
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

29

Automatic Generation of Data Flow Test Paths using a

Genetic Algorithm

Moheb R. Girgis

Department of Computer
Science, Faculty of Science,

Minia University,
Egypt

Ahmed S. Ghiduk
College of Computers and Information

Technology, Taif University, KSA &
Faculty of Science, Beni-Suef

University, Egypt

Eman H. Abd-Elkawy
Dept. of Mathematics and

Computer Science, Faculty of
Science, Beni-Suef University,

Egypt

ABSTRACT

Path testing a program involves generating all paths through

the program, and finding a set of program inputs that will

execute every path. Since it is impossible to cover all paths in

a program, path testing can be relaxed by selecting a subset of

all executable paths that fulfill a certain path selection

criterion and finding test data to cover it. The automatic

generation of such test paths leads to more test coverage paths

thus resulting in efficient and effective testing strategy. This

paper presents a structural-oriented technique that uses a

genetic algorithm (GA) for automatic generation of a set of

test paths that cover the all-uses criterion. In the case of

programs that have loops, the proposed technique generates

paths according to the ZOT-subset criterion, which requires

paths that traverse loops zero, one and two times. The

proposed GA uses a binary vector as a chromosome to

represent the edges in the DD-graph of the program under

test. The set of paths generated by the proposed GA can be

passed to a test data generation tool to find program inputs

that will execute them. Experiments have been carried out to

evaluate the effectiveness of the proposed GA compared to

the random test path generation technique.

General Terms

Software Engineering, Software Testing.

Keywords

Automatic test path generation, Data flow testing, Genetic

algorithms.

1. INTRODUCTION
Path testing is a structural testing method, which requires that

every path through a program to be executed at least once.

However, it is generally impossible to achieve this goal,

because a program that has loops may contain an infinite

number of paths. This problem can be solved by selecting a

subset of all executable paths that fulfill certain path selection

criterion. The automatic generation of such test paths leads to

more test coverage paths thus resulting in efficient and

effective testing strategy.

Several path generation methods have been proposed. For

example, Bertolino and Marre [1] provided a generalized

algorithm that finds a path that covers every arc in a given

program control flow graph (CFG). Most other research

studies have focused on the automatic generation of a basis set

of paths, which is a set of linearly independent test paths,

where the number of test paths in this set equals to the

cyclomatic complexity of program defined by McCabe [2],

(see e.g., [3], [4], [5], [6], [7]).

Genetic algorithms (GAs) have been successfully used in

software testing activities such as test data generation, (see

e.g., [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],

[19], [20]). But very little attention has been paid to use GAs

in path testing [21]. For example, Bint and Site [22]

developed a variable length GA for identifying the most error

prone path clusters in a program; and Ghiduk et al. [23]

introduced a strategy for automatically generating a set of

basis test paths using a variable length GA.

This paper presents a structural-oriented technique that uses a

genetic algorithm for automatic generation of a set of test

paths that cover one of the data flow path selection criteria,

developed by Rapps and Weyuker [24], namely the all-uses

criterion. The genetic algorithm conducts its search by

constructing new paths from previously generated paths that

are evaluated as effective test paths. In the parent selection

process, the GA uses the roulette wheel method. In the case of

programs containing loops, the proposed technique generates

paths according to the ZOT-subset criterion: "Each loop in a

program is iterated zero, one, and two times in execution"

[25].

This paper is organized as follows: Section 2 describes the

data flow analysis technique used to implement the all-uses

criterion. Section 3 describes the proposed GA for automatic

test paths generation. Section 4 describes the phases of the

proposed GA-based path testing system and gives the results

of applying this system to an example program. Section 5

presents the results of the experiments that are conducted to

evaluate the effectiveness of the proposed GA compared to

the random test paths generation technique.

2. DATA FLOW ANALYSIS
Data flow analysis focuses on the interactions between

variable definitions (defs) and references (uses) in a program,

i.e. the def-use associations. Data flow analysis techniques use

a control flow graph representation of a program to compute

def-use associations.

The control flow of a program can be represented by a

directed graph, with a set of nodes and a set of edges, called

the control flow graph (CFG). Each node represents a

statement. The edges of the graph are possible transfers of

control flow between the nodes. A path is a finite sequence of

nodes connected by edges. A complete path is a path whose

first node is the start node and whose last node is an exit node.

A path is def-clear with respect to a variable if it contains no

new definition of that variable.

In our work, we use a reduced form of the CFG, called the

DD-graph, in which each edge represents a DD path

(decision-decision path). Figure 2 shows the DD-graph that

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

30

corresponds to the CFG of the example program shown in

Figure 1. Table 1 shows the DD-paths that correspond to the

edges of the DD-graph shown in Figure 2.

Figure 1: Example program.

Figure 2: The DD-graph of the example program.

Table 1: The edges of the DD-graph shown in Figure 2 and

the corresponding DD-paths.

Edge DD-Path

e1 5 6 7 8 9 10

e2 10 14 15 16 17 18

e3 10 11 12 13 18

e4 18 19

e5 19 31 32

e6 19 20 21

e7 21 25 26 27 28 29

e8 21 22 23 24 29

e9 29 30 19

The all-uses criterion is one of the data flow testing criteria

proposed by Rapps and Weyuker [24]. It requires a def-clear

path from each def of a variable to each use of that variable to

be traversed. The def-clear paths required to satisfy the all

uses criterion, called def-use paths, are constructed from the

def-use associations of program variables by using the

technique described in [26]. Table 2 shows the list of def-use

pairs and killing nodes of the example program. The killing

nodes are the set of nodes that must not be included in any

def-use path, (nodes containing other defs of the variable).

3. A GENETIC ALGORITHM FOR TEST

PATHS GENERATION
This section describes the proposed GA for automatic test

path generation. The algorithm searches for test paths that

satisfy the all-uses criterion. In the case of programs

containing loops, the proposed GA generates paths according

to the ZOT-subset criterion.

Table 2: List of def-use pairs and killing nodes of the

example program.

Def-Use

Pair #
variable

Def-

Node

Use-

Node

Killing

Node

1 a 8 10 -1

2 a 8 12 -1

3 b 9 16 -1

4 c 12 18 16

5 c 16 18 12

6 n 18 19 -1

7 n 29 19 18

8 b 9 21 -1

9 c 12 21 16

10 c 16 21 12

11 c 23 21 12,16

12 c 12 27 16,23

13 c 16 27 12,23

14 n 18 27 -1

15 c 23 27 12,16

16 n 29 27 18

17 n 18 29 27

18 n 27 29 18

19 n 29 29 18

20 a 8 31 -1

21 b 9 31 -1

22 n 18 31 27,29

23 n 29 31 18,27

1. using System;

2. using System.IO;

3. public class prog5

4. {

5. static void Main()

6. {

7. int a, b, c, n;

8. a = Int32.Parse(Console.ReadLine());

9. b = Int32.Parse(Console.ReadLine());

10. if (a < 5)

11. {

12. c = a;

13. }

14. else

15. {

16. c = b;

17. }

18. n = c;

19. while (n <= 8)

20. {

21. if (b > c)

22. {

23. c = 3;

24. }

25. else

26. {

27. n = n + c;

28. }

29. n = n + 1;

30. }

31. Console.WriteLine(" {0} {1} {2}", a, b, n);

32. }//end main

33. }//end class

e1

e3 e2

e5

e4

5

10

18

32

19

21

29

e6

e8 e7

e9

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

31

3.1 Representation
The algorithm uses a binary vector as a chromosome to

represent the edges in the DD-graph of the program under

test. The length, L, of the vector equals to the number of the

edges of the DD-graph of the program under test, including

two extra edges representing the entry and exit edges, plus the

number of edges contained in loops, as those edges are

represented twice. This representation guarantees that the

paths generated for programs containing loops satisfy the

ZOT-subset criterion. For example, the set of main edges of

the DD-graph of the example program, shown in Figure 2, is:

e1, e2 … e9, in addition to the entry and exit edges, and the

edges contained in the While loop are e6, e7, e8, and e9. A

copy of the loop edges are added after the last edge, e9, with

numbers starting from 10, i.e., they will be e10, e11, e12, and

e13. So, the chromosome length becomes 15, and it takes the

following form:

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

where e0 and e14 are the entry and exit edges, respectively,

and the shaded genes, e10 to e13, represent a copy of the loop

edges, e6 to e9.

Let us consider an example chromosome: 110111101110111.

Using the above representation, this chromosome represents

the following edges:

e0, e1, e3, e4, e5, e6, e8, e9, e10, e12, e13, e14

These edges form the following connected path:

e0, e1, e3, e4, e6, e8, e9, e10, e12, e13, e5, e14

By replacing each edge with its corresponding DD-path, we

get the path in terms of the program statements as follows:

5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,20,21,22,

23,24,29,30,19,31,32

3.2 Initial Population
As mentioned above, each chromosome (as a test path) is

represented by a binary string of length L. The algorithm

randomly generates POPSIZE L-bit strings to represent the

initial population, where POPSIZE is the population size. The

appropriate value of POPSIZE is experimentally determined.

Each test path in the generated population must satisfy the

connectivity condition, i.e., it consists of a sequence of

connected edges. If the generated chromosome does not

represent a connected path, the algorithm discards it.

3.3 Evaluation Function
The algorithm evaluates each test path by determining the set

of def-use paths in the program that are covered by this test

path. (A test path is said to cover a def-use path, if it includes

a subpath, which starts at the def-node and ends at the use

node of the def-use path and does not pass through its killing

nodes.) The fitness value fitness_value(vi) for each

chromosome vi (i = 1, …, POPSIZE) is calculated as follows:

fitness_value(vi) =
no . of def−use paths covered by v i

total no . of def−use paths
 (1)

3.4 Selection
After computing the fitness of each test path in the current

population, the algorithm uses the roulette wheel method [27]

to select test paths from the effective members of the current

population that will be parents of the new population. If none

of the members of the current population was effective, all the

members of current population are considered the parents of

the new population.

3.5 Recombination
The algorithm uses two operators, crossover and mutation,

which are the key to the power of GAs. These operators create

new individuals from the selected parents to form a new

population.

Crossover: It operates at the individual level with a

predetermined probability pc. During crossover, two parents

(chromosomes) exchange substring information (genetic

material) at a random position in the chromosome to produce

two new strings (offspring). Any of the offspring that does not

satisfy the connectivity condition will be discarded.

Mutation: It is performed on a gene-by-gene basis. Mutation

always operates after the crossover operator, and changes each

gene with the pre-determined probability pm. Every gene (in

all chromosomes in the whole population) has an equal

chance to undergo mutation. A gene is mutated by replacing

its corresponding edge with another edge from its siblings

(edges with the same parent are called siblings). If the

mutated chromosome does not satisfy the connectivity

condition, it will be discarded.

4. THE PROPOSED GA-BASED PATH

TESTING SYSTEM
This section describes the phases that comprise the proposed

GA-based path testing system. The system is written in C#

and consists of the following phases:

1. Static analysis phase.

2. Test path generation phase.

Figure 3 shows the overall algorithm of the proposed system.

The two phases are described below.

4.1 Analysis Phase
This phase accepts as input the original program P, analyses

it, and produces the following output:

 The static analysis report which contains information

about the components of the program P: classes, objects,

statements, variables, and functions.

 The CFG of P.

 The list of variables def-use pairs of P.

 The DD-graph of P.

By passing the example program, shown in Figure 1, to the

analysis phase of the system, it produces the edges of

program's CFG, the edges of program's DD-graph, shown in

Table 1 and Figure 2, and the list of its def-use pairs shown in

Table 2.

4.2 Test Path-Generation Phase
This phase uses the GA algorithm, described in Section 3, to

generate set of test paths that cover the def-use pairs of the

given program.

The input to this phase includes:

 List of def-use paths to be covered;

 Number of edges of program DD-graph;

 Population size;

 Maximum no. of generations (MAXGENS);

 Probability of crossover pc;

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

32

 Probability of mutation pm;

The output of this phase includes:

 Set of test path that covers the def-use pairs of the given

program, if possible. It should be noted that the GA may

fail to find paths to cover some of the specified def-use

paths when they are infeasible, i.e. no executable path

can be found to cover them.

 The test coverage report that shows the generated

path(s), and the list of def-use pairs covered by these

paths, and the list of uncovered def-use pairs, if any.

In the traditional GA approach the population would evolve

until one individual from the whole set which represents the

solution is found. In our case, this would correspond to one

test path achieving maximum coverage of the program (i.e.

traversing all the def-use paths of the program). Whilst this

feasible for some programs, the majority of programs cannot

be „covered‟ by just one test path – it might take many test

paths of the program to achieve the desired level of testing.

So, we let the population evolves until a combined subset of

the population achieves the desired level of coverage. This is

done by recording which def-use paths of the program each

individual has covered and halting the evolution when a set of

individuals has traversed the entire def-use paths of program,

if possible. The solution is this set.

Figure 4 shows part of the report produced by the test path

generation phase for the example program. This report shows

that the GA has found 7 test paths that covered 100% of the

def-use pairs shown in Table 2. The generated chromosomes,

and the test paths formed from the edges represented by each

chromosome, are shown below:

110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14 (case 1)

110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14 (case2)

110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14 (case 3)

111011000000001 e0,e1,e2,e4,e5,e14 (case 4)

111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14 (case 5)

111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14 (case 59)

110111000011011 e0,e1,e3,e4,e10,e11,e13,e5,e14 (case 91)

Figure 5 shows the test coverage report produced by the

system for the 7 test paths generated in 23 generations of the

proposed GA for the example program.

The set of paths generated by the proposed GA can be passed

to a test data generation tool to find program inputs that will

execute them to complete the data flow paths testing of the

program under test.

Figure 3: The overall algorithm of the proposed GA

based test paths generation system

/* A GA-based system to automatically generate test paths that cover the all-

uses criterion for a given program */

Input:

The program to be tested P; Population size; Maximum no. of generations

(MAXGENS); Probability of crossover pc; Probability of mutation pm;

Output:

Set of test paths, and the set of def-use paths covered by each test path;

List of uncovered def-use paths, if any;

Begin

//The Analysis Phase

Extract the components of the program P: classes, objects, statements,

variables, and functions.

Form the control flow graph of P. Determine the variables def-use pairs of P.

Form the DD-graph of P by reducing its control flow graph.

//Test path-Generation Phase

Step 1: Initialization

Initialize the def-use coverage vector to zeros;

Randomly create Initial_Population of chromosomes (test paths) such that

each generated test path must satisfy the connectivity condition;

Current_population Initial_Population; def-use coverage percent ← 0;

accumulated def-use- coverage percent ← 0; No_Of_Generations 0;

nPaths 0;

Step 2: Generate test paths

 nEffective 0;

 For each member of current population do

Begin

Convert the current chromosome to the corresponding path;

Evaluate the current test path;

If (some def-use paths are covered) then

nPaths nPaths + 1;

Add effective test path to set of test paths for P;

Update the def-use coverage vector;

Update accumulated def-use- coverage;

nEffective nEffective + 1;

End If

End For;

While (Coverage_Percent ≠100 and No_Of_Generations ≤ MAXGENS) do

Begin

If (nEffective > 0) then

Select set of parents of new population from effective members of

current population using roulette wheel method

Else

Set of parents of new population ←Current_Population;

End If;

Apply crossover, mutation operators to create New_Population such that

each new offspring must satisfy the connectivity condition;

Current_Population New_Population; nEffective 0;

For each member of current population do

Begin

Convert current chromosome to the corresponding path;

Evaluate the current test path;

If (some def-use paths are covered) then

nPaths nPaths + 1;

Add effective test path to set of test paths for P;

Update the def-use coverage vector;

Update accumulated def-use- coverage;

nEffective nEffective + 1;

End If

End For;

Increment No_Of_Generations;

End While

Step 3: Produce output

Return set of test paths for P, and set of def-use paths covered by each path;

Report on uncovered def-use paths, if any;

End.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

33

5. EXPERIMENTS

The materials of the experiments were 15 small (C#) object

oriented programs and structured procedural programs. The

used GA parameters were as follows: MAXGENS=100,

pc=0.8, pm=0.15 and POPSIZE=4.

The aim of the experiments was to evaluate the effectiveness

of the proposed GA compared to the random test (RT) paths

generation technique. The random test paths generator selects

edges randomly from the DD-graph of the program under test

such that these edges form a connected path. To achieve a fair

comparison, the random test paths generator was designed to

randomly generate sets of POPSIZE test paths in each

iteration.

Population Size: 4

Maximum Number of Generation: 100

CROSSOVER PROBABILITY: 0.8

MUTATION PROBABILITY: 0.15

** GA Started ** * INITIAL POPOULATION *

1. 110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14, (path 1)

2. 110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14, (path 2)

3. 110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14, (path 3)

4. 111011000000001 e0,e1,e2,e4,e5,e14, (path 4)

Case 1 :************* SELECTED *************

 * Traversed Path: 5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,31,32,

* FITNESS VALUE : 0.478 * DEF-USE COVERAGE : 47.83 %

* ACCUMULATED DEF-USE COVERAGE: 47.83 %

* COVERED Def_Use_PATHS : 1,2,4,6,7,8,9,17,20,21,23

 Case 2 :************* SELECTED *************

 *Traversed

Path:5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,20,21,22,23,24,29,30,19,31,32,

* FITNESS VALUE : 0.087 * DEF-USE COVERAGE : 8.70 %

* ACCUMULATED DEF-USE COVERAGE: 56.52 %

* COVERED Def_Use_PATHS : 11,19

 Case 3 :************* SELECTED *************

*Traversed Path:

5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,29,30,19,20,21,25,26,27,28,29,30,19,31,32,

* FITNESS VALUE : 0.174 * DEF-USE COVERAGE : 17.39 %

* ACCUMULATED DEF-USE COVERAGE: 73.91 %

* COVERED Def_Use_PATHS : 14,15,16,18

 Case 4 :************* SELECTED *************

* Traversed Path: 5,6,7,8,9,10,14,15,16,17,18,19,31,32,

* FITNESS VALUE : 0.130 * DEF-USE COVERAGE : 13.04 %

* ACCUMULATED DEF-USE COVERAGE: 86.96 %

* COVERED Def_Use_PATHS : 3,5,22

*** Selection* The Cases Selected using Roulette Wheel method to be Parents of

New Population are: * Parent 1 = Individual 1 = 110111000010111 =

e0,e1,e3,e4,e10,e12,e13,e5,e14,

* Parent 2 = Individual 4 = 111011000000001 = e0,e1,e2,e4,e5,e14,

* Parent 3 = Individual 2 = 110111101110111 =e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14,

* Parent 4 = Individual 3 = 110111101111011= e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14,

 * ** Crossover * The Crossover Operation (Single Point Crossover) ***

 * Selected Parents Crossover Position Offspring

 * 1 , 2 10 111011000010111 110111000000001
*** The New Population is:

1. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 5)

2. 110111000000001 e0,e1,e3,e4,e5,e14, (path 6)

3. 110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14, (path 7)

4. 110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14, (path 8)

 Case 5 :************* SELECTED *************

 * Traversed Path: 5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,23,24,29,30,19,31,32,

* FITNESS VALUE : 0.043 * DEF-USE COVERAGE : 4.35 %

* ACCUMULATED DEF-USE COVERAGE: 91.30 %

* COVERED Def_Use_PATHS : 10

*** Selection* The Cases Selected using Roulette Wheel method to be Parents of

New Population are:* Parent 1 = Individual 1 = 111011000010111 =

e0,e1,e2,e4,e10,e12,e13,e5,e14,

* Parent 2 = Individual 1 = 111011000010111 = e0,e1,e2,e4,e10,e12,e13,e5,e14,

* Parent 3 = Individual 1 = 111011000010111 = e0,e1,e2,e4,e10,e12,e13,e5,e14,

* Parent 4 = Individual 1 = 111011000010111 = e0,e1,e2,e4,e10,e12,e13,e5,e14,

*** Mutation * The Mutation Operation (Simple Mutation) ***

 * Selected Chromosome Mutation Position bits Mutated Chromosome

 * 4 2 3 110111000010111

*** The New Population is:

1. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 9)

2. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 10)

3. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 11)

4. 110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14, (path 12)

************* NO CASE SELECTED *************

 * PARENTS == CURRENT POPULATION **** The New Population is:

1. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 53)

2. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 54)

3. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 55)

4. 110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14, (path 56)

 ************* NO CASE SELECTED *************

 * PARENTS == CURRENT POPULATION *

*** Mutation * The Mutation Operation (Simple Mutation) ***

 * Selected Chromosome Mutation Position bits Mutated Chromosome

 * 3 12 11 111011000011011

*** The New Population is:

1. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 57)

2. 111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (path 58)

3. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 59)

4. 110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14, (path 60)

 Case 59 :************* SELECTED *************

 * Traversed Path:

5,6,7,8,9,10,14,15,16,17,18,19,20,21,25,26,27,28,29,30,19,31,32,

* FITNESS VALUE : 0.043 * DEF-USE COVERAGE : 4.35 %

* ACCUMULATED DEF-USE COVERAGE: 95.65 %

* COVERED Def_Use_PATHS : 13

*** Selection* The Cases Selected using Roulette Wheel method to be Parents

of New Population are:* Parent 1 = Individual 3 = 111011000011011 =

e0,e1,e2,e4,e10,e11,e13,e5,e14,

* Parent 2 = Individual 3 = 111011000011011 =

e0,e1,e2,e4,e10,e11,e13,e5,e14,

* Parent 3 = Individual 3 = 111011000011011 =

e0,e1,e2,e4,e10,e11,e13,e5,e14,

* Parent 4 = Individual 3 = 111011000011011 =

e0,e1,e2,e4,e10,e11,e13,e5,e14,

*** The New Population is:

1. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 61)

2. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 62)

3. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 63)

4. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 64)

 ************* NO CASE SELECTED *************

 * PARENTS == CURRENT POPULATION * *** The New Population is:

1. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 85)

2. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 86)

3. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 87)

4. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 88)

 ************* NO CASE SELECTED *************

* PARENTS == CURRENT POPULATION *

*** Mutation* The Mutation Operation (Simple Mutation) ***

* Selected Chromosome Mutation Position bits Mutated Chromosome

 * 3 2 3 110111000011011

*** The New Population is:

1. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 89)

2. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 90)

3. 110111000011011 e0,e1,e3,e4,e10,e11,e13,e5,e14, (path 91)

4. 111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (path 92)

 Case 91:************* SELECTED *************

*Traversed Path: 5,6,7,8,9,10,11,12,13,18,19,20,21,25,26,27,28,29,30,19,31,32,

* FITNESS VALUE : 0.043 * DEF-USE COVERAGE : 4.35 %

* ACCUMULATED DEF-USE COVERAGE: 100.00 %

* COVERED Def_Use_PATHS : 12

** GA TERMINATED ** ** NO. OF GENERATIONS = 23

** GENERATED TEST path **

110111000010111 e0,e1,e3,e4,e10,e12,e13,e5,e14, (case 1)

110111101110111 e0,e1,e3,e4,e6,e8,e9,e10,e12,e13,e5,e14, (case 2)

110111101111011 e0,e1,e3,e4,e6,e8,e9,e10,e11,e13,e5,e14, (case 3)

111011000000001 e0,e1,e2,e4,e5,e14, (case 4)

111011000010111 e0,e1,e2,e4,e10,e12,e13,e5,e14, (case 5)

111011000011011 e0,e1,e2,e4,e10,e11,e13,e5,e14, (case 59)

110111000011011 e0,e1,e3,e4,e10,e11,e13,e5,e14, (case 91)

Figure 4: Part of the output report of the path generation phase
Table 3 shows the results of applying the GA technique and

the RT technique to the 15 programs. As can be seen from the

table, the GA technique outperformed the RT technique in 11

out of the 15 programs in the def-use coverage percentage,

and in three of these 11 programs the RT technique did not

cover any of the def-use paths. In the other 4 programs, the

test paths generated by both techniques reached 100% of the

def-use coverage, but the GA technique required less number

of generations than the RT technique to achieve this full

coverage. For example, for program p#1, the RT technique

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

34

required 39 generations to cover 100% of the def-use paths,

while the GA technique required only 7 generations. It should

be noted that, in the cases where less than 100% coverage is

achieved, the programs included some def-use paths that

cannot be covered by any test paths due the existence of
infeasible paths.

Figure 6 shows a comparison between the number of

generations which were required by the GA technique and the

RT technique to generate test paths to cover all the def-uses

pairs of each tested program. As can be seen from this figure,

in 13 out of the 15 programs, the GA technique required less

number of generations than the random testing technique to
achieve full def-use coverage percentage.

Figure 5: The test coverage report produced by the system for the set of 7 test paths

generated by the proposed GA for the example program

Table 3: A comparison between the GA technique and the random RT technique

Program#
No of generations No of test paths Def-use coverage %

GA RT GA RT GA RT

P#1 7 39 4 2 100 100

P#2 2 100 2 0 100 0

P#3 73 100 2 0 100 0

P#4 100 100 3 2 88.88 77.76

P#5 23 100 6 2 100 82.61

P#6 9 12 2 2 100 100

P#7 37 100 5 1 100 40

P#8 51 100 4 1 100 77.78

P#9 41 46 2 3 100 100

P#10 65 100 5 1 100 58.97

P#11 12 82 4 3 100 100

P#12 50 100 8 2 100 65.38

P#13 100 100 4 0 90.90 0

P#14 16 100 6 4 100 94.74

P#15 19 100 3 1 100 88.88

*********************** Path Number (1)************************

Path: 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 31 . 32 .

The newly def use pairs covered by this path:

<(a,8),10>, <(a,8),12>, <(c,12),18>, <(n.18),19>, <(n,29),19>, <(b,9),21>, <(c,12),21>, <(n,18),29>, <(a,8),31>, <(b,9),31>, <(n,29),31>

The def - use pairs not covered yet:

<(b,9),16>, <(c,16),18>, <(c,16),21>, <(c,23),21>, <(c,12),27>, <(c,16),27>, <(n,18),27>, <(c,23),27>, <(n,29),27>, <(n,27),29>, <(n,29),29>,

<(n,18),31>

*********************** Path Number (2)************************

Path: 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 31. 32

The newly def use pairs covered by this path: <(c,23),21>, <(n,29),29>

The def - use pairs not covered yet: <(b,9),16>, <(c,16),18>, <(c,16),21>, <(c,12),27>, <(c,16),27>, <(n,18),27>, <(c,23),27>, <(n,29),27>,

<(n,27),29>, <(n,18),31>

*********************** Path Number (3)************************

Path :5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 20 . 21 . 25 . 26 . 27 . 28 . 29 . 30 . 19 . 31 . 32

The newly def use pairs covered by this path: <(n,18),27>, <(c,23),27>, <(n,29),27>, <(n,27),29>

The def - use pairs not covered yet: <(b,9),16>, <(c,16),18>, <(c,16),21>, <(c,12),27>, <(c,16),27>, <(n,18),31>

*********************** Path Number (4)************************

Pat : 5 . 6 . 7 . 8 . 9 . 10 . 14 . 15 . 16 . 17 . 18 . 19 . 31 . 32 .

The newly def use pairs covered by this path:

<(b,9),16>, <(c,16),18>, <(n,18),31>

The def - use pairs not covered yet:

<(c,16),21>, <(c,12),27>, <(c,16),27>

*********************** Path Number (5)************************

Path: 5 . 6 . 7 . 8 . 9 . 10 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 29 . 30 . 19 . 31 . 32 .

The newly def use pairs covered by this path: <(c,16),21>

The def - use pairs not covered yet: <(c,12),27>, < (c,16),27>

*********************** Path Number (59)************************

Path :5 . 6 . 7 . 8 . 9 . 10 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 25 . 26 . 27 . 28 . 29 . 30 . 19 . 31 . 32 .

The newly def use pairs covered by this path: < (c,16),27>

The def - use pairs not covered yet: <(c,12),27>

*********************** Path Number (91)************************

Path :5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 18 . 19 . 20 . 21 . 25 . 26 . 27 . 28 . 29 . 30 . 19 . 31 . 32 .

The newly def use pairs covered by this path: <(c,12),27>

The def - use pairs not covered yet: Non

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

35

Figure 6: No. of generations required by the GA and the RT techniques

to generate test paths to cover all def-uses

6. CONCLUSION
This paper presented a structural-oriented technique that uses

a genetic algorithm for automatic generation of a set of test

paths that cover the all-uses criterion. The genetic algorithm

conducts its search by constructing new paths from previously

generated paths that are evaluated as effective test paths. In

the case of programs containing loops, the proposed technique

generates paths according to the ZOT-subset criterion: "Each

loop in a program is iterated zero, one, and two times in

execution".

Experiments have been carried out to evaluate the

effectiveness of the proposed GA compared to the random test

(RT) paths generation technique. The results of these

experiments showed that the GA technique outperformed the

RT technique, in the def-use coverage percentage, in 11 out of

the 15 programs used in the experiments, and in three of these

11 programs the RT technique did not cover any one of the

def-use paths. In the other 4 programs, the test paths generated

by both techniques reached 100% def-use coverage, but the

GA technique required less number of generations than the

RT technique to achieve this full coverage. Also, the results

showed that in 13 out of the 15 programs, the GA technique

required less number of generations than the RT technique to

achieve full def-use coverage.

To complete the data flow path testing of the program under

test, input data must be found to execute the set of paths

generated by the proposed GA. To accomplish this task, we

are currently developing an automatic test data generation tool

that will check the feasibility of the generated paths and

generate test data to execute them.

7. REFERENCES
[1] A. Bertolino, M. Marre, "Automatic Generation of Path

Covers Based on the Control flow analysis of computer

Programs" IEEE Transaction on Software on software

Engineering, Vol. 20, No. 12, pp.885-899, 1994.

[2] T. McCabe, J. Thomas, Structural Testing: A Software

Testing Methodology Using the Cyclomatic Complexity

Metric, NIST Special Publication 500-99, Washington

D.C., 1982.

[3] J. Poole, "A Method to Determine a Basis Set of Paths to

Perform Program Testing"

http://hissa.nist.gov//publications/nistir5737, 2004

[4] Z. Guangmei, C. Rui, L. Xiaowei, H. Congying "The

Automatic Generation of Basis Set of Path for Path

Testing", Proceedings of the 14th Asian Test Symposium

(ATS ‟05), 2005.

[5] Jun Yan, Jian Zhang "An efficient method to generate

feasible paths for basis path testing" Information

Processing Letters, Vol. 107, Issues 3-4, pp. 87-92, 31

July 2008.

[6] Z. Zhonglin, M. Lingxia,"An Improved Method of

Acquiring Basis Path for Software Testing" Proceedings

of 5th International Conference on Computer Science &

Education, pp.1891-1894, China, 2010.

[7] D. Qingfeng, D. Xiao "An Improved Algorithm for Basis

Path Testing" International Conference on Business

Management and Electronic Information (BMEI), pp.

175 – 178, 2011.

[8] M. Pei, E. D. Goodman, Z. Gao, and K. Zhong,

"Automated Software Test Data Generation Using A

Genetic Algorithm", Technical Report GARAGe of

Michigan State University,1994.

[9] M. Roper, I. Maclean, A. Brooks, J. Miller, and M.

Wood, "Genetic Algorithms and the Automatic

Generation of Test Data", Technical Report RR/95/195

[EFoCS-19-95], University of Strathclyde, Glasgow G1

1XH, U.K, 1995.

[10] A. E. L. Watkins, "A Tool for the Automatic Generation

of Test Data Using Genetic Algorithms", In Proceedings

of Software Quality Conference, Dundee, Scotland,

1995.

[11] B. F. Jones, D. E. Eyres, and H. -H. Sthamer, "A strategy

for using genetic algorithms to automate branch and

fault-based testing‟, The Computer Journal, Vol. 41, No.

2, 98-107, 1998.

[12] R.P. Pargas, M. J. Harrold, and R. R. Peck, „Test-Data

Generation Using Genetic Algorithms”, The Journal of

Software Testing, Verification and Reliability, 1999.

[13] P. M. S. Bueno, and M. Jino, "Identification of

potentially infeasible program paths by monitoring the

search for test data", The 15th International Conference

on Automated Software Engineering (ASE‟00),

Grenoble, France, 2000.

0

20

40

60

80

100

120

P
#
1

P
#
2

P
#
3

P
#
4

P
#
5

P
#
6

P
#
7

P
#
8

P
#
9

P
#
1
0

P
#
1
1

P
#
1
2

P
#
1
3

P
#
1
4

P
#
1
5

No. of GA-

generations to

cover the all
def-uses

No. of RT-

generations to

cover the all
def-uses

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

36

[14] J. -C. Lin and P. -L. Yeh, "Automatic test data generation

for path testing using GAs", Information Sciences, 131

(1-4), 47-64, 2001.

[15] C. C. Michael, G. McGraw, and M. A. Schatz,

"Generating Software Test Data by Evolution", IEEE

Transactions on Software Engineering, Vol. 27, No. 12,

1085-1110, 2001.

[16] P. M. S. Bueno and M. Jino, "Automatic Test Data

Generation For Program Paths Using Genetic

Algorithms", International Journal of Software

Engineering and Knowledge Engineering, December

2002, Vol. 12, No. 06, pp. 691-709.

[17] M. R. Girgis, "Automatic test data generation for data

flow testing using a genetic algorithm", Journal of

Universal computer Science, vol. 11, no. 5, pp. 898-915,

2005.

[18] A. S. Ghiduk, M. J. Harrold, M. R. Girgis, "Using

genetic algorithms to aid test-data generation for data

flow coverage", Proc. of 14th Asia-Pacific Software

Engineering Conference (APSEC 07), 2007, pp. 41-48.

IEEE Press.

[19] D. W. Gong, W. Q. Zhang, X. J. Yao, "Evolutionary

Generation of Test Data for Many Paths Coverage Based

on Grouping", Journal of Systems and Software, Vol. 84,

No.12, pp. 2222–2233, 2011.

[20] M. R. Girgis, A. S. Ghiduk, and E. H. Abd-Elkawy, "An

Approach For Enhancing Regression Testing Using

Genetic Algorithm and Data Flow Analysis",

International Journal of Intelligent Computing and

Information Science, Vol.13, No. 2, APRIL 2013, pp.

115-132.

[21] I. Hermadi, C. Lokan, and R. Sarker, "Genetic

Algorithm Based Path Testing: Challenges and Key

Parameters", Second WRI World Congress on Software

Engineering, 2010

[22] J. R. Bint, Renate Site, "Optimizing Testing Efficiency

with Error Prone Path Identification and Genetic

Algorithms" 2004 Australian Software Engineering

Conference (ASWEC'04), Australia, pp.106-115, 2004.

[23] A. S. Ghiduk, “Automatic Generation of Basis Test Paths

Using Variable Length Genetic Algorithm” International

Journal of Information Processing Letters, vol. 114, pp.

304-3016, 2014.

[24] S. Rapps and E.J. Weyuker, "Selecting software test data

using data flow information", IEEE Transactions on

Software Engineering, Vol. 11, No. 4, pp. 367-375, 1985.

[25] Girgis, M. R. (1992) 'An experimental evaluation of a

symbolic execution system', Software Engineering

Journal, 7 (4), 285-290.

[26] M. R. Girgis, "Using symbolic execution and data flow

criteria to aid test data selection", The Journal of

Software Testing, Verification and Reliability, Vol. 3,

No. 2, pp. 101-112, 1993.

[27] D. E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley,

Reading, Mass., 1989.

IJCATM : www.ijcaonline.org

