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ABSTRACT 

Since long, corporations are looking for knowledge sources 

which can provide structured description of data and can 

focus on meaning and shared understanding. Structures which 

can facilitate open world assumptions and can be flexible 

enough to incorporate and recognize more than one name for 

an entity. A source whose major purpose is to facilitate human 

communication and interoperability. Clearly, databases fail to 

provide these features and ontologies have emerged as an 

alternative choice, but corporations working on same domain 

tend to make different ontologies. The problem occurs when 

they want to share their data/knowledge. Thus we need tools 

to merge ontologies into one. This task is termed as ontology 

matching. This is an emerging area and still we have to go a 

long way in having an ideal matcher which can produce good 

results. In this paper we have shown a framework to matching 

ontologies using graphs. 
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1. INTRODUCTION 
Since the dawn of Semantic Web. Ontology Matching (OM) 

is gaining popularity. As corporations have started using 

ontologies for storing their knowledge. This knowledge is the 

most valuable asset for any organization and timely access to 

this knowledge is the major focus to them. Unfortunately this 

is not as simple as it sounds because at times a knowledge 

engineer has to come across with a situation where more than 

one ontology is being used for the same knowledge. This is a 

nightmare which every knowledge engineer fears. 

To address this issue, one has to either employ a human 

annotator to merge all the ontologies having same knowledge 

or they have to devise a mechanism to merge the ontologies 

automatically. This latter part is termed as ontology matching. 

Since the beginning of 21st centaury this concept is being 

widely explored. Researchers are trying to develop new ways 

to merge ontologies which can produce results as good as 

humans. The problem of merging or matching ontologies is 

not as simple, as there are several issues that are to be 

considered while matching ontologies. Among them the most 

prominent issue is of heterogeneity where ontologies are 

available in different frameworks and we need to merge the 

knowledge incorporated in them. Most of the matchers 

developed today are unable to handle this problem. In our 

approach we have addressed this issue. As mostly the 

ontologies are available in OWL, RDF or XML formats. Our 

matcher can read any of these formats and can align their 

information and produce an aligned ontology. 

The rest of the paper is as follows: Section 2 gives a brief 

description of the work done in the area of ontology matching. 

Section 3 describes our approach; it explains the experimental 

setup and our methodology. Section 4 describes the evaluation 

procedure incorporated to test the performance of the matcher 

and Section 5 concludes the work done.  

2. LITERATURE SURVEY 
In the past decade, as this area gained popularity, a lot of work 

was done to develop good matching systems. In this section 

we describe some of the best matchers developed till date. 

Agreement Maker is a matcher developed at University of 

Illinois at Chicago by Cruz at el. [1]. This system has the best 

user interface developed so far. Moreover it has a flexible 

architecture and an integrated user interface which makes it 

different from other matchers. The core philosophy of the 

developers of this matcher is that of involving users into 

matching process. They believe that users can help make 

better alignments which are not possible in automatic 

alignments. Thus they prophesize the use of having semi-

automatic matching systems. LogMap is another ontology 

matcher which is developed at University of Oxford by Ruiz 

and Grau [2]. They have used a logic based reasoning 

approach in their matcher. Their argument is that if we use 

logic based semantics incorporated in the ontologies then we 

may produce better alignments. This matcher is still under 

development and has already started a debate among the 

circles of the developers of ontology matchers. 

AROMA [3] is a hybrid ontology matcher which can 

effectively match the concepts and properties from two 

ontologies. In order to do so they use association rule 

paradigm [4] and statistical interestingness measure. CIDER 

[5] tries to align ontologies using schema matching. It follows 

a two pronged approach, first it tries to extract similar 

concepts up to a certain depth and then applies different 

matching techniques onto the concepts and then finally 

produce aligned ontology. Lily [6] is another matching system 

which has re-emerged as one of the active ontology matchers. 

It can match generic and large scale ontologies. It can produce 

good results for normal size ontologies but it takes a lot of 

time to do so. The main reason behind this is that this 

matchers tries to extract semantic sub graphs and then tries to 

map them with other ontologies. 

RiMOM [7] is one the top performing matchers that are tested 

in various evaluation campaigns across the globe. This 

matcher can not only match schema but also can match 

instances available in the ontologies. It uses multiple 

techniques to implement this feature and uses external 

resources like WorldNet to do semantic matching. TaxoMap 

[8] is another matcher which can produce matched ontologies 

of large scale. It does so by finding correspondence between 

the concepts of two ontologies. It also performs matches for 
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subsumption relations and its inverse and proximity relations. 

YAM++ [9] is another matcher which can produce good 

results. This system uses multiple matching algorithms which 

are combined to produce matched ontology. This system 

provides flexibility as it allows the user to provide 

preferences. This system is self-configurable and extensible as 

if the user is not satisfied with the results then he can provide 

his own customized matching approach. 

3. OUR APPROACH 

3.1 Experimental Setup 
To test the performance of ontology matchers, we required 

ontologies. So, we used some of the ontologies with OAEI 

(Ontology Alignment and Evaluation Initiative) 2013 

evaluation task [10]. This task had some lightweight 

ontologies and one heavyweight ontology. We used fifteen 

ontologies from benchmark test set. These were light weight 

ontologies. We also used an ontology from anatomy track. 

Since we could not find any more heavy weight ontologies, 

we developed some ontologies on our own. These were 

ontology on human anatomy [11] which had concepts relating 

to human physiological structure; we also developed two 

ontologies on health care services [12] and communicable 

diseases [13]. 

We have also used some of the best matchers from the OAEI 

2013 task and compared our system with them. We used a 

graph based methodology for matching the ontologies. The 

objective was to check the feasibility of graph matching 

algorithms into ontology matching. Although some work has 

been done for using graphs in ontology matching. None of the 

previous work has checked the feasibility of graph based 

matchers with both heavyweight as well as lightweight 

ontologies. 

3.2 Methodology 
As ontologies have a hierarchical structure where concepts, 

attributes and instances can be arranged in a tree/graph like 

structure; using a graph matching algorithm here is far more 

intuitive mechanism. Thus, in our approach we have done the 

same. We have used bi-partite graph matching algorithm in 

our approach.    

We have christened our system as Shiva. In our approach, we 

first take two ontologies. These can be in different formats. 

For example, the source ontology can be in OWL format 

while the target ontology can be in RDF format. Our system 

can recognize ontologies in OWL, RDF and XML formats. 

So, the source ontology OS and target ontology Ot are read 

and are sent for preprocessing. In preprocessing task, first we 

separately parse the ontologies by collecting various concepts, 

sub-concepts, properties and instances. This information is 

stored in a file for manual debugging. Moreover, this 

extracted information is preprocessed and is arranged into a 

linked graph in memory. Thus each concept has a direct 

relationship with its properties, sub-concepts and instances. If 

we want we can generate an adjacency metric of this 

information or we can see it visually by creating vertices and 

arcs labeled as Isa, instanceof and hasproperty. 

Once preprocessing is completed, the extracted information is 

sent to the matching system, were the user has the choice to 

selection from four different structural matching algorithms 

these are: Levensthein Edit Distance [14], Qgrams [15], Smith 

Waterman [16] and Jaccard’s Coefficient [17] algorithms. All 

the algorithms search for similarities between concepts, sub-

concepts, properties and instances and are checked for three 

types of correspondences. These are: 

1. Equivalence correspondence: where a concept, sub-

concept, property or instance in OS matches with its 

counterpart (at same level) in Ot.  

2. Isa correspondence: where a sub-concept of OS matches 

with a concept of Ot and vice versa. 

3. General correspondence: where a property OS matches 

with a concept or sub-concept of Ot and vice versa. 

Thus all the mapping (mapping(𝑥, 𝑦)) are generated using 

four tuples(𝑥, 𝑦, 𝑟, 𝑡). Where:  

𝑥  OS : x belongs to concepts, sub-concepts, properties and 

instances in source ontology. 

𝑦  Ot : y belongs to concepts, sub-concepts, properties and 

instances in target ontology. 

𝑟  R : r is a correspondence relations in a set of 

correspondence relations R, in our case these are Equivalence, 

Isa and General. 

t  T : t is the similarity metric used in alignment from a set of 

available metrics T, in our case these are Levensthein 

Distance, Jaccard Coefficient, Smith Waterman and Qgrams.  

Using these mappings, we generated a score matrix in the 

following format: 

𝑆 =

 
 
 
 
 
 
𝑀 𝑂11𝑂21    𝑀 𝑂12𝑂21    𝑀 𝑂13𝑂21 …  𝑀 𝑂1𝑚𝑂21 

𝑀 𝑂11𝑂22    𝑀 𝑂12𝑂22    𝑀 𝑂13𝑂22 …  𝑀 𝑂1𝑚𝑂22 

𝑀 𝑂11𝑂23    𝑀 𝑂12𝑂23    𝑀 𝑂13𝑂23 …  𝑀 𝑂1𝑚𝑂23 
    ∶                  ∶                       ∶                               ∶ 
    ∶                  ∶                       ∶                               ∶ 

𝑀 𝑂11𝑂2𝑛    𝑀 𝑂12𝑂2𝑛     𝑀 𝑂13𝑂2𝑛 …  𝑀 𝑂1𝑚𝑂2𝑛  
 
 
 
 
 

𝑚×𝑛

 

Here, 𝑀 𝑂11𝑂21  is the mapping between one of the elements 

(concepts, sub-concepts, properties, instances) of source 

ontology OS with one of the elements (concepts, sub-concepts, 

properties, instances) of target ontology Ot. This has the value 

which is produced by the similarity metric. For example, if we 

are using levensthein distance algorithm and we have two 

concepts as car and cars, then its score would be 1 and the 

similarity is calculated using the formula in equation 1. 

𝑠𝑖𝑚 𝑥, 𝑦 =  
#𝑒𝑑𝑖𝑡𝑠 (𝑥,𝑦)

max ⁡(𝑙𝑒𝑛  𝑥 ,𝑙𝑒𝑛  𝑦 )
 (1) 

Here x and y are the two strings, in our case x is “car” and y is 

“cars”. #matches(x,y) is the no. of edits required to make the 

two strings equal and len(x) is the length of string x, len(y) is 

the length of string y. the maximum of the two is selected to 

compute the final score. This is done for all the mappings 

which then generate the score matrix of all the matched 

elements of both the ontologies. This matrix can be seen as 

bipartite graph which has two disjoint sets of vertices (in our 

case mapping elements of OS and Ot) and edge weights 

(similarity values) are clearly mentioned. 

Once the score matrix is generated, it is passed to our graph 

matching algorithm. We used Hungarian method [18] for 

matching our score matrix (bipartite graph). This gave us the 

best matching pairs in the matrix which are then used to 

generate the aligned ontology. Figure 1 shows the architecture 

of our system. A snapshot of aligned ontology is shown in 

figure 2. 
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4. EVALUATION 
To evaluate the performance of our system we used 19 

ontologies. Among them 15 were light weight ontologies and 

4 were heavy weight ontologies. We used 2 popular ontology 

matchers (RiMOM and YAM++) with our four variants and 

compared their performance. We performed our evaluation on 

three categories. In first category we matched all the 

ontologies. In the second category we only matched the light 

weight ontologies and in the third category we only matched 

the heavy weight ontologies. We calculated precision, recall 

and f-measures using equations 2, 3 and 4 respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑃 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 _𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠

#𝑡𝑜𝑡𝑎𝑙 _𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 _𝑠𝑦𝑠𝑡𝑒𝑚
  (2) 

Recall  R =
#correct _mappings

#total _mappings _human
 (3) 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹) =  
2×𝑃×𝑅

𝑃+𝑅
 (4) 

Here, the system generated matched ontology is compared 

with human generated manually matched ontology. The basic 

idea is to make the system produce an ontology which can 

emulate human matched ontology. Thus the matchers which 

produce better mappings is considered being the best. 

Precision is calculated using the correct mappings between 

human and system’s ontology divided by the total mappings 

produced by the system. Recall is calculated using the correct 

mappings between human and system’s ontology divided by 

the total mappings produced by the human. F-measure is the 

combination of the two. 

Table 1 shows the values of precision, recall and fmeasure. 

While taking the average of all the ontologies, we found that 

RiMOM performed better than all other matchers while Shiva 

with Levensthein Distance Algorithm was second. In category 

2, where only light weight ontologies were considered, we 

computed the averages of only these ontologies and found that 

again RiMOM performed better than other matchers with 

Shiva with Levensthein Distance Algorithm managing to get 

the second position. For category 3, we only took the averages 

of heavy weight ontologies and found that RiMOM again was 

the top matchers. This time YAM++ performed better than  

Shiva with Levensthein Distance Algorithm. 

5. CONCLUSION 
In this paper, we have shown the implementation of a graph 

based matcher with four different variants which use four 

different algorithms. We have used bipartite graph matching 

algorithm in creating aligned ontology. This approach 

produced good results as it could work at par with YAM++, 

one of the good ontology matchers while could not match 

with RiMOM. One of the reasons for this is that RiMOM 

matches ontologies at semantic level while Shiva only 

matches them at structural level.   

As an enhancement to this work, we can add WorldNet and 

similar semantic resources to improve the performance of the 

matcher by combining structural as well as semantic matching 

techniques. 
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Figure 1: Architecture of Shiva Ontology Matching System and Framework 

 

 

 

Figure 2: Snapshot of aligned ontology 
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Table 1: Comparison of Evaluation Results 

 

 RiMOM YAM++ ShivaJaccard ShivaLD ShivaQgrams ShivaSW 

Ontology P R F P R F P R F P R F P R F P R F 

101 
1 0.98969 0.99481 0.75257 0.42941 0.54681 0.59036 0.50515 0.54444 0.975 0.80412 0.88135 0.13725 0.64948 0.22661 0.92957 0.68041 0.7857 

103 
0.96875 0.95876 0.96373 0.92783 0.48128 0.63380 0.55056 0.50515 0.52688 0.94666 0.73195 0.82558 0.11623 0.64948 0.19718 0.92957 0.68041 0.7857 

104 
0.96875 0.95876 0.96373 0.92783 0.48128 0.63380 0.55056 0.50515 0.52688 0.95876 0.95876 0.95876 0.11623 0.64948 0.19718 0.92957 0.68041 0.7857 

201 
0.90909 0.72164 0.80459 0.92783 0.48128 0.63380 1 0.05825 0.11009 1 0.98969 0.99481 0.06862 0.06730 0.06796 0.0845 0.06185 0.0714 

201-2 
0.86111 0.63917 0.73372 0.92783 0.48128 0.63380 0.61702 0.29896 0.40277 0.97894 0.95876 0.96875 0.11421 0.50515 0.18631 0.76056 0.5567 0.6425 

201-4 
0.92 0.71134 0.80232 0.92783 0.48128 0.63380 0.57142 0.16494 0.256 0.97894 0.95876 0.96875 0.11111 0.38144 0.17209 0.54929 0.40206 0.4642 

201-6 
1 0.82474 0.90395 0.92783 0.48128 0.63380 0.66666 0.08247 0.14678 0.97894 0.95876 0.96875 0.10038 0.26804 0.14606 0.39436 0.28866 0.3333 

201-8 
1 0.86597 0.92817 0.92783 0.48128 0.63380 1 0.04902 0.09345 0.93333 0.57732 0.71337 0.07471 0.13402 0.09594 0.23943 0.17525 0.2023 

202 
1 0.86597 0.92817 0.92783 0.48128 0.63380 1 0.06730 0.12612 1 0.91752 0.95698 0.07767 0.07619 0.07692 0.0845 0.06185 0.0714 

202-2 
1 0.84536 0.91620 0.92783 0.48128 0.63380 0.61702 0.29896 0.40277 0.98795 0.84536 0.91111 0.11421 0.50515 0.18631 0.76056 0.5567 0.6428 

202-4 
1 0.84536 0.91620 0.92783 0.48128 0.63380 0.57142 0.16494 0.256 0.98717 0.79381 0.88 0.11111 0.38144 0.17209 0.54929 0.40206 0.4642 

202-6 
1 0.87628 0.93406 0.92783 0.48128 0.63380 0.66666 0.08247 0.14678 0.97260 0.73195 0.83529 0.10038 0.26804 0.14606 0.39436 0.28866 0.3333 

202-8 
0.91304 0.64948 0.75903 1 0.5 0.66666 1 0.07619 0.14159 0.72340 0.70103 0.71204 0.07471 0.13402 0.09594 0.23943 0.17525 0.2023 

203 
1 0.77319 0.87209 0.92783 0.48128 0.63380 0.55056 0.50515 0.52688 0.72340 0.70103 0.71204 0.11623 0.64948 0.19718 0.92957 0.68041 0.785 

204 
1 0.77319 0.87209 0.92783 0.48128 0.63380 0.56097 0.47422 0.51396 0.72340 0.70103 0.71204 0.12403 0.65979 0.20880 0.88732 0.64948 0.75 

Anatomy 
0.97222 0.72164 0.82840 0.65591 0.39610 0.49392 0.58181 0.34408 0.43243 0.89743 0.37634 0.53030 0.11428 0.64516 0.19417 0.93846 0.65591 0.77215 

OntoAna 
0.97058 1 0.98507 0.92783 0.48128 0.63380 0.50549 0.47422 0.48936 0.952381 0.412371 0.57554 0.07588 0.63917 0.13566 0.91549 0.6701 0.77381 

HlthCare 
0.98795 0.84536 0.91111 0.2414 1.05197 2.21928 0.60869 0.48275 0.53846 1 0.27272 0.42857 0.14110 0.79310 0.23958 0.85185 0.7931 0.82142 

HCD 
1 0.7628 0.865497 0.78787 0.44067 0.56521 0.5333 0.72727 0.61538 1 0.2727 0.4285 0.05921 0.81818 0.11042 0.81818 0.81818 0.81818 

Average 

Category1 

0.9721 0.8225 0.8885 0.8645 0.5029 0.7034 0.6706 0.3087 0.3577 0.9325 0.7191 0.7875 0.1025 0.4670 0.1606 0.6413 0.4882 0.5529 

Average 

Category2 

0.9693 0.8199 0.8861 0.9209 0.47907 0.6301 0.7008 0.2558 0.3147 0.9245 0.8219 0.8666 0.1038 0.3985 0.1581 0.5774 0.4226 0.4879 
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