
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 11, March 2014

30

Shiva: A Framework for Graph based Ontology Matching

Iti Mathur, Nisheeth Joshi

Apaji Institute
Banasthali University

Rajasthan, India

Hemant Darbari, Ajai Kumar
Applied Artificial Intelligence Group

Center for Development of Advanced Computing
Pune, Maharashtra, India

ABSTRACT

Since long, corporations are looking for knowledge sources

which can provide structured description of data and can

focus on meaning and shared understanding. Structures which

can facilitate open world assumptions and can be flexible

enough to incorporate and recognize more than one name for

an entity. A source whose major purpose is to facilitate human

communication and interoperability. Clearly, databases fail to

provide these features and ontologies have emerged as an

alternative choice, but corporations working on same domain

tend to make different ontologies. The problem occurs when

they want to share their data/knowledge. Thus we need tools

to merge ontologies into one. This task is termed as ontology

matching. This is an emerging area and still we have to go a

long way in having an ideal matcher which can produce good

results. In this paper we have shown a framework to matching

ontologies using graphs.

General Terms

Ontology Matching, Ontology Alignment

Keywords

Ontology Matching, Ontology Alignment, Graph Matching,

Kuhn-Munkres Algorithm.

1. INTRODUCTION
Since the dawn of Semantic Web. Ontology Matching (OM)

is gaining popularity. As corporations have started using

ontologies for storing their knowledge. This knowledge is the

most valuable asset for any organization and timely access to

this knowledge is the major focus to them. Unfortunately this

is not as simple as it sounds because at times a knowledge

engineer has to come across with a situation where more than

one ontology is being used for the same knowledge. This is a

nightmare which every knowledge engineer fears.

To address this issue, one has to either employ a human

annotator to merge all the ontologies having same knowledge

or they have to devise a mechanism to merge the ontologies

automatically. This latter part is termed as ontology matching.

Since the beginning of 21st centaury this concept is being

widely explored. Researchers are trying to develop new ways

to merge ontologies which can produce results as good as

humans. The problem of merging or matching ontologies is

not as simple, as there are several issues that are to be

considered while matching ontologies. Among them the most

prominent issue is of heterogeneity where ontologies are

available in different frameworks and we need to merge the

knowledge incorporated in them. Most of the matchers

developed today are unable to handle this problem. In our

approach we have addressed this issue. As mostly the

ontologies are available in OWL, RDF or XML formats. Our

matcher can read any of these formats and can align their

information and produce an aligned ontology.

The rest of the paper is as follows: Section 2 gives a brief

description of the work done in the area of ontology matching.

Section 3 describes our approach; it explains the experimental

setup and our methodology. Section 4 describes the evaluation

procedure incorporated to test the performance of the matcher

and Section 5 concludes the work done.

2. LITERATURE SURVEY
In the past decade, as this area gained popularity, a lot of work

was done to develop good matching systems. In this section

we describe some of the best matchers developed till date.

Agreement Maker is a matcher developed at University of

Illinois at Chicago by Cruz at el. [1]. This system has the best

user interface developed so far. Moreover it has a flexible

architecture and an integrated user interface which makes it

different from other matchers. The core philosophy of the

developers of this matcher is that of involving users into

matching process. They believe that users can help make

better alignments which are not possible in automatic

alignments. Thus they prophesize the use of having semi-

automatic matching systems. LogMap is another ontology

matcher which is developed at University of Oxford by Ruiz

and Grau [2]. They have used a logic based reasoning

approach in their matcher. Their argument is that if we use

logic based semantics incorporated in the ontologies then we

may produce better alignments. This matcher is still under

development and has already started a debate among the

circles of the developers of ontology matchers.

AROMA [3] is a hybrid ontology matcher which can

effectively match the concepts and properties from two

ontologies. In order to do so they use association rule

paradigm [4] and statistical interestingness measure. CIDER

[5] tries to align ontologies using schema matching. It follows

a two pronged approach, first it tries to extract similar

concepts up to a certain depth and then applies different

matching techniques onto the concepts and then finally

produce aligned ontology. Lily [6] is another matching system

which has re-emerged as one of the active ontology matchers.

It can match generic and large scale ontologies. It can produce

good results for normal size ontologies but it takes a lot of

time to do so. The main reason behind this is that this

matchers tries to extract semantic sub graphs and then tries to

map them with other ontologies.

RiMOM [7] is one the top performing matchers that are tested

in various evaluation campaigns across the globe. This

matcher can not only match schema but also can match

instances available in the ontologies. It uses multiple

techniques to implement this feature and uses external

resources like WorldNet to do semantic matching. TaxoMap

[8] is another matcher which can produce matched ontologies

of large scale. It does so by finding correspondence between

the concepts of two ontologies. It also performs matches for

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 11, March 2014

31

subsumption relations and its inverse and proximity relations.

YAM++ [9] is another matcher which can produce good

results. This system uses multiple matching algorithms which

are combined to produce matched ontology. This system

provides flexibility as it allows the user to provide

preferences. This system is self-configurable and extensible as

if the user is not satisfied with the results then he can provide

his own customized matching approach.

3. OUR APPROACH

3.1 Experimental Setup
To test the performance of ontology matchers, we required

ontologies. So, we used some of the ontologies with OAEI

(Ontology Alignment and Evaluation Initiative) 2013

evaluation task [10]. This task had some lightweight

ontologies and one heavyweight ontology. We used fifteen

ontologies from benchmark test set. These were light weight

ontologies. We also used an ontology from anatomy track.

Since we could not find any more heavy weight ontologies,

we developed some ontologies on our own. These were

ontology on human anatomy [11] which had concepts relating

to human physiological structure; we also developed two

ontologies on health care services [12] and communicable

diseases [13].

We have also used some of the best matchers from the OAEI

2013 task and compared our system with them. We used a

graph based methodology for matching the ontologies. The

objective was to check the feasibility of graph matching

algorithms into ontology matching. Although some work has

been done for using graphs in ontology matching. None of the

previous work has checked the feasibility of graph based

matchers with both heavyweight as well as lightweight

ontologies.

3.2 Methodology
As ontologies have a hierarchical structure where concepts,

attributes and instances can be arranged in a tree/graph like

structure; using a graph matching algorithm here is far more

intuitive mechanism. Thus, in our approach we have done the

same. We have used bi-partite graph matching algorithm in

our approach.

We have christened our system as Shiva. In our approach, we

first take two ontologies. These can be in different formats.

For example, the source ontology can be in OWL format

while the target ontology can be in RDF format. Our system

can recognize ontologies in OWL, RDF and XML formats.

So, the source ontology OS and target ontology Ot are read

and are sent for preprocessing. In preprocessing task, first we

separately parse the ontologies by collecting various concepts,

sub-concepts, properties and instances. This information is

stored in a file for manual debugging. Moreover, this

extracted information is preprocessed and is arranged into a

linked graph in memory. Thus each concept has a direct

relationship with its properties, sub-concepts and instances. If

we want we can generate an adjacency metric of this

information or we can see it visually by creating vertices and

arcs labeled as Isa, instanceof and hasproperty.

Once preprocessing is completed, the extracted information is

sent to the matching system, were the user has the choice to

selection from four different structural matching algorithms

these are: Levensthein Edit Distance [14], Qgrams [15], Smith

Waterman [16] and Jaccard’s Coefficient [17] algorithms. All

the algorithms search for similarities between concepts, sub-

concepts, properties and instances and are checked for three

types of correspondences. These are:

1. Equivalence correspondence: where a concept, sub-

concept, property or instance in OS matches with its

counterpart (at same level) in Ot.

2. Isa correspondence: where a sub-concept of OS matches

with a concept of Ot and vice versa.

3. General correspondence: where a property OS matches

with a concept or sub-concept of Ot and vice versa.

Thus all the mapping (mapping(𝑥, 𝑦)) are generated using

four tuples(𝑥, 𝑦, 𝑟, 𝑡). Where:

𝑥  OS : x belongs to concepts, sub-concepts, properties and

instances in source ontology.

𝑦  Ot : y belongs to concepts, sub-concepts, properties and

instances in target ontology.

𝑟  R : r is a correspondence relations in a set of

correspondence relations R, in our case these are Equivalence,

Isa and General.

t  T : t is the similarity metric used in alignment from a set of

available metrics T, in our case these are Levensthein

Distance, Jaccard Coefficient, Smith Waterman and Qgrams.

Using these mappings, we generated a score matrix in the

following format:

𝑆 =

𝑀 𝑂11𝑂21 𝑀 𝑂12𝑂21 𝑀 𝑂13𝑂21 … 𝑀 𝑂1𝑚𝑂21

𝑀 𝑂11𝑂22 𝑀 𝑂12𝑂22 𝑀 𝑂13𝑂22 … 𝑀 𝑂1𝑚𝑂22

𝑀 𝑂11𝑂23 𝑀 𝑂12𝑂23 𝑀 𝑂13𝑂23 … 𝑀 𝑂1𝑚𝑂23
 ∶ ∶ ∶ ∶
 ∶ ∶ ∶ ∶

𝑀 𝑂11𝑂2𝑛 𝑀 𝑂12𝑂2𝑛 𝑀 𝑂13𝑂2𝑛 … 𝑀 𝑂1𝑚𝑂2𝑛

𝑚×𝑛

Here, 𝑀 𝑂11𝑂21 is the mapping between one of the elements

(concepts, sub-concepts, properties, instances) of source

ontology OS with one of the elements (concepts, sub-concepts,

properties, instances) of target ontology Ot. This has the value

which is produced by the similarity metric. For example, if we

are using levensthein distance algorithm and we have two

concepts as car and cars, then its score would be 1 and the

similarity is calculated using the formula in equation 1.

𝑠𝑖𝑚 𝑥, 𝑦 =
#𝑒𝑑𝑖𝑡𝑠 (𝑥,𝑦)

max ⁡(𝑙𝑒𝑛 𝑥 ,𝑙𝑒𝑛 𝑦)
 (1)

Here x and y are the two strings, in our case x is “car” and y is

“cars”. #matches(x,y) is the no. of edits required to make the

two strings equal and len(x) is the length of string x, len(y) is

the length of string y. the maximum of the two is selected to

compute the final score. This is done for all the mappings

which then generate the score matrix of all the matched

elements of both the ontologies. This matrix can be seen as

bipartite graph which has two disjoint sets of vertices (in our

case mapping elements of OS and Ot) and edge weights

(similarity values) are clearly mentioned.

Once the score matrix is generated, it is passed to our graph

matching algorithm. We used Hungarian method [18] for

matching our score matrix (bipartite graph). This gave us the

best matching pairs in the matrix which are then used to

generate the aligned ontology. Figure 1 shows the architecture

of our system. A snapshot of aligned ontology is shown in

figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 11, March 2014

32

4. EVALUATION
To evaluate the performance of our system we used 19

ontologies. Among them 15 were light weight ontologies and

4 were heavy weight ontologies. We used 2 popular ontology

matchers (RiMOM and YAM++) with our four variants and

compared their performance. We performed our evaluation on

three categories. In first category we matched all the

ontologies. In the second category we only matched the light

weight ontologies and in the third category we only matched

the heavy weight ontologies. We calculated precision, recall

and f-measures using equations 2, 3 and 4 respectively.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 _𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠

#𝑡𝑜𝑡𝑎𝑙 _𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 _𝑠𝑦𝑠𝑡𝑒𝑚
 (2)

Recall R =
#correct _mappings

#total _mappings _human
 (3)

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹) =
2×𝑃×𝑅

𝑃+𝑅
 (4)

Here, the system generated matched ontology is compared

with human generated manually matched ontology. The basic

idea is to make the system produce an ontology which can

emulate human matched ontology. Thus the matchers which

produce better mappings is considered being the best.

Precision is calculated using the correct mappings between

human and system’s ontology divided by the total mappings

produced by the system. Recall is calculated using the correct

mappings between human and system’s ontology divided by

the total mappings produced by the human. F-measure is the

combination of the two.

Table 1 shows the values of precision, recall and fmeasure.

While taking the average of all the ontologies, we found that

RiMOM performed better than all other matchers while Shiva

with Levensthein Distance Algorithm was second. In category

2, where only light weight ontologies were considered, we

computed the averages of only these ontologies and found that

again RiMOM performed better than other matchers with

Shiva with Levensthein Distance Algorithm managing to get

the second position. For category 3, we only took the averages

of heavy weight ontologies and found that RiMOM again was

the top matchers. This time YAM++ performed better than

Shiva with Levensthein Distance Algorithm.

5. CONCLUSION
In this paper, we have shown the implementation of a graph

based matcher with four different variants which use four

different algorithms. We have used bipartite graph matching

algorithm in creating aligned ontology. This approach

produced good results as it could work at par with YAM++,

one of the good ontology matchers while could not match

with RiMOM. One of the reasons for this is that RiMOM

matches ontologies at semantic level while Shiva only

matches them at structural level.

As an enhancement to this work, we can add WorldNet and

similar semantic resources to improve the performance of the

matcher by combining structural as well as semantic matching

techniques.

6. REFERENCES
[1] Cruz, I. F., Stroe, C., Caci, M., Caimi, F., Palmonari, M.,

Antonelli, F. P., Keles, U. C. 2010. Using

AgreementMaker to Align Ontologies for OAEI 2010.

Fifth International Workshop on Ontology Matching, co-

located with the International Semantic Web Conference,

Shanghai, China.

[2] Ruiz, E. J., & Grau, B. C. 2011. LogMap: Logic-based

and Scalable Ontology Matching. In the 10th

International Semantic Web Conference

[3] Jérôme, D. 2011. AROMA results for OAEI 2011. In

Proceedings of the Sixth International Workshop on

Ontology Matching.

[4] Agrawal, R., Imielinski, T., Swami, A. 1993. Mining

association rules between sets of items in large

databases. Vol 22 (2), ACM.

[5] Jorge, G., Bernad, J., Mena, E. 2011. Ontology matching

with CIDER: evaluation report for OAEI 2011. In

Proceedings of the Sixth International Workshop on

Ontology Matching.

[6] Peng, W., Xu, B. 2008. Lily: Ontology alignment results

for OAEI 2008. In Proceedings of the Third International

Workshop on Ontology Matching.

[7] Juanzi, L., Tang, J., Li, Y., & Luo, Q. 2009. Rimom: A

dynamic multistrategy ontology alignment framework.

Knowledge and Data Engineering, IEEE Transactions

on, Vol. 21(8), pp 1218-1232.

[8] Fayçal, H., Safar, B., Niraula, N.B., Reynaud, C. 2010.

TaxoMap alignment and refinement modules: Results for

OAEI 2010. In Proceedings of the Fifth International

Workshop on Ontology Matching.

[9] DuyHoa, N., Bellahsene, Z. 2012. YAM++: a multi-

strategy based approach for ontology matching task.

Knowledge Engineering and Knowledge Management.

Springer Berlin Heidelberg, pp 421-425.

[10] Shvaiko, P., Euzenat, J., Srinivas, K., Mao, M., Ruiz, E.J.

(Eds) 2013. Proceedings of the 8th International

Workshop on Ontology Matching.

[11] Vashisth, A., Mathur, I., Joshi, N. 2012. OntoAna:

Domain Ontology for Human Anatomy. arXiv preprint

arXiv:1208.3802.

[12] Mathur, I., Mathur, S., Joshi, N. 2011. Ontology

development for health care in India. Proceedings of the

International Conference & Workshop on Emerging

Trends in Technology. ACM.

[13] Mathur, I., Darbari, H., Joshi, N. 2013. Domain

Ontology Development for Communicable Diseases.

Proceedings of International Conference on Artificial

Intelligence, Soft Computing.

[14] Levenshtein, V.I. 1966. Binary codes capable of

correcting deletions, insertions and reversals. Soviet

Physics Doklady. Vol. 10.

[15] Ukkonen, E. 1992. Approximate string-matching with q-

grams and maximal matches. Theoretical computer

science, Vol. 92(1), pp 191-211.

[16] Smith, T.F., Waterman, M.S. 1981. Identification of

common molecular subsequences. Journal of molecular

biology, Vol. 147(1), pp 195-197.

[17] Jaccard, P. 1912. The distribution of the flora in the

alpine zone. New Phytologist, Vol. 11(2), pp 37-50.

[18] Munkres, J. Algorithms for the assignment and

transportation problems. Journal of the Society for

Industrial & Applied Mathematics, Vol. 5(1), pp 32-38.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 11, March 2014

33

Figure 1: Architecture of Shiva Ontology Matching System and Framework

Figure 2: Snapshot of aligned ontology

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 11, March 2014

34

Table 1: Comparison of Evaluation Results

 RiMOM YAM++ ShivaJaccard ShivaLD ShivaQgrams ShivaSW

Ontology P R F P R F P R F P R F P R F P R F

101
1 0.98969 0.99481 0.75257 0.42941 0.54681 0.59036 0.50515 0.54444 0.975 0.80412 0.88135 0.13725 0.64948 0.22661 0.92957 0.68041 0.7857

103
0.96875 0.95876 0.96373 0.92783 0.48128 0.63380 0.55056 0.50515 0.52688 0.94666 0.73195 0.82558 0.11623 0.64948 0.19718 0.92957 0.68041 0.7857

104
0.96875 0.95876 0.96373 0.92783 0.48128 0.63380 0.55056 0.50515 0.52688 0.95876 0.95876 0.95876 0.11623 0.64948 0.19718 0.92957 0.68041 0.7857

201
0.90909 0.72164 0.80459 0.92783 0.48128 0.63380 1 0.05825 0.11009 1 0.98969 0.99481 0.06862 0.06730 0.06796 0.0845 0.06185 0.0714

201-2
0.86111 0.63917 0.73372 0.92783 0.48128 0.63380 0.61702 0.29896 0.40277 0.97894 0.95876 0.96875 0.11421 0.50515 0.18631 0.76056 0.5567 0.6425

201-4
0.92 0.71134 0.80232 0.92783 0.48128 0.63380 0.57142 0.16494 0.256 0.97894 0.95876 0.96875 0.11111 0.38144 0.17209 0.54929 0.40206 0.4642

201-6
1 0.82474 0.90395 0.92783 0.48128 0.63380 0.66666 0.08247 0.14678 0.97894 0.95876 0.96875 0.10038 0.26804 0.14606 0.39436 0.28866 0.3333

201-8
1 0.86597 0.92817 0.92783 0.48128 0.63380 1 0.04902 0.09345 0.93333 0.57732 0.71337 0.07471 0.13402 0.09594 0.23943 0.17525 0.2023

202
1 0.86597 0.92817 0.92783 0.48128 0.63380 1 0.06730 0.12612 1 0.91752 0.95698 0.07767 0.07619 0.07692 0.0845 0.06185 0.0714

202-2
1 0.84536 0.91620 0.92783 0.48128 0.63380 0.61702 0.29896 0.40277 0.98795 0.84536 0.91111 0.11421 0.50515 0.18631 0.76056 0.5567 0.6428

202-4
1 0.84536 0.91620 0.92783 0.48128 0.63380 0.57142 0.16494 0.256 0.98717 0.79381 0.88 0.11111 0.38144 0.17209 0.54929 0.40206 0.4642

202-6
1 0.87628 0.93406 0.92783 0.48128 0.63380 0.66666 0.08247 0.14678 0.97260 0.73195 0.83529 0.10038 0.26804 0.14606 0.39436 0.28866 0.3333

202-8
0.91304 0.64948 0.75903 1 0.5 0.66666 1 0.07619 0.14159 0.72340 0.70103 0.71204 0.07471 0.13402 0.09594 0.23943 0.17525 0.2023

203
1 0.77319 0.87209 0.92783 0.48128 0.63380 0.55056 0.50515 0.52688 0.72340 0.70103 0.71204 0.11623 0.64948 0.19718 0.92957 0.68041 0.785

204
1 0.77319 0.87209 0.92783 0.48128 0.63380 0.56097 0.47422 0.51396 0.72340 0.70103 0.71204 0.12403 0.65979 0.20880 0.88732 0.64948 0.75

Anatomy
0.97222 0.72164 0.82840 0.65591 0.39610 0.49392 0.58181 0.34408 0.43243 0.89743 0.37634 0.53030 0.11428 0.64516 0.19417 0.93846 0.65591 0.77215

OntoAna
0.97058 1 0.98507 0.92783 0.48128 0.63380 0.50549 0.47422 0.48936 0.952381 0.412371 0.57554 0.07588 0.63917 0.13566 0.91549 0.6701 0.77381

HlthCare
0.98795 0.84536 0.91111 0.2414 1.05197 2.21928 0.60869 0.48275 0.53846 1 0.27272 0.42857 0.14110 0.79310 0.23958 0.85185 0.7931 0.82142

HCD
1 0.7628 0.865497 0.78787 0.44067 0.56521 0.5333 0.72727 0.61538 1 0.2727 0.4285 0.05921 0.81818 0.11042 0.81818 0.81818 0.81818

Average

Category1

0.9721 0.8225 0.8885 0.8645 0.5029 0.7034 0.6706 0.3087 0.3577 0.9325 0.7191 0.7875 0.1025 0.4670 0.1606 0.6413 0.4882 0.5529

Average

Category2

0.9693 0.8199 0.8861 0.9209 0.47907 0.6301 0.7008 0.2558 0.3147 0.9245 0.8219 0.8666 0.1038 0.3985 0.1581 0.5774 0.4226 0.4879

IJCATM : www.ijcaonline.org

