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ABSTRACT 

Path testing a program involves generating all paths through 

the program, and finding a set of program inputs that will 

execute every path. Since it is impossible to cover all paths in 

a program, path testing can be relaxed by selecting a subset of 

all executable paths that fulfill a certain path selection 

criterion and finding test data to cover it. The automatic 

generation of such test paths leads to more test coverage paths 

thus resulting in efficient and effective testing strategy. This 

paper presents a structural-oriented technique that uses a 

genetic algorithm (GA) for automatic generation of a set of 

test paths that cover the all-uses criterion. In the case of 

programs that have loops, the proposed technique generates 

paths according to the ZOT-subset criterion, which requires 

paths that traverse loops zero, one and two times. The 

proposed GA uses a binary vector as a chromosome to 

represent the edges in the DD-graph of the program under 

test. The set of paths generated by the proposed GA can be 

passed to a test data generation tool to find program inputs 

that will execute them. Experiments have been carried out to 

evaluate the effectiveness of the proposed GA compared to 

the random test path generation technique.   
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1. INTRODUCTION 
Path testing is a structural testing method, which requires that 

every path through a program to be executed at least once. 

However, it is generally impossible to achieve this goal, 

because a program that has loops may contain an infinite 

number of paths. This problem can be solved by selecting a 

subset of all executable paths that fulfill certain path selection 

criterion. The automatic generation of such test paths leads to 

more test coverage paths thus resulting in efficient and 

effective testing strategy. 

Several path generation methods have been proposed. For 

example, Bertolino and Marre [1] provided a generalized 

algorithm that finds a path that covers every arc in a given 

program control flow graph (CFG). Most other research 

studies have focused on the automatic generation of a basis set 

of paths, which is a set of linearly independent test paths, 

where the number of test paths in this set equals to the 

cyclomatic complexity of program defined by McCabe [2], 

(see e.g., [3], [4], [5], [6], [7]). 

Genetic algorithms (GAs) have been successfully used in 

software testing activities such as test data generation, (see 

e.g., [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 

[19], [20]). But very little attention has been paid to use GAs 

in path testing [21]. For example, Bint and Site [22] 

developed a variable length GA for identifying the most error 

prone path clusters in a program; and Ghiduk et al. [23] 

introduced a strategy for automatically generating a set of 

basis test paths using a variable length GA.  

This paper presents a structural-oriented technique that uses a 

genetic algorithm for automatic generation of a set of test 

paths that cover one of the data flow path selection criteria, 

developed by Rapps and Weyuker [24], namely the all-uses 

criterion. The genetic algorithm conducts its search by 

constructing new paths from previously generated paths that 

are evaluated as effective test paths. In the parent selection 

process, the GA uses the roulette wheel method. In the case of 

programs containing loops, the proposed technique generates 

paths according to the ZOT-subset criterion: "Each loop in a 

program is iterated zero, one, and two times in execution" 

[25].  

This paper is organized as follows: Section 2 describes the 

data flow analysis technique used to implement the all-uses 

criterion. Section 3 describes the proposed GA for automatic 

test paths generation. Section 4 describes the phases of the 

proposed GA-based path testing system and gives the results 

of applying this system to an example program. Section 5 

presents the results of the experiments that are conducted to 

evaluate the effectiveness of the proposed GA compared to 

the random test paths generation technique.  

2. DATA FLOW ANALYSIS 
Data flow analysis focuses on the interactions between 

variable definitions (defs) and references (uses) in a program, 

i.e. the def-use associations. Data flow analysis techniques use 

a control flow graph representation of a program to compute 

def-use associations. 

The control flow of a program can be represented by a 

directed graph, with a set of nodes and a set of edges, called 

the control flow graph (CFG). Each node represents a 

statement. The edges of the graph are possible transfers of 

control flow between the nodes. A path is a finite sequence of 

nodes connected by edges. A complete path is a path whose 

first node is the start node and whose last node is an exit node. 

A path is def-clear with respect to a variable if it contains no 

new definition of that variable.  

In our work, we use a reduced form of the CFG, called the 

DD-graph, in which each edge represents a DD path 

(decision-decision path). Figure 2 shows the DD-graph that 
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corresponds to the CFG of the example program shown in 

Figure 1. Table 1 shows the DD-paths that correspond to the 

edges of the DD-graph shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Example program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The DD-graph of the example program. 

 

Table 1: The edges of the DD-graph shown in Figure 2 and 

the corresponding DD-paths. 

Edge DD-Path 

e1 5 6 7 8 9 10 

e2 10 14 15 16 17 18 

e3 10 11 12 13 18 

e4 18 19 

e5 19 31 32 

e6 19 20 21 

e7 21 25 26 27 28 29 

e8 21 22 23 24 29 

e9 29 30 19 

The all-uses criterion is one of the data flow testing criteria 

proposed by Rapps and Weyuker [24]. It requires a def-clear 

path from each def of a variable to each use of that variable to 

be traversed. The def-clear paths required to satisfy the all 

uses criterion, called def-use paths, are constructed from the 

def-use associations of program variables by using the 

technique described in [26]. Table 2 shows the list of def-use 

pairs and killing nodes of the example program. The killing 

nodes are the set of nodes that must not be included in any 

def-use path, (nodes containing other defs of the variable).  

3. A GENETIC ALGORITHM FOR TEST 

PATHS GENERATION 
This section describes the proposed GA for automatic test 

path generation. The algorithm searches for test paths that 

satisfy the all-uses criterion. In the case of programs 

containing loops, the proposed GA generates paths according 

to the ZOT-subset criterion. 

Table 2: List of def-use pairs and killing nodes of the 

example program. 

Def-Use 

Pair # 
variable 

Def-

Node 

Use-

Node 

Killing 

Node 

1 a 8 10 -1 

2 a 8 12 -1 

3 b 9 16 -1 

4 c 12 18 16 

5 c 16 18 12 

6 n 18 19 -1 

7 n 29 19 18 

8 b 9 21 -1 

9 c 12 21 16 

10 c 16 21 12 

11 c 23 21 12,16 

12 c 12 27 16,23 

13 c 16 27 12,23 

14 n 18 27 -1 

15 c 23 27 12,16 

16 n 29 27 18 

17 n 18 29 27 

18 n 27 29 18 

19 n 29 29 18 

20 a 8 31 -1 

21 b 9 31 -1 

22 n 18 31 27,29 

23 n 29 31 18,27 

1. using System; 

2. using System.IO; 

3. public class prog5 

4. { 

5.     static void Main() 

6.     { 

7.         int a, b, c, n; 

8.         a = Int32.Parse(Console.ReadLine()); 

9.         b = Int32.Parse(Console.ReadLine()); 

10.         if (a < 5) 

11.         { 

12.             c = a; 

13.         } 

14.         else 

15.         { 

16.             c = b; 

17.         } 

18.         n = c; 

19.         while (n <= 8) 

20.         { 

21.             if (b > c) 

22.             { 

23.                 c = 3; 

24.             } 

25.             else 

26.             { 

27.                 n = n + c; 

28.             } 

29.             n = n + 1; 

30.         } 

31.     Console.WriteLine(" {0} {1} {2}", a, b, n); 

32.     }//end main 

33. }//end class 

e1 

e3 e2 

e5 

e4 

5 

10 

18 

32 

19 

21 

29 

e6 

e8 e7 

e9 
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3.1 Representation 
The algorithm uses a binary vector as a chromosome to 

represent the edges in the DD-graph of the program under 

test. The length, L, of the vector equals to the number of the 

edges of the DD-graph of the program under test, including 

two extra edges representing the entry and exit edges, plus the 

number of edges contained in loops, as those edges are 

represented twice. This representation guarantees that the 

paths generated for programs containing loops satisfy the 

ZOT-subset criterion. For example, the set of main edges of 

the DD-graph of the example program, shown in Figure 2, is: 

e1, e2 … e9, in addition to the entry and exit edges, and the 

edges contained in the While loop are e6, e7, e8, and e9. A 

copy of the loop edges are added after the last edge, e9, with 

numbers starting from 10, i.e., they will be e10, e11, e12, and 

e13. So, the chromosome length becomes 15, and it takes the 

following form:  

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 

where e0 and e14 are the entry and exit edges, respectively, 

and the shaded genes, e10 to e13, represent a copy of the loop 

edges, e6 to e9.  

Let us consider an example chromosome: 110111101110111. 

Using the above representation, this chromosome represents 

the following edges: 

e0, e1, e3, e4, e5, e6, e8, e9, e10, e12, e13, e14 

These edges form the following connected path: 

e0, e1, e3, e4, e6, e8, e9, e10, e12, e13, e5, e14 

By replacing each edge with its corresponding DD-path, we 

get the path in terms of the program statements as follows: 

5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,20,21,22,

23,24,29,30,19,31,32 

3.2 Initial Population 
As mentioned above, each chromosome (as a test path) is 

represented by a binary string of length L. The algorithm 

randomly generates POPSIZE L-bit strings to represent the 

initial population, where POPSIZE is the population size. The 

appropriate value of POPSIZE is experimentally determined. 

Each test path in the generated population must satisfy the 

connectivity condition, i.e., it consists of a sequence of 

connected edges. If the generated chromosome does not 

represent a connected path, the algorithm discards it.  

3.3 Evaluation Function 
The algorithm evaluates each test path by determining the set 

of  def-use paths in the program that are covered by this test 

path. (A test path is said to cover a def-use path, if it includes 

a subpath, which starts at the def-node and ends at the use 

node of the def-use path and does not pass through its killing 

nodes.) The fitness value fitness_value(vi) for each 

chromosome vi (i = 1, …, POPSIZE) is calculated as follows: 

fitness_value(vi) = 
no .  of  def−use  paths  covered  by  v i

total  no .  of  def−use  paths
     (1) 

3.4 Selection 
After computing the fitness of each test path in the current 

population, the algorithm uses the roulette wheel method [27] 

to select test paths from the effective members of the current 

population that will be parents of the new population. If none 

of the members of the current population was effective, all the 

members of current population are considered the parents of 

the new population. 

3.5 Recombination  
The algorithm uses two operators, crossover and mutation, 

which are the key to the power of GAs. These operators create 

new individuals from the selected parents to form a new 

population.  

Crossover: It operates at the individual level with a 

predetermined probability pc. During crossover, two parents 

(chromosomes) exchange substring information (genetic 

material) at a random position in the chromosome to produce 

two new strings (offspring). Any of the offspring that does not 

satisfy the connectivity condition will be discarded.  

Mutation: It is performed on a gene-by-gene basis. Mutation 

always operates after the crossover operator, and changes each 

gene with the pre-determined probability pm. Every gene (in 

all chromosomes in the whole population) has an equal 

chance to undergo mutation. A gene is mutated by replacing 

its corresponding edge with another edge from its siblings 

(edges with the same parent are called siblings). If the 

mutated chromosome does not satisfy the connectivity 

condition, it will be discarded. 

4. THE PROPOSED GA-BASED PATH 

TESTING SYSTEM 
This section describes the phases that comprise the proposed 

GA-based path testing system. The system is written in C# 

and consists of the following phases:  

1. Static analysis phase.  

2. Test path generation phase. 

Figure 3 shows the overall algorithm of the proposed system. 

The two phases are described below.  

4.1 Analysis Phase  
This phase accepts as input the original program P, analyses 

it, and produces the following output:  

 The static analysis report which contains information 

about the components of the program P: classes, objects, 

statements, variables, and functions.  

 The CFG of P.  

 The list of variables def-use pairs of P.  

 The DD-graph of P. 

By passing the example program, shown in Figure 1, to the 

analysis phase of the system, it produces the edges of 

program's CFG, the edges of program's DD-graph, shown in 

Table 1 and Figure 2, and the list of its def-use pairs shown in 

Table 2. 

4.2 Test Path-Generation Phase  
This phase uses the GA algorithm, described in Section 3, to 

generate set of test paths that cover the def-use pairs of the 

given program.  

The input to this phase includes:  

 List of def-use paths to be covered; 

 Number of edges of program DD-graph; 

 Population size; 

 Maximum no. of generations (MAXGENS); 

 Probability of crossover pc; 
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 Probability of mutation pm; 

The output of this phase includes:  

 Set of test path that covers the def-use pairs of the given 

program, if possible. It should be noted that the GA may 

fail to find paths to cover some of the specified def-use 

paths when they are infeasible, i.e. no executable path 

can be found to cover them.  

 The test coverage report that shows the generated 

path(s), and the list of def-use pairs covered by these 

paths, and the list of uncovered def-use pairs, if any. 

In the traditional GA approach the population would evolve 

until one individual from the whole set which represents the 

solution is found. In our case, this would correspond to one 

test path achieving maximum coverage of the program (i.e. 

traversing all the def-use paths of the program). Whilst this 

feasible for some programs, the majority of programs cannot 

be „covered‟ by just one test path – it might take many test 

paths of the program to achieve the desired level of testing. 

So, we let the population evolves until a combined subset of 

the population achieves the desired level of coverage. This is 

done by recording which def-use paths of the program each 

individual has covered and halting the evolution when a set of 

individuals has traversed the entire def-use paths of program, 

if possible. The solution is this set. 

Figure 4 shows part of the report produced by the test path 

generation phase for the example program. This report shows 

that the GA has found 7 test paths that covered 100% of the 

def-use pairs shown in Table 2. The generated chromosomes, 

and the test paths formed from the edges represented by each 

chromosome, are shown below: 

110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14              (case 1) 

110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14   (case2) 

110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14 (case 3) 

111011000000001 e0,e1,e2,e4,e5,e14           (case 4) 

111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14                  (case 5) 

111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14        (case 59) 

110111000011011 e0,e1,e3,e4,e10,e11,e13,e5,e14        (case 91) 

Figure 5 shows the test coverage report produced by the 

system for the 7 test paths generated in 23 generations of the 

proposed GA for the example program. 

The set of paths generated by the proposed GA can be passed 

to a test data generation tool to find program inputs that will 

execute them to complete the data flow paths testing of the 

program under test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3: The overall algorithm of the proposed GA 

based test paths generation system 

/* A GA-based system to automatically generate test paths that cover the all-

uses criterion for a given program */ 

Input: 

The program to be tested P; Population size; Maximum no. of generations 

(MAXGENS);  Probability of crossover pc; Probability of mutation  pm; 

Output: 

Set of test paths, and the set of def-use paths covered by each test path; 

List of uncovered def-use paths, if any; 

Begin 

//The Analysis Phase  

Extract the components of the program P: classes, objects, statements, 

variables, and functions. 

Form the control flow graph of P. Determine the variables def-use pairs of P. 

Form the DD-graph of P by reducing its control flow graph. 

//Test path-Generation Phase  

Step 1: Initialization 

Initialize the def-use coverage vector to zeros; 

Randomly create Initial_Population of chromosomes (test paths) such that 

each generated test path must satisfy the connectivity condition; 

Current_population   Initial_Population; def-use coverage percent ← 0;  

accumulated def-use- coverage percent  ← 0; No_Of_Generations  0; 

nPaths  0; 

Step 2: Generate test paths 

 nEffective  0; 

 For each member of current population do 

Begin 

Convert the current chromosome to the corresponding path; 

Evaluate the current test path; 

If (some def-use paths are covered) then 

nPaths   nPaths + 1; 

Add effective test path to set of test paths for P; 

Update the def-use coverage vector; 

Update accumulated def-use- coverage; 

nEffective  nEffective + 1; 

End If 

End For; 

While (Coverage_Percent ≠100 and No_Of_Generations ≤ MAXGENS) do 

Begin 

If (nEffective > 0) then 

Select set of parents of new population from effective members of 

current population using roulette wheel method  

Else 

Set of parents of new population ←Current_Population; 

End If; 

Apply crossover, mutation operators to create New_Population such that 

each new offspring must satisfy the connectivity condition; 

Current_Population  New_Population; nEffective  0; 

For each member of current population do 

Begin 

Convert current chromosome to the corresponding path; 

Evaluate the current test path; 

If (some def-use paths are covered) then 

nPaths   nPaths + 1; 

Add effective test path to set of test paths for P; 

Update the def-use coverage vector; 

Update accumulated def-use- coverage; 

nEffective  nEffective + 1; 

End If 

End For; 

Increment No_Of_Generations; 

End While 

Step 3: Produce output 

Return set of test paths for P, and set of def-use paths covered by each path;  

Report on uncovered def-use paths, if any; 

End. 
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5. EXPERIMENTS  

The materials of the experiments were 15 small (C#) object 

oriented programs and structured procedural programs. The 

used GA parameters were as follows: MAXGENS=100, 

pc=0.8, pm=0.15 and POPSIZE=4. 

The aim of the experiments was to evaluate the effectiveness 

of the proposed GA compared to the random test (RT) paths 

generation technique. The random test paths generator selects 

edges randomly from the DD-graph of the program under test 

such that these edges form a connected path. To achieve a fair 

comparison, the random test paths generator was designed to 

randomly generate sets of POPSIZE test paths in each 

iteration. 

Population Size:  4 

Maximum Number of Generation:  100 

CROSSOVER PROBABILITY:  0.8 

MUTATION PROBABILITY:  0.15 

** GA Started ** * INITIAL POPOULATION *    

1.  110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14,                    ( path 1 ) 

2.  110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14,      ( path 2 ) 

3.  110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14,      ( path 3 ) 

4.  111011000000001 e0,e1,e2,e4,e5,e14,                                        ( path 4 ) 

Case 1 :*************  SELECTED ************* 

  * Traversed Path: 5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,31,32, 

* FITNESS VALUE :  0.478                      * DEF-USE COVERAGE : 47.83 % 

* ACCUMULATED DEF-USE COVERAGE:   47.83 % 

* COVERED Def_Use_PATHS :   1,2,4,6,7,8,9,17,20,21,23 

  Case 2 :*************  SELECTED ************* 

 *Traversed 

Path:5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,20,21,22,23,24,29,30,19,31,32, 

* FITNESS VALUE :  0.087 * DEF-USE COVERAGE : 8.70 % 

* ACCUMULATED DEF-USE COVERAGE:   56.52 % 

* COVERED Def_Use_PATHS :    11,19 

 Case 3 :*************  SELECTED ************* 

*Traversed Path: 

5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,20,21,25,26,27,28,29,30,19,31,32, 

* FITNESS VALUE :  0.174 * DEF-USE COVERAGE :  17.39 % 

* ACCUMULATED DEF-USE COVERAGE:   73.91 % 

* COVERED Def_Use_PATHS :   14,15,16,18 

 Case 4 :*************  SELECTED ************* 

* Traversed Path: 5,6,7,8,9,10,14,15,16,17,18,19,31,32, 

* FITNESS VALUE :  0.130 * DEF-USE COVERAGE : 13.04 % 

* ACCUMULATED DEF-USE COVERAGE:   86.96 % 

* COVERED Def_Use_PATHS :    3,5,22 

*** Selection* The Cases Selected using Roulette Wheel method to be Parents of 

New Population are: * Parent 1 = Individual 1 = 110111000010111 = 

e0,e1,e3,e4,e10,e12,e13,e5,e14, 

* Parent 2 = Individual 4 = 111011000000001 = e0,e1,e2,e4,e5,e14, 

* Parent 3 = Individual 2 = 110111101110111 =e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14, 

* Parent 4 = Individual 3 = 110111101111011= e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14, 

  * ** Crossover * The Crossover Operation (Single Point Crossover) *** 

  * Selected Parents        Crossover Position                        Offspring 

  *   1 , 2     10  111011000010111 110111000000001 
*** The New Population is:  

1.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,                    ( path 5 ) 

2.  110111000000001 e0,e1,e3,e4,e5,e14,                                        ( path 6 ) 

3.  110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14,     ( path 7 ) 

4.  110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14,     ( path 8 ) 

  Case 5 :*************  SELECTED ************* 

  * Traversed Path: 5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,23,24,29,30,19,31,32, 

* FITNESS VALUE :  0.043 * DEF-USE COVERAGE :  4.35 % 

* ACCUMULATED DEF-USE COVERAGE:   91.30 % 

* COVERED Def_Use_PATHS :                       10 

*** Selection* The Cases Selected using Roulette Wheel method to be Parents of 

New Population are:* Parent 1 = Individual 1 = 111011000010111 = 

e0,e1,e2,e4,e10,e12,e13,e5,e14, 

* Parent 2 = Individual 1 = 111011000010111 = e0,e1,e2,e4,e10,e12,e13,e5,e14, 

* Parent 3 = Individual 1 = 111011000010111 = e0,e1,e2,e4,e10,e12,e13,e5,e14, 

* Parent 4 = Individual 1 = 111011000010111 = e0,e1,e2,e4,e10,e12,e13,e5,e14, 

*** Mutation  * The Mutation Operation (Simple Mutation) *** 

  * Selected Chromosome  Mutation Position   bits  Mutated Chromosome 

  *    4                 2     3     110111000010111 

*** The New Population is:  

1.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 9 ) 

2.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 10 ) 

3.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 11 ) 

4.  110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14,      ( path 12 ) 

************* NO CASE SELECTED ************* 

 * PARENTS == CURRENT POPULATION **** The New Population is:  

1.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 53 ) 

2.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 54 ) 

3.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 55 ) 

4.  110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14,      ( path 56 ) 

 ************* NO CASE SELECTED ************* 

 * PARENTS == CURRENT POPULATION * 

*** Mutation   * The Mutation Operation (Simple Mutation) *** 

  * Selected Chromosome  Mutation Position  bits     Mutated Chromosome 

  *         3  12             11      111011000011011 

*** The New Population is:  

1.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 57 ) 

2.  111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( path 58 ) 

3.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 59 ) 

4.  110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14,      ( path 60 ) 

  Case 59 :*************  SELECTED ************* 

  * Traversed Path: 

5,6,7,8,9,10,14,15,16,17,18,19,20,21,25,26,27,28,29,30,19,31,32, 

* FITNESS VALUE :  0.043       * DEF-USE COVERAGE :  4.35 % 

* ACCUMULATED DEF-USE COVERAGE:   95.65 % 

* COVERED Def_Use_PATHS :                         13 

*** Selection* The Cases Selected using Roulette Wheel method to be Parents 

of New Population are:* Parent 1 = Individual 3 = 111011000011011 = 

e0,e1,e2,e4,e10,e11,e13,e5,e14, 

* Parent 2 = Individual 3 = 111011000011011 = 

e0,e1,e2,e4,e10,e11,e13,e5,e14, 

* Parent 3 = Individual 3 = 111011000011011 = 

e0,e1,e2,e4,e10,e11,e13,e5,e14, 

* Parent 4 = Individual 3 = 111011000011011 = 

e0,e1,e2,e4,e10,e11,e13,e5,e14, 

*** The New Population is:  

1.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 61 ) 

2.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 62 ) 

3.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 63 ) 

4.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 64 ) 

 ************* NO CASE SELECTED ************* 

 * PARENTS == CURRENT POPULATION * *** The New Population is:  

1.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 85 ) 

2.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 86 ) 

3.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 87 ) 

4.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 88 ) 

  ************* NO CASE SELECTED ************* 

* PARENTS == CURRENT POPULATION * 

*** Mutation* The Mutation Operation (Simple Mutation) *** 

* Selected Chromosome  Mutation Position  bits     Mutated Chromosome 

 *         3  2  3      110111000011011 

*** The New Population is:  

1.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 89) 

2.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 90) 

3.  110111000011011 e0,e1,e3,e4,e10,e11,e13,e5,e14,      ( path 91) 

4.  111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,      ( path 92) 

  Case 91:*************  SELECTED ************* 

*Traversed Path: 5,6,7,8,9,10,11,12,13,18,19,20,21,25,26,27,28,29,30,19,31,32, 

* FITNESS VALUE :  0.043            * DEF-USE COVERAGE : 4.35 % 

* ACCUMULATED DEF-USE COVERAGE:   100.00 % 

* COVERED Def_Use_PATHS :   12 

** GA TERMINATED ** ** NO. OF GENERATIONS = 23 

** GENERATED TEST path ** 

110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14,     ( case 1 ) 

110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14, ( case 2 ) 

110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14, ( case 3 ) 

111011000000001 e0,e1,e2,e4,e5,e14,                          ( case 4 ) 

111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14,      ( case 5 ) 

111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14,     ( case 59 ) 

110111000011011 e0,e1,e3,e4,e10,e11,e13,e5,e14,     ( case 91) 

Figure 4: Part of the output report of the path generation phase 
Table 3 shows the results of applying the GA technique and 

the RT technique to the 15 programs. As can be seen from the 

table, the GA technique outperformed the RT technique in 11 

out of the 15 programs in the def-use coverage percentage, 

and in three of these 11 programs the RT technique did not 

cover any of the def-use paths. In the other 4 programs, the 

test paths generated by both techniques reached 100% of the 

def-use coverage, but the GA technique required less number 

of generations than the RT technique to achieve this full 

coverage. For example, for program p#1, the RT technique 
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required 39 generations to cover 100% of the def-use paths, 

while the GA technique required only 7 generations. It should 

be noted that, in the cases where less than 100% coverage is 

achieved, the programs included some def-use paths that 

cannot be covered by any test paths due the existence of 
infeasible paths. 

Figure 6 shows a comparison between the number of 

generations which were required by the GA technique and the 

RT technique to generate test paths to cover all the def-uses 

pairs of each tested program. As can be seen from this figure, 

in 13 out of the 15 programs, the GA technique required less 

number of generations than the random testing technique to 
achieve full def-use coverage percentage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The test coverage report produced by the system for the set of 7 test paths  

generated by the proposed GA for the example program 

 

 

Table 3: A comparison between the GA technique and the random RT technique 

Program# 
No of generations No of test paths Def-use coverage % 

GA RT GA RT GA RT 

P#1 7 39 4 2 100 100 

P#2 2 100 2 0 100 0 

P#3 73 100 2 0 100 0 

P#4 100 100 3 2 88.88 77.76 

P#5 23 100 6 2 100 82.61 

P#6 9 12 2 2 100 100 

P#7 37 100 5 1 100 40 

P#8 51 100 4 1 100 77.78 

P#9 41 46 2 3 100 100 

P#10 65 100 5 1 100 58.97 

P#11 12 82 4 3 100 100 

P#12 50 100 8 2 100 65.38 

P#13 100 100 4 0 90.90 0 

P#14 16 100 6 4 100 94.74 

P#15 19 100 3 1 100 88.88 

*********************** Path  Number (1)************************ 

Path: 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 31 . 32 .  

The newly def use pairs covered by this path: 

<(a,8),10>, <(a,8),12>, <(c,12),18>, <(n.18),19>, <(n,29),19>, <(b,9),21>, <(c,12),21>, <(n,18),29>, <(a,8),31>, <(b,9),31>, <(n,29),31> 

The def - use pairs not covered yet: 

<(b,9),16>, <(c,16),18>, <(c,16),21>, <(c,23),21>, <(c,12),27>, <(c,16),27>, <(n,18),27>, <(c,23),27>,  <(n,29),27>, <(n,27),29>, <(n,29),29>, 

<(n,18),31> 

*********************** Path  Number (2)************************ 

Path: 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 31. 32  

The newly def use pairs covered by this path: <(c,23),21>, <(n,29),29> 

The def - use pairs not covered yet: <(b,9),16>, <(c,16),18>, <(c,16),21>, <(c,12),27>, <(c,16),27>, <(n,18),27>, <(c,23),27>, <(n,29),27>,  

<(n,27),29>, <(n,18),31> 

*********************** Path  Number (3)************************ 

Path :5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 20 . 21 .  25 . 26 . 27 . 28 . 29 . 30 . 19 . 31 . 32  

The newly def use pairs covered by this path: <(n,18),27>, <(c,23),27>, <(n,29),27>, <(n,27),29> 

The def - use pairs not covered yet: <(b,9),16>, <(c,16),18>, <(c,16),21>, <(c,12),27>, <(c,16),27>, <(n,18),31> 

*********************** Path  Number (4)************************ 

Pat : 5 . 6 . 7 . 8 . 9 . 10 . 14 . 15 . 16 . 17 . 18 . 19 . 31 . 32 .  

The newly def use pairs covered by this path: 

<(b,9),16>, <(c,16),18>, <(n,18),31> 

The def - use pairs not covered yet: 

<(c,16),21>, <(c,12),27>, <(c,16),27> 

*********************** Path  Number (5)************************ 

Path: 5 . 6 . 7 . 8 . 9 . 10 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 31 . 32 .  

The newly def use pairs covered by this path: <(c,16),21> 

The def - use pairs not covered yet: <(c,12),27>, < (c,16),27> 

*********************** Path  Number (59)************************ 

Path :5 . 6 . 7 . 8 . 9 . 10 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 25 . 26 . 27 . 28 . 29 . 30 . 19 . 31 . 32 .  

The newly def use pairs covered by this path: < (c,16),27> 

The def - use pairs not covered yet: <(c,12),27> 

*********************** Path  Number (91)************************ 

Path :5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 25 . 26 . 27 . 28 . 29 . 30 . 19 . 31 . 32 .  

The newly def use pairs covered by this path: <(c,12),27> 

The def - use pairs not covered yet: Non 
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Figure 6: No. of generations required by the GA and the RT techniques 

to generate test paths to cover all def-uses 

6. CONCLUSION 
This paper presented a structural-oriented technique that uses 

a genetic algorithm for automatic generation of a set of test 

paths that cover the all-uses criterion. The genetic algorithm 

conducts its search by constructing new paths from previously 

generated paths that are evaluated as effective test paths. In 

the case of programs containing loops, the proposed technique 

generates paths according to the ZOT-subset criterion: "Each 

loop in a program is iterated zero, one, and two times in 

execution".  

Experiments have been carried out to evaluate the 

effectiveness of the proposed GA compared to the random test 

(RT) paths generation technique. The results of these 

experiments showed that the GA technique outperformed the 

RT technique, in the def-use coverage percentage, in 11 out of 

the 15 programs used in the experiments, and in three of these 

11 programs the RT technique did not cover any one of the 

def-use paths. In the other 4 programs, the test paths generated 

by both techniques reached 100% def-use coverage, but the 

GA technique required less number of generations than the 

RT technique to achieve this full coverage. Also, the results 

showed that in 13 out of the 15 programs, the GA technique 

required less number of generations than the RT technique to 

achieve full def-use coverage. 

To complete the data flow path testing of the program under 

test, input data must be found to execute the set of paths 

generated by the proposed GA. To accomplish this task, we 

are currently developing an automatic test data generation tool 

that will check the feasibility of the generated paths and 

generate test data to execute them. 
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