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ABSTRACT
The aim of this paper is to establish some coupled fixed point
theorems in G-metric spaces using (φ, ψ) contractions for a
mapping F : X ×X → X . The result of this paper is conversion
of the result of Phakdi Charoensawan [5] into G-metric space.

General Terms:
47H10, 54H25

Keywords:
Coupaed fixed point, G-metric space, mixed monotone property

1. INTRODUCTION
Banach contraction principle is one of the core subject that has
been studied. One of the remarkable generalizations, known as φ-
contraction, was given by Boyd and Wong [2] in 1969. In 2006,
Gnana-Bhaskar and Lakshmikantham [6] introduced the notion
of coupled fixed point and proved some fixed point theorems
under certain conditions. After this many author worked on
coupled fixed point theorems and gave very useful results in the
arena of fixed point theory. Mustafa and Sims [8] introduced the
notion of generalized metric space or simply G-metric space as a
generalization of the concept of metric space.

2. PRELIMINARIES
DEFINITION 2.1 [8]. Let X be a nonempty set, and let G :

X ×X ×X → R+, be a function satisfying:

(G1) G(x, y, z) = 0 if x = y = z

(G2) 0 < G(x, x, y), for all x, y ∈ X; with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z),

for all x, y, z ∈ X with z 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . .

(symmetry in all three variables), and
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all

x, y, z, a ∈ X , (rectangle inequality),

then the function G is called a generalized metric, or, more
specifically a G-metric on X , and the pair (X,G) is a G-metric
space.

DEFINITION 2.2 [8]. A G-metric space (X,G) is symmetric if

(G6) G(x, y, y) = G(x, x, y), for all x, y ∈ X .

DEFINITION 2.3 [6]. An element (x, y) ∈ X×X is said to be
a coupled fixed point of the mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

DEFINITION 2.4. Let (X,G) be a G-metric space and F :
X ×X → X be a given mapping. Let M be a nonempty subset of
X4. We say that M is an F-invariant subset of X4 if and only if,

for all x, y, u, v ∈ X, (x, y, u, v) ∈M
⇒ (F (x, y), F (y, x), F (u, v), F (v, u)) ∈M.

DEFINITION 2.5. Let (X,G) be a G-metric space and M be a
subset of X4. We say that M satisfies the transitive property if and
only if,

for all x, y, u, v, a, b ∈ X,
(x, y, u, v) ∈M and (u, v, a, b) ∈M ⇒ (x, y, a, b) ∈M.

DEFINITION 2.6 [6]. Let (X,≤) be a partially ordered set
and F : X ×X → X be a mapping. F is said to have the mixed
monotone property if F (x, y) is monotone non-decreasing in x and
is monotone non-increasing in y, that is, for any x, y ∈ X ,

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y), for x1, x2 ∈ X and
y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1), for y1, y2 ∈ X.

By following, Matkowski [10]
Let Φ denote the set of all functions φ : [0,∞)→ [0,∞) satisfying

(iφ) φ is continuous and non-decreasing,

(iiφ) φ(t) = 0 if and only if t = 0 and,

(iiiφ) φ(t+ s) ≤ φ(t) + φ(s) for all t, s ∈ [0,∞)

and Ψ denote the set of all functions ψ : [0,∞) → [0,∞) which
satisfy

(iψ) lim
t→0+

ψ(t) > 0 for all r > 0, and

(iiψ) lim
t→r

ψ(t) = 0.
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3. MAIN RESULTS
THEOREM 3.1. Let (X,≤) be a partially ordered set and

suppose there is a metric G on X such that (X,G) is a complete
G-metric space. LetF : X × X → X be a mapping for which
there exist φ ∈ Φ and ψ ∈ Ψ such that for all x, y, u, v ∈ X with
(x, y, u, v) ∈M .

φ

(
G(F (x, y), F (u, v), F (u, v))

+G(F (y, x), F (v, u), F (v, u))

)
2

≤ φG(x, u, u) +G(y, v, v)

2
− ψG(x, u, u) +G(y, v, v)

2
(1)

suppose either

(a) F is continuous or
(b) for any two sequences {xn} and {yn} with

(xn+1, yn+1, xn, yn) ∈ M , {xn} → x and {yn} → y
for all n ≥ 1 implies (x, y, xn, yn) ∈M for all n ≥ 1.

If there exists (x0, y0) ∈ X ×X such that (F (x0, y0), F (y0, x0),
x0, y0) ∈ M and M is an F -invariant set which satisfies the
transitive property. then there exists x, y ∈ X such that x =
F (x, y), y = F (y, x).

PROOF. Let (x0, y0) ∈ X×X . Since F (X×X) ⊆ X , we can
choose x, y ∈ X such that x1 = F (x0, y0) and y1 = F (y0, x0).
Again from F (X ×X) ⊆ X , we can choose x2, y2 ∈ X such that
x2 = F (x1, y1) and y2 = F (y1, x1).
Continuing like this we can construct sequences {xn} and {yn} in
X such that

xn = F (xn−1, yn−1) and yn = F (yn−1, xn−1) for all n ≥ 1
(2)

If there exist k ∈ N such that xk = xk−1 and yk = yk−1 then
xk = xk−1 = F (xk−1, yk−1) and yk = yk−1 = F (yk−1, xk−1).
Thus (xk−1, yk−1) is a coupled fixed point of F . Then our result is
proved. There we may assume that xk 6= xk−1 and yk 6= yk−1 for
all n ≥ 1.
Since

(F (x0, y0), F (y0, x0), x0, y0) = (x1, y1, x0, y0) ∈M

and M is an F -invariant set, we have

(F (x1, y1), F (y1, x1), F (x0, y0), F (y0, x0))

= (x2, y2, x1, y1) ∈M

Continuing like this, we obtain

(F (xn, yn), F (yn, xn), F (xn−1, yn−1), F (yn−1, xn−1))

= (xn+1, yn+1, xn, yn) ∈M for all n ≥ 1.

Now, let the sequence of non negative real numbers, {δn}∞n=1 given
by

δn+1 =
G(xn+1, xn, xn) +G(yn+1, yn, yn)

2
, n ≥ 0 . (3)

Since (xn, yn, xn−1, yn−1) ∈M then(
G(F (xn, yn), F (xn−1, yn−1), F (xn−1, yn−1))
+G(F (yn, xn), F (yn−1, xn−1), F (yn−1, xn−1))

)
2

=
G(xn+1, xn, xn) +G(yn+1, yn, yn)

2
= δn+1

So, from the right hand side of (1), we have

φ

(
G(xn, xn−1, xn−1) +G(yn, yn−1, yn−1)

2

)
− ψ

(
G(xn, xn−1, xn−1) +G(yn, yn−1, yn−1)

2

)
= φ(δn)− ψ(δn).

Therefore the sequence {δn}∞n=1 satisfies

φ(δn+1) ≤ φ(δn)− ψ(δn) ≤ φ(δn), for all n ≥ 0. (4)

From (4) and (i)φ it follows that the sequence {δn}∞n=1 is non
increasing. So, there is some δ ≥ 0, such that

lim
n→∞

δn = lim
n→∞

[
G(xn, xn−1, xn−1) +G(yn, yn−1, yn−1)

2

]
= δ. (5)

Now, we shall show that δ = 0. Let if possible δ > 0. Then taking
the limit as n→∞ (equivalently, δn → δ) of both sides of (4) and
by the property (iψ) and (iφ), we get

φ(δ) = lim
n→∞

φ(δn)

≤ lim
n→∞

[φ(δn−1 − ψ(δn−1)]

= φ(δ)− lim
δn−1→δ

ψ(δn−1)

< φ(δ)

which is a contradiction. Thus δ = 0, that is

lim
n→∞

δn = lim
n→∞

[
G(xn, xn−1, xn−1) +G(yn, yn−1, yn−1)

2

]
= 0. (6)

Now, we will show that {xn} and {yn} are cauchy sequences in
X . Let if possible at least one of {xn} and {yn} is not Cauchy
sequence, then there exist an ε > 0 for which we can find
subsequences {xn(k)} and {xm(k)} of sequence {xn} and {yn(k)},
{ym(k)} of {yn} with n(k) > m(k) ≥ k such that

1

2
[G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k), ym(k))] ≥ ε. (7)

Now, corresponding to m(k), we can take n(k) in such a way that
is the smallest integer with n(k) > m(k) ≥ k and satisfying (7).
Then

1

2
[G(xn(k)−1, xm(k), xm(k)) +G(yn(k)−1, ym(k), ym(k))] < ε.

(8)

Let
1

2
[G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k), ym(k))] = rk.

Using (7) and (8), and the triangular inequality, we get

ε ≤ rk

=
1

2
[G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k), ym(k))]

≤ 1

2
[G(xn(k), xn(k)−1, xn(k)−1) +G(xn(k)−1, xm(k), xm(k))]

+
1

2
[G(yn(k), yn(k)−1, yn(k)−1) +G(yn(k)−1, ym(k), ym(k))]

≤ 1

2
[G(xn(k), xn(k)−1, xn(k)−1) +G(yn(k), yn(k)−1, yn(k)−1)] + ε.
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Taking k →∞ and using (6), we obtain

ε ≤ lim
k→∞

rk

≤ lim
k→∞

[
1

2
[G(xn(k), xn(k)−1, xn(k)−1) +G(yn(k), yn(k)−1, yn(k)−1)

]
+ lim
k→∞

ε = 0 + ε = ε,

that is

lim
k→∞

rk ≤ lim
k→∞

[
1

2
[G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k), ym(k))

]
= ε . (9)

By triangle inequality, we get

G(xn(k), xm(k), xm(k))

≤ G(xn(k), xn(k)+1, xn(k)+1) +G(xn(k)+1, xm(k)+1, xm(k)+1)

+ G(xm(k)+1, xm(k), xm(k))

Similarly,

G(yn(k), ym(k), ym(k))

≤ G(yn(k), yn(k)+1, yn(k)+1) +G(yn(k)+1, ym(k)+1, ym(k)+1)

+ G(ym(k)+1, ym(k), ym(k))

This shows that

rk =
1

2
[G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k), ym(k))]

≤ 1

2

[
G(xn(k), xn(k)+1, xn(k)+1) +G(xn(k)+1, xm(k)+1, xm(k)+1)

+G(xm(k)+1, xm(k), xm(k)) +G(yn(k), yn(k)+1, yn(k)+1)

+G(yn(k)+1, ym(k)+1, ym(k)+1) +G(ym(k)+1, ym(k), ym(k))

= δn(k) + δm(k) +
1

2
[G(xn(k)+1, xm(k)+1, xm(k)+1)

+G(yn(k)+1, ym(k)+1, ym(k)+1)] (10)

Since n(k) > m(k) and M satisfies the transitive property from

(xn(k), yn(k), xn(k)−1, yn(k)−1) ∈M

and

(xm(k)+1, ym(k)+1, xm(k), ym(k)) ∈M,

We have (xn(k), yn(k), xm(k), ym(k)) ∈M , by (1), we get

φ

[
1

2
(G(xn(k)+1, xm(k)+1, xm(k)+1) +G(yn(k)+1, ym(k)+1, ym(k)+1))

]
= φ

[
1

2
(G(F (xn(k), yn(k)), F (xm(k), ym(k)), F (xm(k), ym(k)))

+
1

2
(G(F (yn(k), xn(k)), F (ym(k), xm(k)), F (ym(k), xm(k)))

]
≤ φ

[
1

2
(G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k)), ym(k))

− ψ 1

2
(G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k)), ym(k))

]
= φ(rk)− ψ(rk) . (11)

Now, using (10) and property (iiiφ), we obtain

φ(rk) ≤ φ(δn(k) + δm(k))

+ φ


(
G(xn(k)+1, xm(k)+1, xm(k)+1)
+G(yn(k)+1, ym(k)+1, ym(k)+1)

)
2

 (12)

From (11) and (12), we get

φ(rk) ≤ φ(δn(k) + δm(k)) + φ(rk)− ψ(rk) (13)

Taking k → ∞ in (13), and using (6) and (9), and property of φ
and ψ, we have

φ(ε) = lim
k→∞

φ(rk)

= ψ

(
lim
k→∞

rk

)
≤ lim
k→∞

[φ(δn(k) + δm(k)) + φ(rk)− ψ(rk)]

= φ

[
lim
n→∞

(δn(k) + δm(k))

]
+ φ

(
lim
k→∞

(rk)

)
− lim
k→∞

ψ(rk)

= φ(0) + φ(ε)− lim
k→∞

ψ(rk) < φ(ε)

which is a contradiction. This shows that {xn} and {yn} are
cauchy sequences. SinceX is completeG-metric space, there exist
x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y .

Now, condition (a) holds. Then

x = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F (x, y)

and

y = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F (y, x).

Suppose condition (b), holds, we get that a sequence {xn} → x
and {yn} → y by the assumption, we have (x, y, xn, yn) ∈M for
all n ≥ 1.
Since φ is non decreasing and (1), so

φ

[
1

2
(G(x, F (x, y), F (x, y))−G(x, xn+1, xn+1)

+G(y, F (y, x), F (y, x))−G(y, yn+1, yn+1))]

≤ φ
[

1

2
(G(F (xn, yn), F (x, y), F (x, y))

+G(F (yn, xn), F (y, x), F (y, x)))]

≤ φ
[

1

2
(G(xn, x, x) +G(yn, y, y))

]
− ψ

[
1

2
(G(xn, x, x) +G(yn, y, y))

]
≤ φ

[
1

2
(G(xn, x, x) +G(yn, y, y))

]
Letting n→∞, in the above inequality, We get

φ

[
1

2
(G(x, F (x, y), F (x, y) +G(y, , F (y, x), F (y, x)))

]
≤ φ(0) = 0.

3
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which shows, from (iφ) and (iiiφ), that

x = F (x, y) and y = F (y, x).

THEOREM 3.2. In addition to the hypotheses of Theorem 3.1
suppose that for every (x, y), (x′, y′) ∈ X × X there exist a
(u, v) ∈ X×X such that (x, y, u, v) ∈M and (x′, y′, u, v) ∈M .
Then F have a unique coupled fixed point.

PROOF. From Theorem 3.1,the set of coupled fixed points of F
is non empty. Suppose that (x, y) and (x′, y′) ∈ X × X are two
coupled fixed points of F . We shall show that x = x′ and y = y′.
Since (x, y), (x′, y′) ∈ X ×X , there exist (u, v) ∈ X ×X such
that (u, v) is comparable to (x, y) and (x′, y′).
Now, we construct the sequences {un} and {vn} like as u0 = u,
v0 = v, un+1 = F (un, vn) and vn+1 = F (vn, un) for all n ≥ 0.
Now, set x0 = x, y0 = y, x′0 = x′, y′0 = y′ and in similar way,
construct the sequences {xn}, {yn}, {x′n} and {y′n}. That is as
above for all n ≥ 0,

xn+1 = F (xn, yn), yn+1 = F (yn, xn),

x′n+1 = F (x′n, y
′
n), y′n+1 = F (y′n, x

′
n),

Since M is F -invariant and (x, y, u, v) = (x, y, u0, v0) ∈ M , we
get (F (x, y), F (y, x), F (u0, v0), F (v0, u0)) = (x, y, u, v) ∈M .
It is easy to show that (x, y, un, vn) ∈M .
Therefore, by Theorem 3.1,

φ

[
1

2
(G(x, un+1, un+1) +G(y, vn+1, vn+1))

]
= φ

[
1

2
(G(F (x, y), F (un, vn), F (un, vn)

+G(F (y, x), F (vn, un), F (vn, un)))

]

≤ φ
[

1

2
(G(x, un, un) +G(y, vn, vn))

]
− ψ

[
1

2
(G(x, un, vn) +G(y, vn, vn))

]
(14)

Using the property of ψ, we get

φ

[
1

2
(G(x, un+1, un+1) +G(y, vn+1, vn+1))

]
≤ φ

[
1

2
(G(x, un, un) +G(y, vn, vn))

]
As φ is non decreasing, so[

1

2
(G(x, un+1, un+1) +G(y, vn+1, vn+1))

]
≤ 1

2
[G(x, un, un) +G(y, vn, vn)]

Let

δn =
1

2
[G(x, un, un) +G(y, vn, vn)] , n ≥ 0.

So {δn} is non-decreasing. Hence, there exist α ≥ 0 such that

lim
n→∞

δn = lim
n→∞

1

2
[G(x, un, un) +G(y, vn, vn)] = α. (15)

now, we shall show that α = 0. Let if possible, α > 0. Taking lim
as n→∞ in (14). By (15), we hae

φ(α) = lim
n→∞

[
φ

(
G(x, un+1, un+1) +G(y, vn+1, vn+1)

2

)]
≤ lim
n→∞

φ

[
G(x, un, un) +G(y, vn, vn)

2

]
− lim
n→∞

ψ

[
G(x, un, un) +G(y, vn, vn)

2

]
= φ(α)− lim

n→∞
ψ

[
G(x, un, un) +G(y, vn, vn)

2

]
By property of ψ, we get φ(α) < φ(α), which is a contradiction.
Hence α = 0, that is

lim
n→∞

δn = lim
n→∞

[G(x, un, un) +G(y, vn, vn)] = 0

which shows that

lim
n→∞

G(x, un, un) = lim
n→∞

G(y, vn, vn) = 0

Similarly, we get

lim
n→∞

G(x′, un, un) = lim
n→∞

G(y′, vn, vn) = 0

and hence x = x′ and y = y′.

EXAMPLE 3.3. Let X = R, G(x, y, z) = |x− y|+ |y − z|+
|z − x|, and F : X ×X → X be such that

F (x, y) =
x+ y

24
, (x, y) ∈ X2.

The mapping F does not satisfy the mixed monotone property. It

is easy to show that F satisfies (1) with M = X4, φ(t) =
t

3
,

ψ(t) =
t

6
and (0, 0) is the unique coupled fixed point of F .
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