
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

49

Localization of Text Editor using Java Programming

Varsha Tomar
M.Tech Scholar

Banasthali University
Jaipur, India

Manisha Bhatia
Assistant Professor

Banasthali University
Jaipur, India

ABSTRACT

Software localization includes translation of short text strings

appearing in user interfaces (UI) into language option. These

strings are usually unrelated to the other string in the UI. For

translation of UI from English language to Hindi language

there are some coding schemes. In this document, one of these

coding has been used for a new localized software product

development in place of localizing an already existing

software product.

This paper presents a “Localized Text Editor” in Hindi

language which has been developed using Unicode and Java

programming. Each English language string of user interface

is replaced with Hindi language string with the help of

Unicode of Hindi latter‟s and symbols. The Unicode is stored

into dictionary. This “Localized Text Editor” facilitates

people to work with their own language text editor software.

General Terms

Localization, Internationalization, Globalization, Universal

Code.

Keywords

Localization (L10N), User Interface (UI), Universal Code

(Unicode), Localized Text Editor (LTE).

1. INTRODUCTION
Software Localization is demanding research area in the field

of natural language processing. A standalone application is

developed using Unicode in Java which show the Hindi

language UI in place of English language UI. This standalone

application is known as “Localized Text Editor”. Method used

for developing LTE is Unicode. Developer uses this scheme

because in java there is no other method for generating UI in

Hindi. Hind word for each English language button is

designed with Unicode directory. Unicode has been generated

with the help of Unicode standard version 6.3. For LTE

designing each English word is first translated manually into

Hindi word and then programmer generate Unicode string

corresponding to each letter, vowels, constants and signs. This

string generates the complete Hindi word. This developed

LTE perform all the functions of standard text editor

(Notepad).

2. LOCALIZATION STRATEGIES
There are two possible strategies for software localization as:

2.1 For designing a new localized software

product:
Developer can put every resources needed for localized

software product in some type of resource repository. This

repository may be Windows resource files, .NET assemble

files, or a database. This resource repository is easily editable,

and also eliminates the need for source code recompiling. The

LTE is an example of this strategy.

2.2 For localizing an already existing

software product:
Developer has the source code (in source language) of the

software product that needs to be localized. This strategy

reuses the existing software product for the target locale.

3. FUNCTIONALITY AND CONTROL

FLOW
Designing of a new localized software product (LTE) is done

by functioning of various components. Figure 1 shows the

complete functionality of Localized Text Editor (LTE) as a

combined outcome of functions of different components.

3.1 Developer
The developer can use Java platform for developing the

localized application. For localization of user interface of Java

application developer can select the target locale Hindi using

Java code as:

Developer has to design the UI for LTE using java

programming and develop the code.

3.2 Localization
For developing a localized application (LTE) according to

strategy “Designing a new localized software product”, (as

above paragraph 3.1) developer can put every resources

needed for localized software product in some type of

resource repository. For standalone java application they use

dictionary file as resource repository, follow the high level

architecture and use the Unicode version 6.3.0.

3.2.1 Localization Architecture:
The high level architecture for product localization

encompasses the different module of complete project as a

service. There are two main services for localization project

as: Translation and Memory Management. Translation

process includes services such as Machine Translation (MT)

services, Media Translation and Linguistic services such as

spell check. (As shown in figure 2)

Every localization project consist a new set of rules,

checklists, information sheets and contact details. Whenever

one can work on a localization project, he will have some

rules or checklists on how to organize the project. There

might be a list or questions to ask the user, to get all the

information needed for the project.

currentLocale = new Locale("hindi","INDIA");

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

50

Figure 1. The overall modular functionality of the Localized Text Editor

For example if programmers wish to create a project

Localized Text Editor which is a standalone Hindi language

Text Editor for local market, then they must follow some

rules, checklist in order to organize the project. One rule

applied in case of LTE is that every Hindi language string

correspond to English language string must be registered with

the database including the Unicode.

Figure 2: High level architecture for Localization

If a user wants to open an already registered product (that is

*.txt file) then user click on “Qkby > Qkby [kkssys” an open

dialog box is open to select the file from the list (as shown in

figure 4).

If a user wants to save the file user click on “Qkby > ,sls lgst s”

an open dialog box is open to save the file (as filename.txt).

This way the user will work on a Text Editor with her own

locale language Hindi for Indian market

3.2.2 Unicode:
Computer needs a code that transforms characters into

numbers, to store text and numbers that human can

understand. The Unicode Standard is a character coding

system designed to support the worldwide interchange,

processing, and display of the written texts of the diverse

languages and technical disciplines of the modern world. In

addition, it supports classical and historical texts of many

written languages. The Version 6.3.0 is the latest version of

the Unicode Standard [1].

Table 1: Different Unicode Transformation Unit

UTF-8

Uses 1 byte (8 bits) to encode English

characters. It can use a sequence of bytes to

encode the other characters. It is widely

used in email system.

UTF-16

Uses 2 bytes (16 bits) to encode most

commonly used characters. If needed, the

additional characters can be represented by

a pair of 16-bit numbers.

UTF-32

Uses 4 bytes (32 bits) to encode the

characters. It became apparent that as the

Unicode standard grew a 16-bit number is

too small to represent all the characters. It is

capable of representing every Unicode

character as one number.

Code Points and Code units are respectively used for the value

that a character is given in the Unicode standard and the way

to provide an index for where a character is positioned on a

plane. For example Code Point to encode the characters, “v”

is U+0905, “vk” is U+0906, “b” is U+0908.

With UTF-16 each 16-bit number is a code unit. The code

units can be transformed into code points. For example, the

flat note symbol "♭" has a code point of U+1D160 and it

lives on the second plane of the Unicode standard. It would be

encoded using the combination of the following two 16-bit

code units: U+D834 and U+DD60 [2].

3.3 Dictionary File
Unicode used to transfer characters into numbers, to store text

and numbers that human can understand for computer system.

For Java programming Unicode characters can be expressed

through Unicode Escape Sequence (USE). USE may appear

anywhere in Java source file. USE consists of:

1. A backslash “\”

2. A “u”

3. Four hexadecimal digits (the characters „0‟ through „9‟ or

„a‟ through „f‟ or „A‟ through „F‟).

Such sequences represent the UTF-16 encoding of a Unicode

character. For example the developer can design the Unicode

dictionary that consist all the desire code for Hindi language

Localization

Translation

Machine
Translation

Media
Translation

Linguistic
Services

Memory
Managment

Dictionary/
Database

DEVELOPER

JAVA Platform

Compile & Run

Localized Text Editor

Localization

Unicode

Dictionary File

(Containing Unicode

for Hindi language)

Update & Access

Replace UI

Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

51

word of LTE with respect to English Language string is as

shown in table 2.

Table 2: Unicode for Hindi language string of Localized Text Editor (LTE)

English language

string for Text Editor

Hindi language string

for Localized Text

Editor (LTE)

Unicode

File Qkby \u095E\u093E\u0907\u0932

New u;k \u0928\u092F\u093E

Open [kksys \u095E\u093E\u0907\u0932\u0020\u0916\u094B\u0932\u0947

Save lgsts \u0938\u0939\u0947\u091C\u0947

Save As ,sls lgsts \u0910\u0938\u0947\u0020\u0938\u0939\u0947\u091C\u0947

Page Setup ìIB lSVvi \u092A\u0943\u0937\u094D\u0920\u0020\u0938\u0947\u091F\u0905\u0

92A

Print NkWais \u091B\u093E\u0901\u092A\u0947

Exit ckgj \u092C\u093E\u0939\u0930

Edit laiknu \u0938\u0902\u092A\u093E\u0926\u0928

Undo Igys tSlk \u092A\u0939\u0932\u0947\u0020\u091C\u0948\u0938\u093E

Cut dkVsa \u0915\u093E\u091F\u0947\u0902

Copy udy djsa \u0928\u0915\u0932\u0020\u0915\u0930\u0947\u0902

Paste fpidk,W \u091A\u093F\u092A\u0915\u093E\u090F\u0901

Delete feVk;sa \u092E\u093F\u091F\u093E\u092F\u0947\u0902

Find <Ww<s \u0922\u0942\u0901\u0922\u0947

Replace izfrLFkkfir
\u092A\u094D\u0930\u0924\u093F\u0938\u094D\u0925\u093E\u092A\u

093F\u0924

Select All lHkh pqus \u0938\u092D\u0940\u0020\u091A\u0941\u0928\u0947

Format izk#i \u092A\u094D\u0930\u093E\u0930\u0942\u092A

Word Wrap 'kCn osIBu
\u0936\u092C\u094D\u0926\u0020\u0935\u0947\u0937\u094D\u0920\u0

928

Font v{kj \u0905\u0915\u094D\u0937\u0930

Color jax \u0930\u0902\u0917

View n`j; \u0926\u0943\u0936\u094D\u092F

Help enn \u092E\u0926\u0926

About Editor Laiknd dk ifjp; \u0020\u0915\u093E\u0020\u092A\u0930\u093F\u091A\u092F

As shown in above table Unicode convert the English

language UI into Hindi language UI by Java programming.

Similarly developer can develop the LTE with any target

language such as: Guajarati, Tamil, Marathi, Punjabi etc using

Unicode. We can represent text in any language and even a lot

of things that aren‟t text (mathematical symbol, arrows,

emoticons, and more).

4. IMPLEMENTATION
Developer implements the software application for Hindi

language as target locale and this application is named as

“Localized Text Editor (LTE)”. Implementation is done using

core Java programming. The result of efficient programming

is represented in form of developed java application.

Figure 3 shows the developed Localized Text Editor (LTE)

with Hindi language as target language. Such editor facilitates

the user to work with their own locale environment. Editor

has five menu bar option as “File, Edit, Format, View and

Help” (as shown in figure 3). Figure 4 to figure 8 represent

the menu item for each menu bar option respectively. The

sample screen layouts depicting the same are given bellow.

Figure 3: User Interface part of the Localized Text Editor (LTE)

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

52

Figure 4: Menu bar option “File” of Localized Text Editor (LTE)

Figure 5: Menu bar option “Edit” of Localized Text Editor (LTE)

Figure 6: Menu bar option “Format” of Localized Text Editor (LTE)

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

53

Figure 7: Menu bar option “View” of Localized Text Editor (LTE)

Figure 8: Menu bar option “Help” of Localized Text Editor (LTE)

5. TESTING
The framework should also document the different quality

measures that are available, in order to judge the quality of the

LTE. That‟s way one can choose the appropriate measures for

the project. These quality measures are: Customer satisfaction

index (based on the choice of translation terms used),

Reliability, Costs of quality activities, Re-work, Test

Coverage, Responsiveness (turnaround time) to users, etc.

Testing is also a part of quality management. In case of LTE

project, developer perform linguistic/terminology testing,

localization testing. Linguistic testing: check the grammatical

and contextual errors. Localization testing: checks the quality

of a product‟s localization for a particular target

culture/locale. Localization testing can be executed only on

the localized version of a product.

The various graphics, icons, symbols and colors used in the

software product must adhere to the cultural conventions of

the target locale. Following quality measures mentioned in

table 3 may be considered for testing the localized product:

Table 3: Various Quality measures for Localized product

Quality

measures
Description Values obtained*

Customer

satisfaction

index

Is project satisfying

the customer with

friendly UI?

Customer

satisfaction

index‟s value lies

between 1 and 2.

Quality
Check the accuracy

of terms used.

Quality‟s value

lies between 1 and

2.

Responsiveness

How much time the

system will be taken

to complete

individual task?

Responsiveness‟s

value lies between

1 and 2.

Cost of quality

activity

How much costs are

required for test

planning, test

execution,

debugging and

fixing?

Cost‟s value lies

between 2 and 4.

Rework

How much effort

will be needed for

reworked the

software?

Rework‟s value

lies between 3 and

4.

*These values obtained are with respect to LTE. Here number

represents 1- very high, 2- high, 3 - neither low nor high, 4 -

low, 5 - very low.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

54

6. CONCLUSION
The purpose of this paper has been explaining the developed

Localized Text Editor (LTE) which can be developed using

Java programming and Unicode. The LTE is an example of

localization of a text editor (commonly having source

language English) into target language Hindi. This text editor

facilitates the common Indian mass to work with a user

friendly environment. It provides all the basic features of a

text editor with a more favored interface in Hindi that gives

the desired local “look-and-feel”. It also provides easy way

for part of public of India who don‟t know English, to handle

the Editor efficiently. It conclude from analysis that text editor

is properly developed and perform all necessary functionality.

7. FUTURE SCOPE
There is a scope in the future where the “Text Editor” can be

developed for all Indian local languages as: Guajarati,

Marathi, Bengali, and Panjabi etc. The text editor also

includes spell checker, auto correction & advance formatting

tools in future. The function of this “Text Editor” is also

extended by including import options for various object files

such as images, charts etc.

8. REFERENCES
[1] www.unicode.org/standard/standard.html

[2] www.java.about.com/od/programmingconcepts/a/unicod

e.htm

[3] M Bhatia and P Dhayani, “Localization, Translation

Cloud and Virtualization”, International Conference on

Electrical Engineering and Computer Sciences (EECS),

April-2013, Nainital (India).

[4] M Bhatia, V Tomar and A Sharma, “A survey of

Software Localization work”, Journal of Global Research

in Computer Science, Vol-4, no-8, 2013.

[5] M Bhatia, A Sharma and V Tomar, “Conceptuality of

Software Localization”, International Journal of

Scientific Research in Computer Science Applications

and Management Studies, Vol-2, no-5, 2013.

[6] M Bhatia and V Tomar, “Service Oriented Architecture

Based Framework for Software Localization”,

International Conference on Emerging trends in

Engineering & Applied Sciences, at Rajasthan College of

Engineering for Women, Jaipur (Rajasthan, India).

[7] R.W. Collins, “Software Localization: Issues and

Methods”, The 9th European Conference on Information

Systems, Bled, Slovenia, June 27-29, 2001.

[8] M. Rosen, B. Lublinsky, K.T. Smith and M.J. Balcer,

“Applied SOA, Service Oriented Architecture and

Design Strategies”, E-Book, published by Wiley

Publishing, Inc.

[9] W. Asanka, “LocConnect: Orchestrating Interoperability

in a Service-oriented Localisation Architecture”, The

International Journal of Localisation, Vol.10 Issue 1.

IJCATM : www.ijcaonline.org

