency list in ascending order using shell sort according to

edge weight entered so that there is a right selection of nodes

for finding the path. STATUS is a single dimensional array

used for keeping track that if the node has already been

visited or not. For this STATUS of each node is set as NULL,

when the node is visited then its status is updated with the

node number. If the STATUS of node number is NULL

means that the node has not been visited but if it’s NOT

NULL then the node is visited. LIST is a two dimensional

array of structure containing the weight of the node and parent

of the node. Firstly the weight of each node in LIST is marked

as infinity, after calculating the weight through parent node

the weight of node is updated when visited. Queue is used for

updating the weight of each node by selecting the neighbor

nodes according to the adjacency list. By this all the node’s

weight is calculated. Each time a node is deleted from front of

the queue and its neighbors are added to the queue. If the

neighbor already exists then just its weight is calculated like

other neighbor’s weight. If the calculated weight is less than

the existing weight of the neighbor then its weight is updated

in LIST. This loop continues till queue is not empty. Stack is

used for finding the path between source and destination by

setting a variable equal to the destination and recursively

visiting its parent so that the path can be found. This loop

continues till source is not reached.

3.2 Example
 4 2

 2 1 5

 2

Fig 1: An assumed graph.

Step 1- Adjacency matrix ADJ.

Table1: Adjacency matrix entered by user.

Step 2- Sort this list according to edge weights using shell

short.

Table 2: Adjacency matrix after shell sort.

Step 3- Source=1 and destination=3.

Step 4- Initialize status.

 1 2 3 4 5

NULL NULL NULL NULL NULL

Step 5- Initialize LIST.

Table 3: LIST which stores the weight and parent of each

node.

Node

number
Weight Parent

1 0 Null

2 Infinite

3 Infinite

4 Infinite

5 Infinite

Step 6- QUEUE.

 1 2 3 4 5

1

Step 7- Delete X i.e. X= 1.

i. Add neighbor of 1 to QUEUE.

 1 2 3 4 5

 4 2

ii. Calculate the weight of added nodes and add the

minimum weight of each added node to LIST.

Table 4: Updated LIST after accessing the first node.

Node

number
Weight Parent

1 0 Null

2 4 1

3 Infinite

4 2 1

5 Infinite

Nod

e

no.

Adjacent

node 1

Adjacent

node 2

Adjacent

node 3

Node

no.

Edge

wt

Node

no.

Edge

wt

Node

no.

Edge

wt

1 2 4 4 2

2 3 2

3 NULL

4 5 2 2 1 3 5

5 NULL

Node

no.

Adjacent

node 1

 Adjacent

 node 2

Adjacent

node 3

Node

no.

Edge

wt

Node

no.

Edge

wt

Node

no.

Edge

wt

1 4 2 2 4

2 3 2

3 NULL

4 2 1 5 2 3 5

5 NULL

1 2 3

4 5

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 14, March 2014

19

iii. STATUS.

 1 2 3 4 5

 1 NULL NULL NULL NULL

Step 8- Delete X i.e. X=4 from QUEUE.

i. Add neighbor of 4 to QUEUE.

 1 2 3 4 5

 2 5 3

ii. Calculate the weight of added nodes and add the

minimum weight of each added node to LIST.

 Table 5: Updated LIST after accessing second node.

Node number Weight Parent

1 0 Null

2 3 4

3 7 4

4 2 1

5 4 4

iii. STATUS.

 1 2 3 4 5

 1 NULL NULL 4 NULL

Step 9- Delete X i.e. X=2 from queue.

i. Add neighbor of 2 to QUEUE. As neighbor of 2 i.e

3 already exist in the QUEUE, so just its weight is

calculated by using 2 as parent.

 1 2 3 4 5

 5 3

ii. Calculate the weight of added nodes and add the

minimum weight of each added node to LIST.

 Table 5: Updated LIST after accessing third node.

Node number Weight Parent

1 0 Null

2 3 4

3 5 2

4 2 1

5 4 4

iii. STATUS.

 1 2 3 4 5

 1 2 NULL 4 NULL

Step 10- Delete X i.e. X=5.

i. It has no neighbors, so QUEUE remains the same.

 1 2 3 4 5

 3

ii. Calculate the weight of added nodes and add the

minimum weight of each added node to LIST.

 Table 6: Updated LIST after accessing fourth node.

Node number Weight Parent

1 0 Null

2 3 4

3 5 2

4 2 1

5 4 4

iii. STATUS.

 1 2 3 4 5

 1 2 NULL 4 5

Step 11- Delete X, i.e. X=3.

i. It has no neighbors, so QUEUE remains the same.

Now QUEUE has become empty so it will come out

of loop.

 1 2 3 4 5

ii. Calculate the weight of added nodes and add the

minimum weight of each added node to LIST.

 Table 7: Updated LIST after accessing fifth node.

Node number Weight Parent

1 0 Null

2 3 4

3 5 2

4 2 1

5 4 4

iii. STATUS.

 1 2 3 4 5

 1 2 3 4 5

Step 12- Destination i.e. y=3 (this loop continues till source is

not reached).

i. Stack- push y in stack.

Fig 2: Stack after pushing destination.

 3

TOP

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 14, March 2014

20

ii. Push parent of 3 (select parent from LIST).

Fig 3: Stack after pushing parent of 1st node.

iii. Push parent of 2 (select parent from LIST).

Fig 4: Stack after pushing parent of 2nd node.

iv. Parent of 4 is 1 i.e source is reached so it will come

out of loop. For printing the shortest path first print

the source and then one by one stack elements from

the top till stack is not empty.

3.3 Analysis of new algorithm
The new algorithm has improved the time complexity. The

time complexity of traditional Dijkstra algorithm is O(n2)

while the time complexity of this new algorithm is O(n log n).

It can be seen form the following table that this algorithm is

improved the working of traditional Dijkstra algorithm-

Table 8: Comparison between traditional Dijkstra

algorithm and new improved algorithm.

Original Data Traditional

Dijkstra

Algorithm

Improved

Dijkstra

Algorithm

Arc Node Total

No. of

paths

Com

putin

g

Time

(s)

Total

No.

of

path

Computi

ng time

(s)

420 132 387 0.04 87 0.02

3740 1475 4213 0.54 139 0.4

30147 11655 84531 4.2 844 1.5

Fig 4: Comparative study of the two algorithms.

This graph depicts the comparative study of the Dijkstra

algorithm and the new proposed algorithm. In this blue line

represents Dijkstra algorithm and red line represents New

proposed algorithm.

4. CONCLUSION
Dijkstra algorithm is used in various fields. This paper has

found the application of Dijkstra algorithm in those fields. By

using queue, stack and hashing it has improved the running

time of the algorithm which was earlier very large. By this the

need to find the shortest path in less time can be solved easily.

5. FUTURE SCOPE
This algorithm has used linear data structure and has

improved the time complexity of traditional Dijkstra

algorithm. Linear data structure is easy to implement. In the

similar way traditional Dijkstra was improved using min

heap. In future this algorithm can further be improved by

improving its space complexity as well as it time complexity

as linear time.

6. REFERENCES
[1] Y.Cao, “The Shortest path algorithm in data

structures”, Yibin University, vol. 6, 2007, pp.82-

84.

[2] Q. Sun, J. H. Shen, J. Z Gu, “An improved Dijkstra

algorithm”, Computer Engineering And

Applications, vol. 3, 2002, pp. 99-101.

[3] Jinhao Lu, Chi Dong, Research of the shortest path

algorithm based on the data structure [J], IEEE,

2012, pp. 108-12.

[4] L.B. Chen, R.T Liu, “A dijkstra’s shortest path

algorithm”, Harbin University of Technology, vol 3,

2008,pp.35-37.

[5] F.S.XU,C.Tian, “All the Shortest Path Algorithm”,

Computer Engineering and Science, vol.12, 2006,

pp.83-84.

[6] Y. Tang, Y. Zhang, H. Chen, “A Parallel Shortest

Path Algorithm Based on Graph-Partitioning and

Iterative Correcting”, in Proc. of IEEE HPCC, pp.

155-161, 2008.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

420 3720 30147

 2

 3

 4

 2

 3

TOP

TOP

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 14, March 2014

21

[7] Fuhao ZHANG, Ageng QIU, Qingyuan LI,”

Improve on dijkstra shortest path algorithm for huge

data”, ISPRS, 2009.

[8] Noto m, Sato h.,” Improved Dijkstra algorithm for

network routing” Systems, man and cybermatics,

IEEE international conference, vol 3, pp 2316 –

2320, 2000.

[9] Yizhen Huang, Qingming Yi, Min Shi, “An

Improved Dijkstra Shortest Path Algorithm”,

Proceedings of the 2nd International Conference on

Computer Science and Electronics Engineering

(ICCSEE 2013), pp. 0226-0229, 2013.

[10] F.S. XU. “Shortest path calculation algorithm”.

Computer Applications, vol 5, pp.88-89, 2004.

IJCATM : www.ijcaonline.org

