International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

Data Hiding Algorithm using Variable Block Size in
Cover Image File

Prasita Mukherjee
Department of computer
science
St.Xavier’s college
Kolkata, India

ABSTRACT

Data hiding inside any standard or non standard cover file is
now a common area of interest across the globe. Nath et al
already developed several methods for hiding any secret
message inside any standard or non standard cover file. In the
present work the authors have introduced a new method of
hiding any kind of small secret message such as text, image,
audio file inside any cover file which is mainly .bmp file. The
authors divide the entire cover file into number of blocks and
then inserted the bits of the secret file after a series of shift
operations on them in the RGB components of pixels of cover
image file. After inserting any secret message inside a cover
file it was found that there is no significant change in the
stego file. The shifting operation on the bits of the secret file
in addition to the random generation of blocks, and processing
them in an order, where a definite number of bits of the secret
file to embed are reserved for each block will make the entire
process fully secured. The size of the cover image should be
at least 10-20 times larger than the secret message file so that
the entire process should be almost unbreakable.

General Terms
Block,embed,dembed

Keywords
data hiding, audio file, stego file, secret file, pixels

1. INTRODUCTION

Data hiding is a method of hiding secret messages into a
cover-media such that an unintended observer will not be
aware of the existence of the hidden messages. In this paper
we have selected a cover image of *.bmp format. Cover
images with secret messages embedded in them are called
stego images. The primary criteria of data hiding is that the
quality of original cover and the stego file should be same.
Normal human eye should not be able to find any difference
between two image files. Nath et al already developed several
methods[1-13] for hiding any kind of data inside any kind of
cover file such as .bmp, .jpg, .avi, .wav, .doc etc. In the
present paper the authors have introduced which is based on
LSB insertion method starting from any block of initial cover
file. To insert any secret message the authors first select a big
cover image file (near about 1200x900 pixels). The image is
then divided into several number of blocks of the same
size.Depending on type of secret image the number of blocks
are generated. The row-factor and column-factor are
calculated. From row-factor and column-factor the number of
rows and number of columns in each individual block is
calculated separately. Four standard shifting operations such
as left_shift(), right_shit(), up_shift() and down_shft() are
applied to the bits of the secret file before embedding it inside

Sourasekhar Banerjee
Department of computer

science

St.Xavier’s college
Kolkata, India

Asoke Nath
Department of computer
science
St.Xavier’s college
Kolkata, India

the file. The least significant bit(LSB) of some or all the bytes
inside a block of pixels of RGB component of cover image
file is changed by substituting the bits of the secret message
file. The first 300 rows of the cover image file is not used.
Similarly the last 300 rows are used to store the key elements
such as size of the secret message file, column factor, row
factor and number of blocks of cover image file.To retrieve
secret message from a stego file one has to read key elements
from last 300 bytes of pixels of the stego file and start doing
the reverse process. It means extracting bits from stego file
and then converting to each 8 bits block to byte and then
writing onto out file. In the present work the authors have
used

Cover file- *.BMP format file

Secret message file -*.jpg,*.png,* WAV, *.mp3, *.txt,
.doc,.docx,*.rtf .

In the results section the authors have given the original cover
file, secret message file and also the stego file. The difference
in bytes of both cover file and the stego file is also shown in
tabular form. The entire work was done in MATLAB.

2. METHOD USED IN THE PRESENT
WORK

In the present paper the authors have made an exhaustive
study on embedding (i) text, (ii) sound, (iii) image in a cover
image(mainly *.BMP). The size of the cover file must be at
least 10 times bigger than the secret message file which is to
be embedded within the cover file. Last 300 rows of the
cover image is reserved for storing key elements like size of
the secret file, column and row factor of cover image, and
total number of blocks of cover image. In the present
approach one cannot use a secret file less than 100 bytes and
greater than the ((number of rows of the cover image)-
600)*number of columns.The block diagram of the present
method is shown Fig-1 and Fig-2.

One has to read the actual row number and column number of
the cover picturelt means row_actual= (total_row-
300_row_begin-300_row_last). There will be no change in
column number.The detailed description of the present
method will now described in step by step manner.

11

Cover Image Secret Message

v v

Take size of cover Take size of Secret
image message
size_of_cover=row*col size_of_secret =
umn row*column

= -

Calculate number of blocks
O<number_of_blocks<100

v

Break cover image into several blocks.
do not break first 300 and last 300 rows

into blocks .
Secret :’ake rowdfactor_ andhcol_umnf
actor to determine the size o
Message
g each block

v

Apply Up,Left, Down
and right shifting >
operation on bits.

A 4
Apply LSB insertion method

to insert Secret message into

the cover image. Insertion > Stego
should be occur block by Image
block.

Fig 1: Block Diagram to hide secret image inside an cover
image file

extract bits from
LSB position from
the blocks in order
respectively.

!

Apply Right, Down,
Left, Up shifting
operation on extracted
bits.

Y

Stego image

\ 4
Apply Right, Down,

Left, Up shifting operation on
extracted bits.

Retrieved

Secret A
3 Convert Bit to Byte to get

| the Secret message

y

Fig 2: Block Diagram to Retrieve Secret message from
Stego file.

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

3. BLOCK DIVISION ALGORITHM
Step 0: Start

Step 1: read cover image file (row_c,column_c)

Step 2: fcl=row_c * column_c

Step 3: read secret message file(row_s,colmn_s)

Step 4: fs2=row_s * column_s.

Step 5: is fs2 < 100000 then go to step 4 else go to step 6
Step 6: Calculate c=mod(fs2,10))

Step 7: Calculate fs2=fs2*10+c, go to step3

Step 8: Calculate nob=fix (fc1/fs2) ‘ nob=number of blocks
Step 9: if nob >100 then go to step 8 else go to step 10

Step10:Calculate rem=mod(nob,10) ‘ rem=remainder of nob

divided by 10

Step 11: Calculate nob=fix (nob/10) +rem
Step 12 : Goto step 7

Step 13: print nob

Step 14: return nob

Step 15: end

4. EMBED ALGORITHM
4.1 . Bits of the secret file

The bits of secret message file is embedded into the cover
image. The blocks are processed as shown in the block
diagram. The bits are embedded in continuous pixels(i.e. no
gapping between the pixels are present).

Secret Message

' }

Block-1 Block-4

<+
<+

Block-2 Block-5

<4
<4+

Block-3 Block-6

This is the last
block

Fig 3: An example of block processing where the number
of blocks are 6, with row_factor=3, column_factor=2.

(After block 3,
go to block 4)

Description of Function
stego_embed(i_file,s_file,o_file)
Where

i_file : The cover image file.
s_file : The secret file.

o_file : The temporary stego image file.

12

Step 0: Start

Step 1: y=imread(i_file) ‘reading all pixels of i_file and
storing in arry y()

Step 2 : [r ¢ d J=size(y) ‘where r=number of rows, c-number
of columns, d=1 for B/W and 3 for color image

Step 3 : r1=301 ‘starting row for block-processing and
embedding

Step 4 : r2=r-300

Step 5: r_act=(r2-r1)+1 ‘the entire accessible region, in
terms of rows for embedding operation

Step 6 : [nob]=no_of_blocks(i_file,s_file)
Step 7 : [row_factorcol_factor]=determine(nob)

Step 8 :r_final=(r1-1)+fix(r_actrow_factor) ‘ending row for
block-processing and embedding

Step 9 : c1=1 ‘starting column for block-processing and
embedding

Stepl0:c_final=fix(c/col_factor) ‘ending column for block-
processing and embedding

Step 11: [n]=byte_to_bit(s_file, ‘out.txt’)

Step 12: If (n/8)>(r_act*c) then print “Insertion not
possible”, Go to step 134.

Step 13: fpl=fopen(‘out.txt’, 'r’)
Step 14: str_file=fread(fp1)
Step 15: n1=n/8 ‘no. of bytes

Step 16 : ins=1
Step 17 :i=1
Step 18 : j=1

Step 19 : x(i,j)=str_file(ins)

Step 20 : ins=ins+1

Step 21 : j=j+1

Step 22 : If j<=8 then go to step 19
Step 23 :i=i+1

Step 24 : If i<=n1 then go to step 18

Step 25 : x1=up_shift(x,nl) performs shift operations on the
bits

Step 26 : x2=left_shift(x1,n1)
Step 27 : x3=down_shift(x2,n1)
Step 28 : x4=right_shift(x3,n1)

Step 29 : ins=1
Step 30 :i=1
Step 31 :j=1

Step 32 :x_final(ins)=x4(i,j) ‘the bits after shift operations
Step 33 : ins=ins+1

Step 34 : j=j+1

Step 35 : If j<=8 then go to step 32

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

Step 36 :i=i+1
Step 37 : If i<=n1 then go to step 31

Step 38 : Calculate nl=fix(n/nob) ’ nl= parts of secret
message for each block

Step 39 :block_fac=0 ‘initially we set it to zero. It is
incremented as each of the blocks are processed

Step 40 : p=1 ‘regulates the bits embedded in a particular
block

Step 41 : n3=0

Step 42 : If block_fac= nob then go to step 86
Step 43 : If block_fac =(hob-1) then go to step 57
Step 44 :i=rl

Step 45 : j=c1

Step 46 : k=1

Step 47 : If p>(n1+n3) then go to step 51

Step 48 : If x_final(p)=0 and mod(y(i,j,k),2) =1 then
y(u!k):y(lrjrk)'l

Step 49:1f x_final(p)=1 and mod(y(i,j,k),2) =0 then
y(i.j.K)=y(i.j.k)+1

Step 50 : p=p+1

Step 51 : k=k+1

Step 52 : If k<=d then go to step 47

Step 53 : j=j+1

Step 54 :If j<=c_final then go to step 46
Step 55: i=i+1

Step 56 : If i<=r_final then go to step 45
Step 57: i=rl

Step 58 : j=c1

Step 59 : k=1

Step 60 :If p<=(nl1+n2+n3) then go to next step. Else go to
step 64.

Step 61 : If x_final(p)=0 and mod(y(i,j,k),2) =1 then
y(IvJvk):y(lrjrk)'l
Step 62 : If x_final(p)=1 and mod(y(i,j,k),2) =0 then
y(i.j.K)=y(i.j.k)+1

Step 63 : p=p+1

Step 64 : k=k+1

Step 65 : If k<=d then go to step 60.
Step 66 : j=j+1

Step 67 :If j<=c_final then go to step 59
Step 68: i=i+1

Step 69 :Ifi<=r_final then go to step 58

Step 70 : p=nl+n3+1 ‘is set after each block is processed in
order to determine which bit to embed in the next block

Step 71 : n3=n3+nl ‘is set after each block for proper
calculation of p

13

Step 72 :block_fac=block_fac+1

Step 73: If block_fac>=row_factor then go to step 78. ‘rows
and columns are modified according to the value of block_fac

Step 74: r1=r_final+1

Step 75: r_final=r_final+fix(r_act/row_factor)

Step 76: c1=1

Step 77: c_final=fix(c/col_factor), Go to step 85.

Step 78: If mod(block_fac,row_factor)<>0 then go to step 82.
Step 79: c1=c_final+1

Step 80: c_final=c_final+fix(c/col_factor)

Step 81: r1=301

Step 82: r_final=(r1-1)+fix(r_act/row_factor), Go to step 85.
Step 83: rl=r_final+1

Step 84: r_final=r_final+fix(r_act/row_factor)

Step 85: Go to step 44.

Step 86: imwrite(y,0_file) ‘writes the contents of the
embedded image file to another file

Step 87: fpl=fopen(store_info.txt’,’'w’) ‘file to store
information about the secret message file

Step 88: r=n/8 ‘to store the number of bytes(i.e. size of the
secret file)

Step 89: p=1
Step 90: If r<=0 then go to step 95.
Step 91: d=mod(r,10)

Step 92: size_arr(p)=d ‘the number stored in d is copied t an
array size_arr()

Step 93: p=p+1
Step 94: r=fix(r/10), Go to step 90.
Step 95:i=p-1

Step 96:d=size_arr(i)+48 ‘the numeric character is extracted
from array size_arr()

Step 97:i=i-1

Step 98:Ifi>=1 then go to step 96

Step 99:r1=row_factor

Step 100: p=1

Step 101: If r<=0 then go to step 106.
Step 102: d=mod(r1,10)

Step 103: rowsize_arr(p)=d

Step 104: p=p+1

Step 105: r1=fix(r1/10), Go to step 101.

Step 106:i=p-1
Step 107:d=size_arr(i)+48
Step 108:i=i-1

Step 109:Ifi>=1 then go to step 107
Step 110:c=col_factor

International Journal of Computer Applications (0975 — 8887)
Volume 89 — No 13, March 2014

Step 111: p=1

Step 112: If c<=0 then go to step 117 .
Step 113: d=mod(c,10)

Step 114: colsize_arr(p)=d

Step 115: p=p+1

Step 116: c=fix(c/10), Go to step 112.

Step 117:i=p-1
Step 118:d=size_arr(i)+48
Step 119:i=i-1

Step 120:1fi>=1 then go to step 118

Step 121:n=nob

Step 122: p=1

Step 123: If n<=0 then go to step 128.
Step 124: d=mod(n,10)

Step 125: blocksize_arr(p)=d

Step 126: p=p+1

Step 127: n=fix(n/10) then Go to step 123.

Step 128:i=p-1
Step 129:d=size_arr(i)+48
Step 130:i=i-1

Step 131:Ifi>=1 then go to step 129

Step 132:Write the value of every d in the file corresponding to
the file pointer fp1. Also after exiting from every loop do

Jprintf(fpl,”)

Step 133: Call function stegano_file
(0_file, 'store_info.txt’ file fin) for final embed operation

Step 134:End

4.2 Information about the secret file

In function stegano_file(o_file, txt_file, file_fin)the
information required to access the secret file,i.e. the size of
the file, row_factor, coulumn_factor and number of blocks
(nob) for the respective file is embedded in the cover file.

Function : stegano_file(o_file,txt_file,file_fin)

Where

o_file > Temporary embedded image file

txt_file 2 File that contains information about the secret file

file_fin = Final embedded image file.

Step 0: Start

Step 1: y=imread(o_file) ‘reads the image file and stores
pixels in array y()

Step 2: [r ¢ d]=size(y) ‘r=number of rows, c=number of
columns, d=depth

Step 3: r1=r-299 ‘stores the row-range for the lower 300
pixels, as in order to embed information about the secret file,
we have to use that range

14

Step 4 : [n]=byte to_bit(txt_file, ‘output.txt’)
Step 5: fpl=fopen(‘output.txt’,’r’)
Step 6:str_file=fread(fp1)

Step 7: p=1 ‘acts as a regulator to store the number of
bits

Step 8 :i=rl
Step9:j=1
Step 10: k=1

Step 11: If p>n then go to step 15

Step 12 : If str_file(p)=0 and mod(y(i,j,k),2) <>0 then
y(l,_],k)=y(|,],k)-l

Step 13: If str_file(p)=1 and mod(y(i,j,k),2) =0 then

y(i.j.k)=y(ij.k)+1
Step 14: p=p+1. Go to step 16.

Step 15: Break from loop. Go to step 22.
Step 16 : k=k+1

Step 17: If k<=d then go to step 11

Step 18: j=j+1

Step 19: If j<=c then go to step 10

Step 20:i=i+1

Step 21: If i<=r then go to step 9

Step 22:imwrite(y,file_fin) ‘writes the embedded image file
into another file

Step 23 : End

5. DEMBED ALGORITHM
5.1 Extract secret message from Stego

Image

It is known to the sender that the information required to
process is hidden within the last 300 rows of the stego image.
The order of block processing and shifting is also known. In
the present study the secret message is encrypted before
embedding inside cover message file. In future study the
authors will apply encryption process before embedding
inside cover file.

Function:stego_dembed(stego_file,out_file)

Where
stego_file> The embedded image file.
out_file-> The secret file after extraction operation.

Step 0: Start

Step 1:Callfunctiondembed_this(stego_file, 'deco.txt’) ‘to extract
information about the secret file

Step2: Obtain[sz,row_factorcol_factor]=extract_them
(‘deco.txt’)

Step 3 : y=imread(stego_file)
Step 4 : n=8%sz ‘the number of bits of the file.
Step 5 :x_ini=zeros(n,1) ‘declare an array x_ini()

Step 6 : [r c d]=size(y)

International Journal of Computer Applications (0975 — 8887)
Volume 89 — No 13, March 2014

Step7.:fpl=fopen(‘temp.txt’,’w’) ‘opens a file temp.txt to store
the bits of the secret message file

Step 8 :r1=301

Step 9 : r2=r-300

Step 10: r_act=(r2-r1)+1

Step 11: r_final=(r1-1)+fix(r_act/row_factor)
Step 12: c1=1

Step 13: c_final=fix(c/col_factor)
Step 14: n1=fix(n/nob)

Step 15: n2=mod(n,nob)

Step 16: p=1

Step 17: block_fac=0

Step 18: n3=0

Step 19: If block_fac<>nob then go to the next step. Else go
to step 62

Step 20: If block_fac<> (nob-1) then go to the next step.
Else go tostep 34

Step 21: i=r1
Step 22: j=cl
Step 23: k=1

Step 24: If p<=(n1+n3) then go to the next step Else go to
step 28.

Step 25: d1=mod(y(i,j,k),2)+48 ‘extracts the bits of the secret
file

Step 26: x_ini(p)=dl ‘the bits are stored in the array x_ini()
Step 27: p=p+1

Step 28: k=k+1

Step 29: If k<=d , go to step 24

Step 30: j=j+1

Step 31: If j<=c_final , go to step 23

Step 32: i=i+1

Step 33: If i<=r_final , go to step 22

Step 34: i=rl

Step 35: j=c1

Step 36: k=1

Step 37: If p>(n1+n2+n3) then go to step 41.
Step 38: d1=mod(y(i,j,k),2)+48

Step 39: x_ini(p)=d1

Step 40: p=p+1

Step 41: k=k+1

Step 42: If k<=d then go to step 37

Step 43: j=j+1

Step 44: If j<=c_final go to step 36

Step 45: i=i+1

15

Step 46:
Step 47:
Step 48:
53.

Step 49:
Step 50:
Step 51:
Step 52:
Step 53:

If i<=r_finalthen go to step 35
block_fac=block_fac+1

If block_fac>=row_factor then go to step

rl=r_final+1
r_final=r_final+fix(r_act/row_factor)
cl=1

c_final=fix(c/col_factor). Go to step 60.

If mod(block_fac,row_factor)<>0 then go

tostep 58.

Step 54:
Step 55:
Step 56:
Step 57:
Step 58:
Step 59:
Step 60:
Step 61:
Step 62:
Step 63:
Step 64:
Step 65:

cl=c_final+1
c_final=c_final+fix(c/col_factor)
r1=301
r_final=(r1-1)+fix(r_act/row_factor)
rl=r_final+1
r_final=r_final+fix(r_act/row_factor)
p=nl+n3+1

n3=n3+n1, Go to step 19

ins=1

i=1

=1

x1(i,j)=x_ini(ins) ‘the bits of the secret

message are transferred to an sz*8 2-dimensional array to
perform the shift operations

Step 66:

ins=ins+1

Step 67: j=j+1

Step 68: If j<=8 then go to step 65
Step 69: i=i+1

Step 70: If i<=sz then go to step 64

Step 71:

x2=right_shift(x1,sz) ‘the shift operations

are performed in the reverse order

Step 72:
Step 73:
Step 74:
Step 75:
Step 76:

x3=down_shift(x2,sz)
x4=left_shift(x3,sz)
x5=up_shift(x4,sz)
i=1

=1

Step 77: fprintf(fpl, %c " x5(i,j)) ‘the extracted bits
are written into a file

Step 78:
Step 79:
Step 80:
Step 81:
Step 82:

=i+l

If j<=8 then go to step 77

i=i+1

If i<=sz then go to step 76

[n3]=bit _to_byte(‘temp.txt’,out file) ‘they

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

are converted into bytes in order to obtain
the final output file

Step 83: End

5.2. Extract information about secret

message

All information related to the secret file are stored in the
lowermost 300 pixels of the cover image. The receiver doesn’t
know the limits. So, he extracts all the pixels from the
specified part and stores it in a text file.

Function :dembed_this(i_file,out_file)
Where

i_file=> The embedded image file.
out_file 2 The output text file.

Step O: Start

Step 1 : y=imread(i_file)

Step 2 : [r ¢ d]=size(y)

Step 3 : r1=r-299

Step 4 : fpl=fopen(‘temp.txt’,'w’)

Step 5 :i=rl

Step 6 : j=1

Step 7 : k=1

Step 8 : dl=mod(y(ij,k),2)+48 ‘extracts the bit
Step 9: fprintf(fpl, %c’,d1) ‘stores it in the file temp.txt
Step 10: k=k+1

Step 11: If k<=d then go to step 8

Step 12: j=j+1

Step 13: If j<=c then go to step 7

Step 14: i=i+1

Step 15: If i<=r then go to step 6

Step16:[n3]=bit to_byte(‘temp.txt’,out file) ‘converts the bit-
file into bytes in order to obtain the information

Step 17: End

5.3 Information from the extracted text file
The above algorithm extracts all pixels within the specified
portion of the image and stores the result in a text file. This
algorithm extracts the essential information required to
dembed the secret file from the text file, i.e. the size of the
secret file, number of blocks(nob), row_factor and
column_factor.

Function :extract_them(file)
file : The text file.
Step 0:Start

Stepl: fpl=fopen(file, 'r’) ‘opens the file that contains
information

Step2 : fp2=fread(fp1)
Step3 : n=length(fp2) ‘the length of the file is stored in n.

16

Step4 :p=1
Step5 :s=0

Step 6 : ¢=0 ‘to keep a track of the number of variables
required to extract. In this case maximum value of c is 4, as
the variables are : size, number of blocks, row_factor and
column_factor

Step 7 : sl=zeros(n,1) ‘an array sl() that contains n zeros
Step 8 :i=1
Step 9 : s=0 ‘used to compute the value for each variable

Step 10: If fp2(i)="“or fp2(i))="0"or fp2(i)="1"or fp2(i)="2"
or fp2(i)="3" or fp2(i)="4" or fp2(i)="5" or fp2(i)="6" or
Ip2()="7"or fp2(i)="8" or fp2(i)="9", then go to the next
step. Else go to step 29.

Step 11: If fp2(i) <> ‘“then go to the next step. Else go to step
14. ‘space is used as a delimiter for the values corresponding
to the variables

Step 12: s1(p)=fp2(i) ‘the characters corresponding to the
variable are put in the array s1() till space is reached

Step 13: p=p+1 Go to step 30.

Step 14: ch=base2dec(s1,10) ‘this is an inbuilt function that
converts from character to decimal

Step 15: i1=1

Step 16: s=s*10+ch(il)

Step 17: i1=il+1

Step 18: If il<=(p-1) then go to step 16
Step 19: p=1

Step 20: c=c+1

Step 21: If c<>1 then go to step 23.
Step 22: sz=s, go to step 30.

Step 23: If c<>2, then go to step 25.
Step 24: rf=s then go to step 30.

Step 25: If c<>3 then goto step 27.
Step 26: cf=s, go to step 30.

Step 27: If c<>4 then go to step 29.
Step 28: nb=s

Step 29: Break out of loop, Go to step 32.
Step 30: i=i+1

Step 31: If i<=n then go to step 9
Step 32: End

6. RESULTS AND DISCUSSIONS

The above method tested on various types of files such as
.bmp, .jpg, .doc etc as secret message file and .bmp as cover
file. In this section the data hiding done on some .bmp
file(Cover file) and secret message is some .jpg file.

6.1 .jpg file embedded inside .bmp file:

Cover Image= papr.bmp

Secret image= paprl.jpg

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

Stego Image=papr2.bmp
Image extracted from stego file= papr3.jpg
6.1.1 Data hiding:

(size=5.49mb,row=1600,col=1200)
Fig4.1: Cover Image

(size=49.5kb,row=960,col=720)
Fig 4.2: Secret Image

oo

(size=5.49mb,row=1600,col=1200)
Fig 4.3: Stegolmage

6.1.2 Data Extraction:

(size=5.49mb,row=1600,c0l=1200)
Fig 4.4: Stego image

(size=49.5kh,row=960,col=720)
Fig 4.5: Extracted Secret Image

17

6.1.3Comparison between cover and stego image

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

@3 fnee 3 Y- g Sommldd+ b e oo~ X 0ot

The first difference betwesn these files is at byte ofiset 35. The difierences are helow shown starting from byte offset 0

Shawing only the first 2000 bytes

Cil... 11\ Documents' MATLAB 2. bmp - C:'...ocuments' MATLAB! image?., bump

. 424036 E457000000 -
00 00 40 06 00 00 BO 04 -

000000 E457000000 -
vl 00 00 oo -
........ 000000 Q00O QD OOOD -
(.1 000019212819121128 -

. 0000OLODLBOOOOOD - ...,

Y 192128192128 121 - (WKL)

(Mo' 281B212B1A2027 1A -

. 424D 36 E4 57 00 00 00
. 0000360000002800 - .6l

00 00 36 00 00 00 28 00
00 00 40 06 00 00 B0 04

. 0000 01 00 18 00 00 00

00 00 00 00 00 00
C4 OE 00 00 C4 OE 00 00
00 00 00 00 00 00 00 00

1921281921128
192128192128 1B 21

. 181BZ12B1A2027 1A

LM 202712229 1621 %) - Jr 2027 1C 2229 1C 21 24
oY+ IE202AIEZ0ZBIELF - . % 4., 1EZ0ZA1E 20 2B IE IF
=cepee=e DIDIECIDID 2D AD - -vipa- 2D ADAE2C 1D 1D 2D 1D
s U0 102D 1R IROR2L2131 = = A0 1D-2D IF ARR21 20 31

§945556' 24 24 34 25 25 35 26 27 - §§4835¢'
SE'56'S' 35 262738 26273527 - 56'56'S

(6'8(+9 28362724381282B39 -

S48t 252C3B 2520 3B 23 28 - %,4f

(€'18(+9

<§,=60B* 3C 24 2C 3D 26 30 42 24 - <§,=e0B*
4EK\en~, 34 45 4B 5C 65 6E 7E 84 - 4EK\en-,

CF BB DO CF BB D4 D3 BF -

. BDOA9B AE AD AGB3IBA - ...
. ADC3C4B4DIDLBFDO -

242434 25 25 35 26 27
3526 2735 26 27 35 27
1836272438282B39
1§ 2C 3B 25 2C 3B 23 2B
3€2412C3D 2630422
34 45 4B SC €5 €E 7E 84

. 6D 9h 98 A6 AD A8 B3 BA
. AD C3 C4 B4 D1 DI BF DO

CF BB DO CF BB D4 D3 BF

Soserts Rl s St Code CUSH

To te wisan befom witng any arower)

SEMESTERV - B.SC. EXAMINATION 2008

COMPUTER SC. [HONS]
PAPER-V

Sndos shod e e oo for s praccae

GROUP-A
Answer question no. § and TWO from the rest

1. Detive the transfeemaion mani e he flloving dimensicnd
rsioration i 2 eesogencus coedite sysem

1 R d g by angle

5. Desvethre dmenson! taacommation matics forrotin, sng md
wadzin.]

GROUP-B
Answer ANY TWO questions:
% i

tbe best mode ofsfwre deveoeen? sifyyou answer. Whatdoyou
undentand by corping nd cobeso” Disass
e3+3]

7. Discus the iffereces between back box and wite box tesing models
Discuss bow these testing mades may be wsed 1o et 2 progam module.
Discus the conceeofcycmatic ampley

=343

§ Expli n beie the comcept of sefre stimation metics wih a example

b, Rellecion dong = xass

2. Exghin by e concps of
+ Asimam b Mhing

3. Desbein dtal Bresesha's e draving e
B

4. Epinthe mid oim subdivison ot
B

6+4

FEEELIDOCTY

(size=53kb)
Fig 5.2: Secret Message

Stego Image Cover Image
Fig 4.6: Image comparison

6.2. rtf file embedded inside .bmp file:

Cover Image=papr.bmp
Secret Message=paprl.rtf
Stego Image=papr4.bmp

Retrieved Message=papr2.rtf

6.2.1 Data hiding:

(size:‘é‘.219mb,r0W:1600,coI:1200)
Fig5.1 Cover Image

ladt = & :
(size=5.49mb,row=1600,col=1200)
Fig 5.3: Stego Image

6.2.2 Data Extraction:

(size=§.‘49mb,r0\7v=1600col=1200)
Fig 5.4: Stego Image

18

B sy smonint) T

Sudets Rl St Cete A 5. Dvedoe el vnsfomaion naicesfoe e, sog nd

5 udiien (5]
o b wit o gy v

SEMESTERYV - B.SC. EXAMINATION 2048
GROCP-B

COMPUTERSC. (HONS

Anwer ANY THO quest

e proces modes At e wichis:
i iy o nsve: Wt do you

ik b nd whie b testing modds
y be wsed 10t 3 progam modile

1 Desivethe tansfommaion mai fe th fublowing -mensional

ncouin s omogees o e e
2 Rt mvusd g by e i ke decin
b Refecimadng y=xass
#
2 Eplin el e cmepsof

& Asimiicn b Nahing
Bl
3 Dosabeisdetl Bschan's ne i gt
[F]

4 gl themidpot ebiion gt
o]

Ele- 8o g ele[a/x]d]
(size=53kb)
Fig 5.5: Retrieved Message

6.2.3 Comparison between cover and stego image

The first diffsrence hetween these files is at byte offset 35, The differences are below shown starting from byte offset

Showing only the first 2000 bytes

Ci) ... 11 Documents! MATLAB i2.bmp - C:...ocuments' MATLAB' image?.bmp

BME.W... 42 4D 36 E4 5700 00 OO - BM6.V... 42 4D 36 E4 57 00 00 00
6.0, 0000360000002800 - ..6...(, 0O OO 360000002600
vl 000040060000 BOO4 - o\fuivi, 00 00 40 D6 0O 00 BO D4

........ 0oooolooleoo0000 - .oivu... 0OOOOLOO LB 0O O0OOD
vou¥,,, 0000D0C0DE457000000 - 0OOOOD 00 00 00

valgen 00 00 0000 = fwalien C4 OE 00 00 C4 OE 00 0O
........ 00 00 00 0O ODOOOODOD - ..uv.... 000D DO OO OO OO OOOOD
eolle¥) ODOD 192128192128 - ool 19 21 26 19 21 28
ettt 192128192120 1821 - WM(ub(a) 192126 19 21 28 1B 21
(¥t ' 26 1B 21 26 10 20 27 1A - (.¥(, " 26 1B 21 28 1A 20 27 1A
UM 2027162229 16 21 28 - M)t 20 27 16 22 29 16 21 24
o ® oo IE20 20 1E 20 2B IE IR - o * 4 1E 20 24 1E 20 2B IE IE
“voppa=y 2D IDIE2C 1D D 2D AD - -ipew=e 2D 1D 1E 26 1D 1D 2D 1D
erenfitd 1D 2D IF OF 2R af 21 81 - geiifhtl 1D 20 IF R 2F 2f 21 gl

§944556' 24 243425253526 27 - §94%%56' 24 24 34 25 25 35 26 27
56'56'5' 3526 27 35 26 27 35 27 - 56'S6'S' 35 26 27 35 26 27 35 27
(6'*6(+9 283627243628 2B39 - (6'*B(+9 28 36 27 ZA 38 28 B 39
$p%08+ 25203B252C 3823 2B - %,;%,.;#+ 2520 3B 252C 3B 23 2B
<§,=60B* 3C 24 2C 3D 26 30 42 24 - <§,=60B* 3C 24 2C 3D 26 30 42 2
4ER'en~, 34 45 4B SC €5 6E 7E 84 - 4EK\en~, 34 45 4B SC €5 6E 7E 84

........ 8D 9A 98 A6 AD AB B3 BA - BD 9A 98 A€ AD A8 B3 BA
........ ADC3C4B4DLDIBFDO - ...vv.o. ADC3 C4B4DLDLEFDO
........ CF BB DO CF BB D4 D3 BF - CF BB DO CF BB D4 D3 BF

Stego Image Cover Image

Fig 5.6: Image comparison

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

6.3 Histogram analysis

Fig 6.1: Cover Image

x1dt

Fig 6.2: Stego Image

The histogram analysis of the two images doesn’t reveal any
difference at all to the human eye, which concludes that the
damage is minimal.

6.4 Line graph analysis

10’

Fig 7: Line graph analysis

The line graph analysis where the authors have intentionally
plotted the difference between two pixels corresponding to the

7. CONCLUSION AND FUTURE SCOPE

In the present study the authors tried to embed some secret
message of any format inside a cover file of *.bmp format.
The authors applied block processing over here, so that the
bits of the secret message are entered in the LSB position
according to the blocks where specific number of bits are
reserved for each block. Before embedding the bits, we have
applied four shifting operations to the bits of the secret file.
The random generation of blocks in addition to the shifting
operations makes the hidden data more secure. In the present
study the authors did not applied any encryption process on
secret message file. The authors are working on embedding

19

encrypted message the details of accessing the information
are known to the receiver. The method may be further secured
if we apply encryption. In our present work we have tried to
break the image into several blocks and insert the secret
message into the blocks by using LSB insertion method.
There are many future scopes of this approach :

1. 1. Implement different algorithm in different
blocks (suppose LSB+1 algorithm in first block
LSB+3 algorithm in second block etc.)

2. Implement the size of blocks in unequal manner.
3. Use cryptography to encrypt secret message.

4. 4. Work can be extended to *.jpeg, *.png format
cover files as well.

When embed a file in one cover file then there is permanent
damage to the cover file. This damage must be minimal

8. ACKNOWLEDGEMENT

The authors sincerely express their gratitude to Department of
Computer Science for providing necessary help and
assistance. One of the authors AN is very much grateful to
Fr.Dr. John Felix Raj, Principal of St. Xavier’s
College(Autonomous0, kolkata for giving facility to research
work in steganography.

9. REFERENCES
[1] Data Hiding and Retrieval : AsokeNath, Sankar
Das, AmlanChakraborti, published in
IEEE“Proceedings of International Conference on
Computational Intelligence and Communication.

[2] Advanced steganographic approach for hiding
encrypted secret message in LSB, LSB+1, LSB+2
and LSB+3 bits in non standard cover files:
JoyshreeNath, Sankar Das, Shalabh Agarwal and
AsokeNath, International Journal of Computer
Applications, Vol14-No.7,Page-31-35, Feb(2011).

[3] Advanced Steganography Algorithm using
encrypted secret message : Joyshree Nath and
AsokeNath International Journal of Advanced
Computer Science and Applications, Vol-2, No-3,
Page-19-24, March(2011).

[4] A Challenge in hiding encrypted message in LSB
and LSB+1 bit positions in any cover files:
executable files, Microsoft office files and database
files, image files, audio files and video files:
JoyshreeNath, Sankar Das, Shalabh Agarwal and
AsokeNath: JGRCS, Vol-2,No.4,Page:180-
185,April (2011).

[5] New Data Hiding Algorithm in MATLAB using
Encrypted secret message: Agniswar Dutta, Abhirup
Kumar Sen , Sankar Das , Shalabh Agarwal and
AsokeNath : Proceedings of IEEE CSNT-2011 held
at SMVDU(Jammu) 03-06 June2011,Page262-
267(2011).

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)

Volume 89 — No 13, March 2014

[6] An efficient data hiding method using encrypted
secret message obtained by MSA algorithm:
JoyshreeNath, MeheboobAlamMallik , Saima
Ghosh and AsokeNath: Proceedings of the
International conference Worldcomp 2011 held at
Las Vegas(USA), 18-21 Jul(2011), Page 312-318,
Vol-1(2011).

[71 A new randomized data hiding algorithm with
encrypted secret message using modified
generalized Vernam Cipher Method: RAN-SEC
algorithm, Rishav Ray, JeeyanSanyal, Tripti Das,
KaushikGoswami, Sankar Das and AsokeNath,
Proceedings of IEEE International conference:
World Congress WICT-2011 held at Mumbai
University 11-14 Dec, 2011, Page No. 1215-1220
(2011).

[8] A new Challenge of hiding any encrypted secret
message inside any Text/ASCII file or in MS word
file : RIDA Algorithm, Rishav Ray, JeeyanSanyal,
Debanjan Das and AsokeNath, Proceedings of
IEEE CSNT-2012 conference held at Rajkot May
11-13, 2012, Page:889- 893(2012).

[9] A new data hiding algorithm with encrypted secret
message using TTJSA symmetric key crypto
system,SayakGuha, = Tamodeep Das, Saima
Ghosh,JoyshreeNath, Sankar Das,
AsokeNath,Journal of Global Research in Computer
Science, Vol 3, No.4, Page-11-16(2012).

[10] Advanced Digital Steganography using Encrypted
Secret Message and Encrypted Embedded Cover
File, Joyshree Nath, Saima Ghosh and AsokeNath,

International Journal of Computer
Applications(1JCA0975-8887), Vol 46, No-14, May
,(2012).

[11] Advanced Steganography Algorithm Using
Randomized Intermediate QR Host Embedded with
Any Encrypted Secret Message : ASA_QR
Algorithm, Somdipdey, KalyanMondal,
JoyshreeNath, AsokeNath, International Journal of
Modern Education and Computer Science, No.6,
Page 59-67, 2012.

[12] Data hiding algorithm using two-way encryption
and embedding in a cover file — A new method for
sending password or confidential message,
JoyshreeNath ,Saima Ghosh and AsokeNath,
Proceedings ofInternational Conference Worldcomp
2012 at lasVegas, USA,IPCV-12, Page-414-
420(2012).

[13] A New Technique to Hide Encrypted Data in
QRCodes™, SomdipDey, JoyshreeNath and
AsokeNath,Proceedings of International Conference
Worldcomp 2012 held at Las Vegas, USA, ICOMP-
12, Page-94,101(2012).

20

