
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.8, February 2014

9

A Parallel Implementation of Ant Colony Optimization for

TSP based on MapReduce Framework

Anuraj Mohan
Assistant Professor

Dept of CSE,
NSS College of Engineering,

Palakkad, Kerala, India

Remya G
M.E Scholar

Maharaja Institute of Technology,
Coimbatore,

TamilNadu, India

ABSTRACT
The Travelling Salesman Problem (TSP) is one of the most

widely and deeply studied problems in optimization. It belongs

to the category of NP Complete problems in which no

polynomial time solution is possible unless P=NP. Various

researches are done on finding efficient heuristics to get

provably optimal and near to optimal results to TSP. Having the

push towards grid and cloud computing, it will become more

necessary to adopt existing algorithms to distributed computing

frameworks like MapReduce. The aim is to parallelize the ant

colony optimization algorithm for solving TSP over the Apache

Hadoop MapReduce framework. The paper also compares the

results of the parallel implementation with the performance of

the serial version of the ACO algorithm.

Keywords
MapReduce, Ant Colony Optimization, Parallel Computing

1. INTRODUCTION
In its most basic form, the Travelling Salesman Problem (TSP)

is defined as finding a minimum cost Hamiltonian cycle in a

graph. We are reduced to the Euclidian Travelling Salesman

Problem when the edge weights on the graph form a Euclidian

metric. The problem was first formulated as a mathematical

problem in 1930 and is one of the most intensively studied

problems in optimization. It is used as a benchmark for many

optimization methods. Even though the problem is

computationally complex, a large number of heuristics and

exact methods are known, so that some instances with tens of

thousands of cities can be solved. The TSP has several

applications even in its purest formulation such

as planning, logistics, and the manufacture of microchips.

Slightly modified, it can be considered as a sub-problem in

many challenging areas, such as DNA sequencing.

In the theory of computational complexity, the TSP can be

considered as a decision problem where given a length L, the

task is to decide whether any tour is shorter than L, which

belongs to the class of NP-complete problems. Thus, it is likely

that the worst case execution time for any algorithm for the TSP

increases exponentially with the number of cities. Generally, for

a TSP solver, one either tries to obtain a provably optimal

solution or one tries to get a solution as close to the optimum as

possible without actually proving that the solution is close to

the optimum. While the former goal has an advantage in that it

gives a guarantee of the quality of the solution, it is generally

very slow and infeasible to apply to instances of a large size.

Thus we opt for the second goal. The system uses the Ant

Colony Optimization algorithm that simulates the way ants find

the shortest route to a food source. There already exist

sequential versions of this algorithm. The aim is to parallelize

this algorithm over Hadoop MapReduce and thereby improve

its performance. Ant colony optimization algorithms have been

applied to many combinatorial optimization problems, ranging

from quadratic assignment to protein folding or routing

vehicles and a lot of derived methods have been adapted to

dynamic problems in real variables, stochastic problems, multi-

targets and parallel implementations.

MapReduce is a distributed computing framework developed at

Google for the analytics of large heterogeneous data that have

been divided over many computers. Its programming model

allows the user to neglect about many of the issues associated

with distributed computing: splitting up and assigning the input

to various systems, scheduling and running computation tasks on

the available nodes and coordinating the necessary

communication between tasks. Map Reduce deals with its input

in terms of key-value pairs, which are generated from an input

file by user-configurable rules. Map Reduce uses a very simple

programming abstraction, which in its most general form

requires its user to write only two functions - map and reduce.

Hadoop is an open source framework which uses the

MapReduce programming model for writing and running
distributed applications that process large amounts of data.

2. RELATED WORK
Ant colony optimization has been formalized into a met

heuristic for combinatorial optimization problems by Dorigo

and co-workers [1], [2]. Various adaptations includes an

algorithm based on the basis of the ant evolution rules [3],

dynamic control of solution construction and mergence of local

search ([4], [5], [6]), max-min ant system [7] and a strategy to

partition artificial ants into two groups: scout ants and common

ants [8] are studied to improve the quality of the final solution

and lead to speedup of the algorithm .The possibility of

parallelizing the Traveling Salesman Problem[9] over the

MapReduce architecture is also studied. A MapReduce Max-

Min Ant System [10] implementation based on the MapReduce

parallel programming model is also proposed.

3. PROPOSED SYSTEM
The proposed system is based on parallelizing the sequential

version of Ant Colony Optimization algorithm over a cluster to

solve TSP. This is done based upon the MapReduce framework.

The design of the map reduce job basically involves how the

map and reduce functions are implemented and how the Ant

Colony Optimization algorithm has been modified so as to be

able to run in a MapReduce framework. As far as the map and

reduce are concerned, the entire job is divided into one initial

map reduce phase, several intermediate map reduce phases and

a final map reduce phase. Each phase produces a result which is

expected to be closer to the optimum value. The number of

stages is user controlled.

 In the sequential implementation of the Ant Colony

Optimization algorithm each artificial ant is placed in randomly

chosen node. The graph initially contains the initial pheromone

levels. The ants initially traversing the graph select the path

they travel on the basis of the attractiveness (reciprocal of the

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.8, February 2014

10

distance of the edge) of an edge. As they traverse through the

graph they deposit the pheromones, thereby making different

pheromone levels at different edges of the graph. Now the

consequent ants choose their path by considering the amount of

the pheromones deposited and the attractiveness of each path.

Also the pheromone deposits in an edge evaporate or decrease

when this edge is not used. In this way the pheromone deposit

goes on increasing in the path through which most ants travel

and becomes the path for the travelling salesman with a

distance close to the optimal solution.

The system modifies the existing sequential version of the ACO

algorithm to fit into the MapReduce framework of Hadoop. The

basic idea is to give copies of the TSP instances to multiple

mappers which will work in parallel to produce the results. In

Hadoop, all the mappers must work on independent data and so

the sharing of pheromone updates is not possible between the

mappers. So, in order to implement the algorithm in Hadoop,

the concept of chaining MapReduce jobs is used. Chaining

means executing multiple MapReduce jobs one after the other.

In this method, there will be multiple stages of MapReduce. In

the first stage, the mappers will work on the input data using the

initial pheromone levels. Once the mappers have finished their

work, they will pass on the calculated routes to the reducer

which will then update the pheromone values. The results are

then passed on to the next stage. Therefore, the mappers of the

intermediate stages will get to work on the updated pheromone

values. The number of intermediate stages required can be

chosen by the user. Once all the stages are complete, the final

stage will give the best result obtained among all stages. In

order to further improve the performance of the parallel version,

multiple ants inside a single mapper is implemented. These ants

will work just like in the sequential version as they will have

access to the pheromone updates produced by each other

instantaneously.

4. STAGES OF IMPLEMENTATION

4.1 Initial stage
The basic algorithm for the initial stage of the MapReduce

implementation is as follows:

In the first stage, the input to the MapReduce job is the TSPLIB

input file that contains the Euclidian 2D coordinates of a TSP

problem. Once the job has started, the Job Client returns the

input splits generated from the input file. Each map task will be

given exactly n lines of the input. Our input file contains m

lines, where each line holds the single TSP instance. The

functioning of the mapper is as follows.

i) Each mapper obtains the key-value pair whose value

is one instance of the TSP problem.

ii) The mapper then parses the text item and retrieves the

coordinates. It then constructs the graph.

iii) Then the pheromone array is initialized and ‘p’ ants

(value p is specified by the user) are generated.

iv) Each ant uses the classic ACO algorithm to find

routes in the graph. Within a mapper, the updates to

the pheromone array are available to all ants

instantaneously.

v) After all the ants have finished their work, the mapper

initializes the TspInput object with all the paths

generated by the ants.

vi) Finally it produces a key-value pair. All mappers use

the same key, so that all key-value pairs go to the

same reducer.

The reducer takes the key-value pairs generated by all the

mappers and iterates through them. During this process, the

reducer performs updates to the global pheromone array which

will be passed on to the next stage of the MapReduce. Also, the

reducer calculates the best route of each stage. Once the reducer

finishes its work, it writes the key-value pairs into a binary file.

This format stores the key-value pairs so that subsequent stages

in the chained MapReduce jobs can process them faster. Like

the original file, the output file from the first stage also contains

replicated data. Also, it is important to note that the output of

the first stage contains the updated pheromone table along with

the original TSP input.

The map and reduce methods of the intermediate and final

stages are almost similar to these. The only difference is in the

types of the key-value pairs.

4.2 Intermediate Stage
The output obtained from the reducer of the initial stage is fed

to the intermediate stages. It uses a modified mapper and

reducer as they are different from the initial map reduces

functions as they work on input in the binary form.

4.3 Final Stage
 The input obtained from the previous intermediate stages is in

binary format and the output should be in text format as they

have to be understood by the user. The final reducer, as the

previous reducers compares the solutions of different maps in

the stage and finds the best possible one and writes these to a

file for the user to access.

5. SYSTEM PARAMETERS

5.1 Input Parameters
There are many input parameters that the user has control over

while using the algorithm:

5.1.1 Number of mappers per stage
This parameter determines the number of mappers that will be

executed in each stage of the MapReduce program. This value

determines the amount of parallelism in each stage as the

mappers are executed in parallel.

5.1.2 Number of ants per mapper
This value controls how many ants will function inside each

mapper across all stages. Higher value means that each stage

will have more pheromone updates to pass on to the next stage

of the job. Higher values will also increase the amount of

computation to be performed inside each mapper.

5.1.3 Number of stages
This value indicates the number of stages in the MapReduce

chain. Each subsequent stage after the initial stage will have

updated pheromone values for their ants to work with. This

should make the computations of the ants more accurate as the

number of stages increases.

5.2 Output
The two main outputs from our system are:

 1. Time taken for the algorithm to execute

 2. The shortest path computed by the algorithm

Since we are using a heuristic algorithm (Ant Colony

Optimization), we will not be getting exact optimal solutions.

However the algorithm gives approximate solutions that are

quite close to the optimal solution. Usually the errors are

between 2-5%.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.8, February 2014

11

6. COMPARISON OF PROPOSED

SYSTEM AND CURRENT SYSTEM
The final system, which uses the Best of Breed parallelized

algorithm, is compared with the original sequential

implementation to check the difference in results and thereby

conclude the optimization achieved by using the new algorithm.

The test is divided into two parts, namely load comparison and

quality comparison.

6.1 Load Comparison
Load comparison involves testing the system against the

original algorithm for the same amount of computational load.

The computational load in this system is the number of ants that

we are executing in the system. Various tests were conducted to

evaluate the ability of the parallelized system to handle large

loads when compared to the sequential algorithm. Memory

requirements were more in the sequential system when

compared to the parallelized system as the memory footprint of

this algorithm was fairly small compared to the requirements of

the sequential system as the number of ants running in each

stage was lesser than that in the sequential system.

Figure 6.1 – Comparison of jobs with 1, 2 and 3 stages

chained

The figure 6.1 depicts the running time of the algorithm for

different number of ants represented on the X-axis and three

different lines representing 1, 2 and 3 map stages. On increasing

the number of ants the running time is not affected to the extent

that increasing the number of stages would cost. The overhead

on the system is large when the algorithm is parallelized as the

network congestion greatly raises the time required for the

computation to complete. Moreover, Hadoop is not designed to

handle large number of inter-node communication, but rather

for large amounts of single transactions. It must be noted that

this system is efficient on a larger number of cities as the

computational efficiency masks the overhead caused by the

underlying Hadoop system.

Figure 6.2–Variation in execution time against different

inputs for one, two and five system cluster

Figure 6.3 –Variation of execution time against different

number of inputs for 500, 1000 and 4000 ants

Figure 6.4–Variation of execution time against different

number of inputs for 1, 2 and 3 MapReduce stages.

Figure 6.4 depicts the behavior of the algorithm when the

number of MapReduce stages is increased. From the graph it

can be observed that as the number of stages increases the

running time of the algorithm also increases. It can be inferred

from the previous results that for accurate result and optimum

performance of the Ant Colony Optimization algorithm it is

necessary to weigh the factors of time and error to carefully

choose the number of stages of MapReduce, the number of ants

(agents) per mapper and the number of nodes in the cluster

which can produce the best result among all and with the most

optimum performance. However, as the system is parallelized,

we are able to run a larger amount of ants per system which

0

500

1000

1500

Ex
ec

u
ti

o
n

 T
im

e

No of ants

3

2

1

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00
1600.00
1800.00
2000.00
2200.00
2400.00
2600.00

1 2 3 4 5 6 7

Ex
e

cu
ti

o
n

 T
im

e

Nodes

Five

Two

One

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7

Ex
e

cu
ti

o
n

 T
im

e

Nodes

500

1000

4000

0
200
400
600
800

1000
1200
1400
1600

1 2 3 4 5 6 7

Ex
e

cu
ti

o
n

 T
im

e

Nodes

1

2

3

0 50 100 150

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.8, February 2014

12

makes the system more efficient when handling much larger

loads than the sequential system. The sequential system is not

able to handle as many ants as the parallelized system as it is a

single processor with limited computational power. When the

parallelized system is implemented on a large cluster, the

computational power is greatly magnified and the system is able

to perform computation much better.

6.2 Quality Comparison
The tested system is shown in Figure 6.5. The algorithm

consistently generated results that were close to the optimal

result. The advantage of this system over the sequential system

is that we can control the quality to a larger extent than the

sequential system. While in the sequential system, once the

system begins execution, there is no means to control it until we

get the final result.

Figure 6.5 -Best Distance

The above graph depicts the fact that even though the sequential

version of the Ant Colony Optimization algorithm produces a

more accurate value with a lesser error, the algorithm when run

of a multi-node cluster produces close to sequential values and

even if the accuracy is not as good as the sequential version, the

result is produced with a better running time.

7. CONCLUSION AND FUTURE SCOPE
The aim was to parallelize ACO over TSP problem and found

by conducting several experiments with different parameters

that, we can arrive at optimum values for each of the parameters

used i.e. number of mappers per stage, the number of ants per

mapper and the number of stages in the chained job. More

studies can be done in order to find a better way to implement

the pheromone updates. Because it was unable to share

pheromone updates between mappers in Hadoop, in the current

implementation all the pheromone updates are done by the

single reducer in each stage. So, the reducer has too much work

to do as the number of ants increases. This behavior can be

improved by studying the possibility of having multiple

reducers for pheromone updates and reducing the duplication of

work. Finally, research can be done on more heuristic

algorithms for other NP complete problems and try to

parallelize them also.

8. REFERENCES
[1] M. Dorigo and G. Di Caro, “The Ant Colony Optimization

meta-heuristic,” in New Ideas in Optimization, D. Corne et

al., Eds., McGraw Hill, London, UK, pp. 11–32, 1999.

[2] M. Dorigo, G. Di Caro, and L.M. Gambardella, “Ant

algorithms for discrete optimization,” Artificial Life, vol.

5, no. 2, pp. 137–172, 1999. W. Tsai and F. Tsai, “A

New Approach for Solving Large Traveling Salesman

Problem Using Evolutionary Ant Rules,” IJCNN

2002,IEEE.

[3] W. Tsai and F. Tsai, “A New Approach for Solving Large

Traveling Salesman Problem Using Evolutionary Ant

Rules,” IJCNN 2002,IEEE.

[4] H. Md. Rais, Z. A. Othman, and A. R. Hamdan, “Improved

dynamic ant colony system (DACS) on symmetric

Traveling Salesman Problem(TSP) ,” International

Conference on Intelligence and Advanced Systems, IEEE,

2007.

[5] J. Han and Y. Tian, “An improved ant colony optimization

algorithm based on dynamic control of solution

construction and mergence of local search solutions,”

Fourth International Conference on Natural Computation,

IEEE, 2008.

[6] M. Colpan, “Solving geometric tsp with ants,” the

pennsylvania state university, 2005

[7] T. Stutzle and H. H. Hoos. “MAX-MIN ant system and

local search for the traveling salesman problem,” in IEEE

Int’l Conf on Evolutionary Computation. Indianapolis:

IEEE Press, 1997.309~314.

[8] R. Gan, Q. Guo, H. Chang, and Y. Yi, “Improved ant

colony optimization algorithm for the traveling salesman

problems,” Journal of Systems Engineering and

Electronics, April 2010

[9] Siddhartha Jain Matthew Mallozzi “Parallel Heuristics for

TSP on MapReduce” Brown University – CSCI 2950-u –

Fall 2010

[10] Qing Tan, Qing He, and Zhongzhi Shi “Parallel Max-Min

Ant System Using MapReduce” ICSI 2012, Part I, LNCS

7331, pp. 182–189, 2012.

[11] Sanjeev Arora. “Polynomial-time Approximation Schemes

for Euclidean TSP and other Geometric Problems”.

Journal of the ACM 45(5), 753–782, 1998.

[12] .http://hadoop.apache.org/.docs/r1.2.1/mapred_tutorial.htm

l

[13] TSPLIB: A Library of Sample Instances for the TSP

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB/

7300 7500 7700

Sequential

Two stage

Three stage

Exact value

Best Distance

IJCATM : www.ijcaonline.org

