
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

18

Memory Cutback for FP-Tree Approach

D. P. Rana

SVNIT
Surat
India

N. J. Mistry
SVNIT
Surat
India

M. M. Raghuwanshi
RGCER
Nagpur
India

ABSTRACT

The pattern growth approach of association rule mining is

very efficient as avoiding the candidate generation step which

was utilized in Apriori algorithm. Here, revisited of the

pattern growth approaches are done to improve the

performance using different criteria like item search order,

conditional database representation and construction approach

and tree traversal ways. The header table construction is the

first part in almost all the approaches having constant number

of dataset items. This research is representing the reduction in

overall memory requirement of pattern growth approach by

reducing the search space and processor operations time at the

header table generation. It is proposed to achieve the memory

cutback by only considering the items that are going to be

frequent and ignoring the infrequent items at early stage of

scan, by considering the boundary. Experimental analysis

achieves cutback in memory consumption in the proposed

approach Modified FP-Growth (MFP-Growth) compare to

FP-Growth and CFP-Growth.

General Terms

Data Mining, Association Rule Mining

Keywords

Association rule mining, FP-Tree, pattern growth

1. INTRODUCTION
Association rule mining one of the data mining techniques

finds the associations between items in a transaction dataset

[1]. The association rule is represented as AB, which means

if customer buys item A then he also tends to buy item B. Any

number of items can be there on antecedent and consequent of

the rules. To perform so, two thresholds like support and

confidence are used. For the rule AB, the support is defined

as the probability to contain the {A, B} and confidence is

defined as the conditional probability that a transaction having

item A also having the item B. The association rules which

satisfies the support and confidence thresholds are considered

as interesting association rules. A large number of association

rule mining methods have been reported in the literature.

From that commonly used association rule mining algorithms

are Apriori and FP-Growth. From these two, FP-Growth has

good approach of FP-Tree generation, so this paper is

reviewing different FP-Growth algorithms to understand the

innovative strategies used by them. From the study, it is found

that there is a scope of reduction in time and memory usage

by the introduction of boundary. Herewith proposed the

modification to the traditional FP-Growth approach and

experiments are tested and resulted in the betterment.

Accordingly, this paper is organized as follows: Section 2 is

briefing the basic association rule mining approaches and

discussing and summarizing the variations of FP-growth

approach, Section 3 is describing the problem statement and

approach used to reduce the execution time respectively,

Section 4 is the experimental and result analysis and finally

Section 5 is concluding with the future work area.

2. ASSOCIATION RULE MINING
To discover the association between items, the commonly

used association rule mining algorithm is the Apriori

algorithm which is of the type bottom-up and breadth-first

search [2-3]. The basic approach of the Apriori algorithm is

that “An itemset is frequent, if and only if all of its subsets are

frequent”. So, this approach generates k+1-candidate itemsets

using k-frequent itemsets and then the algorithm tests the

candidate k+1-itemsets to satisfy the given support threshold.

This way, it is repeatedly mining all frequent superset of

items. At the last, the algorithm provides frequent patterns of

all size and the rule directions by filtering the rules using the

confidence threshold. Though, the algorithm has limitations of

number of candidate generation and multiple pass over the

database, other approaches are introduced with different

computational efficiencies, scanning of the database, the

representation structure used for the transactions and memory

utilization. One of the big improvement over Apriori

algorithm is proposed by Han et al. achieved by introducing

the Frequent Pattern (FP)-Growth approach by reducing the

number of database scan and using the efficient storage

structure called Frequent Pattern (FP)-tree that mines the

frequent pattern without candidate generation [4]. This

approach is executed in two phases: During the first phase, in

the first database scan it is deriving a list of frequent items

known as header table in which items are ordered by

frequency descending order and in the second database scan,

the complete frequent item database is compressed into an FP-

tree. In the second phase, it is constructing the conditional

pattern-bases which are the sets of prefix paths in the FP-tree

from which conditional FP-tree is constructed to generate the

patterns by the concatenation of the suffix pattern with the

generated frequent patterns. And the process is recursively

mining till the FP-tree is empty or it contains only a single

path. The characteristics of this approach is using depth-first

search techniques with only two data scans and also avoids

the generation of a large number of candidate itemsets, that

helps to reduce the execution time of this is quite less

compare to Apriori. But, as the approach stores complete FP-

tree into the memory that causes the limitation due to limited

main memory size. The memory consumption of this

approach is reduced by modification to FP-tree called Patricia

Tries [5].

 Even though, the FP-growth has limitation, it is found as

more efficient than Apriori in case of dense datasets with

number of long frequent itemsets and low support threshold.

Related to this, different approaches are studied and found

that the generation of header table is similar like Apriori first

step that needs to scan a large number of 1-candidate items,

many of which are proved to be infrequent at the end of the

first database scan. This research is discussing the

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

19

modification before the creation of FP-Tree to reduce the

execution time by considering the total operations time only

for possible frequent items by using boundary and together

with this, it also reducing the space required to store 1-

candidate items.

Due to the novelty of FP-tree with restrain of memory size

and recursive approach to mine the frequent patterns, the

different research works have carried out to improvise the

mining ways are briefed here.

Frequent Pattern (FP)-List approach was proposed by Tseng

et al. using a simple linear list which stores item node and bit

string node with partition [6]. Each item node has information

like: frequent item, count and a link to a bit string node. A bit

string node manages information to indicate the presence and

absence of frequent items in a transaction, its count, a link to a

sibling item node. So, the rightmost item node contains the

smallest frequency information. This approach mines

recursively with the help of simple list operations together

with bit counting, transaction trimming and migration. The

partitioning and transaction trimming reduce the memory

requirement.

TD-FP-Growth proposed by K. Wang et al. searches the FP-

tree in the top-down order as the header table is managed in

ascending order to mine non recursive way [7]. To save

amount of execution time and memory space, it is not

generating conditional pattern bases and conditional FP-trees.

To achieve this, it is preparing sub header tables of item and

merging the information from one sub tree to another

Co-Occurrence Frequent Item (COFI) tree algorithm was

introduced by M. El-Hajj et al. where for each frequent item

in the header table of FP-tree the relatively small tree is

prepared referred as COFI trees [8]. COFI tree is controlling

bidirectional links to provide non recursive approach and is

helping to avoid the generation of conditional sub-trees. COFI

tree manages global frequent and local non frequent property

built and mined independently one by one to reduce the

memory consumption.

The Ascending Frequency Ordered Prefix Tree (AFOPT)

algorithm is another pattern growth algorithm proposed by

Liu et al. in which manages the header table of items in

ascending order to minimize the number and the size of

conditional database [9]. It utilizes the tree and array based

structure depending on the dense and sparse dataset

respectively. It is mining the first item’s conditional database

to retrieve all the patterns and then all of its subtrees are

merged with its siblings which will be the complete

representation of the second item’s conditional database to

mine, thus increasing the performance.

CT-PRO algorithm is the variation of FP-tree algorithm

presented by Y.G. Sucahyo et al. which uses Compress

Frequent Pattern tree (CFP-tree) to represent all the items of

the transactions in the main memory [10]. Together with

header table, it uses the field index with item-id in the

descending order of the frequency. Approach is preparing first

global CFP-tree as FP-tree but with index value. Then mining

is done using projection for the local CFP-Tree from global

CFP-tree.

SQL based approach was proposed by S. Xuequn et al. [11].

RDBMS provides the benefits of using the buffer

management system freeing the user from the size

consideration of the data and limitation of FP-growth tree. It

is storing FP-tree as a flat table structure called FP table. To

speed up the insertion and mining is overcome by Extended

Frequent Pattern (EFP) table which has the same format as

table FP but directly obtained by transforming frequent items

in transactional table T’ and thus the SQL based frequent

Pattern mining approach using FP-Growth can get efficient

result.

Fast Updated Frequent Pattern-tree (FUFP-tree) proposed by

T. Hong et al. utilizing an FP-Tree with bidirectional link

[12]. Initially author is preparing FP-tree with given data just

like FP-tree approach. Then on arrival of some transactions

separately preparing header table for these by considering

relative support and merging these transactional items to the

original FUFP-Tree incrementally.

To mine the association rules with multiple minimum

supports is also an important problem of the association rule

mining. First time, with the help of pattern growth approach,

the author Y. Hu et al. proposed a MIS-tree (just alike FP-tree

structure) based algorithm CFP-growth to mine all frequent

itemsets with multiple support values in one database scan is

proposed without managing any separate header table. The

maintenance algorithm to update the MIS-tree is provided to

tune the different supports of items at any stage without

rescanning database [13].

Compact Pattern-tree (CP-tree) proposed by S. Tanbeer et al.

prepares a compact prefix-tree structure in one database scan

and provides the same mining performance as the FP-growth

technique by efficient tree restructuring process [14]. The

approach is not require extra database scan to generate header

table, but on at the collection of user given transactions,

inserting and updating the header table and pattern tree. Thus,

it is an interactive and incremental approach which requires

only single scan of database.

Tree-based Incremental Association Rule Mining (TIARM)

approach is proposed by G. Pradeepini et al. [15] to reduce

total database scan from 2 to 1. This approach uses

INCremental (INC)-Tree data structure which is an extension

of FP-Tree constructed by inserting every transaction in

database one after another into it directly by sorting the

transaction items according to item’s appearance order in the

database and together it manages the sort list. INC-Tree

contains nodes representing items and total count of that item

in the path up to that node and connecting each node

containing same item. After construction of INC-Tree, before

the mining of INC-tree it prunes the tree according to support

threshold.

The author Lin et al. [16] proposed the Improved FP-growth

(IFP-growth) algorithm which improves the performance of

FP-growth in terms of memory reduction by utilizing an

address-table structure together with FP-tree and preparing a

new structure called FP-tree+ that will help to reduce the

recursive building of conditional FP-trees.

3. PROBLEM AIM AND APPROACH
From number of approaches discussed here, derived that

execution time can be also reduced by considering the

operations needed to update the count of items and memory

consumption. Here the approach is considering the particular

boundary level from which one can grasp that after that

boundary level if new item is seem then it will not become

frequent from the remainder number of transactions. There is

no need to consume memory for these items and thus it is

avoiding the update operation for those items. Only to

consider the memory for items those are going to be frequent

and perform counting operations for the items which are

appearing before the boundary.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

20

The aim of the planned approach is to reduce the memory

usage by ignoring the non-frequent items at early stage.

In order to achieve less execution time with less candidate

items storage, here considered that to become the frequent

item, the candidate item has to appear in x number of

transactions during the dataset scanning, where x is the

boundary. Otherwise candidate item is infrequent as the item

appears in transactions less than the x number of transactions.

Thus one can say that for the consideration of the item as

frequent item, it must have to be occurred once in the

boundary.

Here, the boundary is represented by the help of the given

support Sup. For the given support Sup the item is frequent, if

it is present in the boundary=(Total number of Transactions -

Sup + 1) number of transactions. This boundary can be used

during the dataset scanning. In the first database scan, at the

confirmation boundary, appears the items which may be

almost frequent and after the boundary the approach needs to

scan the transactions and to perform the count updating

operations only for these items and for rest new items just

ignore them and even not to allocate memory for them. And

then continue with the second database scan to prepare FP-

Tree and mining as usual like FP-Growth.

The algorithm steps are as shown in the following Fig 1.

Fig 1: Algorithm Steps

Here, Step 1 is calculating boundary for the transactions.

Steps 3 to 5 are to add all items appearing within the boundary

to candidate list as considered that item is appearing then only

it will be frequent. Step 6 is utilized after boundary only

increment of count already appeared candidates. Steps 8 to 10

are similar like FP-Growth.

Thus with the help of confirmation boundary found out items

which are going to appear in frequent itemsets and helps to

reduce the number of items to store at the scanning time and

thus reducing storage space which is more explained with the

given dataset example of 10 transactions as shown in

following Table 1.

For the given sample dataset, here, explanation is provided for

two cases for the analysis purpose: 1) Minimum Support

greater than 50 and 2) Minimum Support less than 50.

Table 1. Sample Dataset

Tid Itemset Tid Itemset

1 1, 2, 3, 4, 5 6 1, 2, 6, 7, 10, 11

2 1, 3, 5, 8 7 1, 8, 10, 11

3 2, 3, 4, 5, 7 8 1, 2, 3, 6, 8, 10

4 1, 3, 5, 8 9 2, 6, 8, 12

5 1, 2, 3, 5 10 1, 3, 8, 9, 12, 13

Case Analysis 1: Minimum support = 60%

Here, calculating support count=6 and Boundary=5.

The transaction numbers from 1 to 5 are scanned at the

beginning of the first pass and only {1, 2, 3, 4, 5, 7, 8} items

are considered for memory allotment and for count updating

operation. Memory is not allotted to the items {6, 9, 10, 11,

12, 13} as according the proposed approach they are lying

beyond the boundary as they cannot become frequent after

transaction 5. At the end of the pass, candidate items {4, 6, 7,

10, 11} will be removed due to less support count and only

{1, 2, 3, 8} will be available as 1-frequent items out of total

unique 13 items.

Case Analysis 2: Minimum support = 40%

Here, calculating support count=4 and Boundary=7.

The transactions numbered 1 to 7 are considered for candidate

memory allocation becomes the boundary. So, here also few

candidate items are not considered after the boundary. But,

new candidate items {9, 12, 13} are not included in the

candidate items as they cannot become frequent items from

the remaining transactions. And candidate items {4, 6, 7, 10,

11} will be removed at the end of first pass as their support is

less compare to given support Sup and they cannot be

frequent. But the number of candidate items which not to

consider further are very less compare to higher support items.

Rather here, candidate items to be considered as frequent are

more compare to higher support items but which is less than

the Apriori first pass candidate items and making the

execution time of this modification comparatively equal to the

FP-Growth for low support which is shown in further section.

The dataset used here is the example dataset, showing that

some items are not considered after boundary, which will be

more effective when the dataset is larger. This boundary is

helpful to reduce the execution time by reducing the storage

space of candidate items and their counting operations.

4. EXPERIMENTAL ANALYSIS
To assess the performance of MFP-growth used two other

pattern growth algorithms, FP-growth and CFP-Growth to

mine frequent itemsets for various support thresholds on real

and synthetic datasets downloaded from [17] as described in

the Table 2 are tested on Intel i5 CPU @3.10 GHz with 4 GB

RAM and 64-bit OS. Furthermore, both FP-growth and CFP-

Growth were downloaded from http://www.philippe-fournier-

viger.com/spmf/index.php and were compared with MFP-

growth in Java to present the performance comparison as

shown in Fig 3. Since the CFP-algorithm is used for the

multiple support values, here set all items’ supports as equal

when executing them.

The experiments were performed for mainly for three types of

tests: 1) Number of 1-candidate items generated at the header

table generation in 1st pass, 2) The time taken to generate the

sorted header table and 3) The affect of overall execution

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

21

time. Numbers of 1-candidate items are considered not the

actual memory mapping, as the reduction in number of items

is same as the memory occupied by the candidates. The

numbers of 1-candidates generated through different

experiment is shown in the Fig 2. And other execution time

results are as shown in the following Fig 3.

Table 2. Datasets

Dataset
No. of

Transactions

Unique

Items

Transaction

Avg. Length

T25I10D10K 10000 929 25

BMS 59601 497 2.42

Sign 730 119 23

The T25I10D10K dataset is sparse and containing

approximately 10000 transactions. In this case, the planned

approach MFP-Growth shows overall memory required to

store 1-candidate items is constant and on average memory

consumption is reduced to 6% compare to FP-Growth and

CFP-Growth. The reduction in average execution time to

generate header table of 1-frequent itemset compare to FP-

Growth is reduced to 4% and in the case of CFP-Growth it is

reduced to 92% for support value 10% to 90% respectively.

Fig 2: No. of 1-Candidates

As shown in Fig. 2 average execution time is reduced to 4%

compare to FP-Growth and 87% from CFP-Growth and which

may be even reduced more with more number of transactions.

More time is achieved in the CFP-Growth algorithm as it is

generating the header table and MIS-tree together in one

database scan only and later on approach is just adjusting the

MIS-tree.

Fig 3: Experiment Graphical Results

For the BMS dataset, planned approach MFP-Growth shows

overall memory required to store 1-candidate items is almost

constant and on average memory consumption is reduced to

13% compare to both FP-Growth and CFP-Growth. But, here

as 59,601 transactions are there the reduction in execution

time to generate header table of 1-frequent itemset in average

is 4% compare to FP-Growth and 29% compare to CFP-

Growth for support value 1% to 10% respectively. As shown

in Fig. 2 average overall execution time is reduced to approx.

4% from FP-Growth while in CFP-Growth it is 50%, which

may be even reduced more with more number of transactions.

In the case of Sign dataset proposed approach MFP-Growth

compare to FP-growth for different supports ranging from

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 12, March 2014

22

10% to 90%, overall memory required to store 1-candidate

items and average header table generation time both are

reduced to 9%. This is because of all the distinct items are

playing their role from 30% support and thus the average

overall execution time is reduced to 1% as shown in Fig. 1.

And compare to CFP-Growth memory required to store 1-

candidate items, average header table generation time and

overall execution time is reduced to 9%, 58% and 71%

respectively.

In general, the MFP-Growth approach achieved the overall

memory reduction compare to FP-Growth and CFP-Growth in

all the datasets for different support thresholds. And as

additional benefits the reduction in execution time is also

achieved.

5. CONCLUSION
From the literature study, found the various approaches of

pattern growth approach and through experiments, it is

observed that in FP-Growth approach the memory

consumption is constant but proposed approach is novel, it

helps to reduce the memory utilization and thus also it helps

to decrease the overall execution time. Cutback in memory is

achieved by ignoring the non frequent items at early stage

with proposing the boundary and in future it will be tested

with other approaches of pattern growth and still to reduce

execution time together with the integration of this concept to

test at the recursive mining of trees.

6. REFERENCES
[1] J. Han and M. Kamber, “Data Mining Concepts and

Techniques”, Second Edition, Morgan Kaufmann

Publishers, 2006.

[2] R. Agrawal, T. Imielinski and Swami, “Mining

association rules between sets of items in large

databases,” In Proceeding of the 1993 ACM SIGMOD

International Conference on Management of Data, pp.

207-216, 1993.

[3] R. Agrawal and R. Srikant, ”Fast algorithms for mining

association rules,” Proceedings of 20th International

Conference on Very Large Data Bases, pp. 487-499,

1994.

[4] J. Han, J. Pei and Y. Yin, ”Minining frequent patterns

without candidate generation,” Proceedings of the 2000

ACM SIGMOD International Conference on

Management of Data, pp. 53-87, 2000.

[5] Pietracaprina and D. Zandolin, “Mining frequent itemsets

using patricia tries”, In B. Goethals and M. J. Zaki,

editors, Proceedings of the IEEE ICDM Workshop on

Frequent Itemset Mining Implementations, Melbourne,

FL, USA, November 2003.

[6] F. C. Tseng and C. C. Hsu, “Generating frequent patterns

with the frequent pattern list,” Proceedings of the 5th

Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pp. 376-386, 2001.

[7] K. Wang, L. Tang, J. Han and J. Liu, “Top Down FP-

Growth for Association Rule Mining”, PAKDD 2002,

LNAI 2336, Springer-Verlag Berlin, pp. 334-340, 2002.

[8] M. El-Hajj and O. R. Zaıane, “COFI-tree Mining: A New

Approach to Pattern Growth with Reduced Candidacy

Generation”, In Proceedings of the ICDM 2003

Workshop on Frequent Itemset Mining Implementations,

Melbourne, Florida, USA, CEUR Workshop

Proceedings, vol. 90, pp. 1-10, 19 December 2003.

[9] G. Liu. , H. Lu, J. Xu Yu, W. Wang and X. Xiao,

“AFOPT: An Efficient Implementation of Pattern

Growth Approach*”, In Proceedings of IEEE ICDM'03

Workshop, FIMI'03, Melbourne, pp. 1-10, 2003.

[10] Y. G. Sucahyo and R. P. Gopalan, "CT-PRO: A Bottom

Up Non Recursive Frequent Itemset Mining Algorithm

Using Compressed FP-Tree Data Structure”, In

proceedings of IEEE ICDM Workshop on Frequent

Itemset Mining Implementation (FIMI), Brighton UK,

pp. 1-11, 2004.

[11] S. Xuequn, S. Kai-Uwe and G. Ingolf, “SQL Based

Frequent Pattern Mining with FP-Growth”, In

Proceedings of 15th International Conference on

Applications of Declarative Programming and

Knowledge Management, INAP 2004, and 18th

Workshop on Logic Programming, WLP, Germany, pp.

32-46, March 4-6, 2004.

[12] T. Hong, C. Lin and Y. Wu, “A fast updated frequent

pattern tree", 2006 IEEE International Conference on

Systems, Man and Cybernetics, Taiwan, 2006.

[13] Y. Hu and Y. Chen, “Mining association rules with

multiple minimum supports: a new mining algorithm and

a support tuning mechanism”, Decision Support Systems,

Vol. 42(1), pp. 1-24, 2006.

[14] S. K. Tanbeer, C. F. Ahmed, B. Jeong and Y. Lee, “CP-

Tree: A Tree Structure for Single-Pass Frequent Pattern

Mining”, PAKDD 2008, Springer LNAI 5012 - Verlag

Berlin Heidelberg 2008, pp. 1022-1027, 2008.

[15] G. Pradeepini and S. Jyothi, “Tree-Based Incremental

Association Rule Mining without Candidate Itemset

Generation”, In Trendz in Information Science &

Computing (TISC), Chennai, pp. 78-81, Dec, 2010.

[16] K. Lin, I. Liao and Z. Chen, “An improved frequent

pattern growth method for mining association rules”,

Expert Systems with Applications, Vol. 38, pp. 5154-

5161, 2011.

[17] SPMF, A Sequential Pattern Mining Framework

Available at: http://www.philippe-fournier-

viger.com/spmf/index.php?link=datasets.php

IJCATM : www.ijcaonline.org

http://www.mkp.com/datamining2e
http://www.mkp.com/datamining2e

